

ARCHWARE: Architecting Evolvable Software

Flavio Oquendo1, Brian Warboys2, Ron Morrison3, Régis Dindeleux4,
Ferdinando Gallo5, Hubert Garavel6, and Carmen Occhipinti7

1 InterUnec/University of Savoie – France
http://www.arch-ware.org

2 University of Manchester – UK
3 University of St Andrews – UK

4 Thésame – France
5 Consorzio Pisa Ricerche – Italy

6 INRIA – France
7 Engineering Ingegneria Informatica – Italy

Abstract. This paper gives an overview of the ArchWare European Project1.
The broad scope of ArchWare is to respond to the ever-present demand for
software systems that are capable of accommodating change over their lifetime,
and therefore are evolvable. In order to achieve this goal, ArchWare develops
an integrated set of architecture-centric languages and tools for the model-
driven engineering of evolvable software systems based on a persistent run-time
framework. The ArchWare Integrated Development Environment comprises:
(a) innovative formal architecture description, analysis, and refinement lan-
guages for describing the architecture of evolvable software systems, verifying
their properties and expressing their refinements; (b) tools to support architec-
ture description, analysis, and refinement as well as code generation;
(c) enactable processes for supporting model-driven software engineering; (d) a
persistent run-time framework including a virtual machine for process enact-
ment. It has been developed using ArchWare itself and is available as Open
Source Software.

1 Introduction

ArchWare applies an innovative approach to the architecture-centric model-driven
engineering of software systems that sets the “ability to evolve” as its central charac-
teristic. Evolution arises in response to changes to requirements as well as to run-time
feedback. Within this focus, ArchWare comprises:

− the definition of formal languages (with textual and graphical notations) for model-
ling dynamic2 architectures (including expression of run-time structure, behaviour,
and semantic properties from a run-time component-and-connector viewpoint) and
expressing their analyses and refinements;

1 The ArchWare European Project is partially funded by the Commission of the European

Union under contract No. IST-2001-32360 in the IST-V Framework Program.
2 The architecture of a software system is dynamic if it can change during the course of its

execution.

− the implementation of a customisable environment for architecture-centric software
engineering, including processes and tools for supporting architecture description,
analysis, refinement, code generation, and their evolution;

− the validation of ArchWare languages and environment through industrial business
cases and its dissemination as Open Source Software.
The novelty of the ArchWare approach lies in its holistic view of software. This

starts with the capturing of the key architectural decisions by the definition of archi-
tecture styles, which might also involve the specification of invariant properties of the
software (w.r.t. aspects such as structure, behaviour and qualities). Such properties
may then be checked/proved using analysis tools throughout the software life cycle.
Since ArchWare accommodates both static and dynamic qualities, it is essential that
the run-time system can provide feedback and evolve while preserving the defined
properties according to any policy and constraint defined at the level of the architec-
tural style.

ArchWare goes beyond existing software environments in supporting architecture-
centric engineering of software systems. In ArchWare both the software engineering
process and its products at every stage of the software life cycle, including specifica-
tion, implementation, qualities and indeed architectural styles themselves, are run-
time evolvable. While existing software environments have proposed and imple-
mented mechanisms for particular evolutionary scenarios, ArchWare addresses the
problem of evolution at all levels of abstraction throughout the lifecycle of a software
system.

The engineering of evolvable software systems requires the capture of key design
decisions about “how” the software is to function in terms of expected behaviours,
“what” is its structure in terms of components and their connectors, and “which”
qualities are to be guaranteed. Furthermore, an appropriate refinement process (de-
scribing “how to build” the software) is also to be effectively supported.

The core of ArchWare is its integrated set of architecture-centric languages: an ar-
chitecture description language, an architecture analysis language, and an architecture
refinement language. These integrated languages are supported by an integrated tool-
set including a UML-based visual editor, a hyper-code textual editor, a graphical
animator, a property checker, a refiner, a virtual machine, and a code-generator syn-
thesizer.

ArchWare provides a process-integrated software engineering environment. The
ArchWare software engineering process is itself influenced by its architecture-centric
nature, in which the software architecture description is used to organise development
activities. This architecture-centric approach guarantees that compliant implementa-
tions conform to the architecture description (including structural, behavioural, and
quality properties).

A further central aspect of ArchWare is the support for the dynamic evolvability of
applications and embedded processes. ArchWare enables deployed software architec-
tures to evolve, in a controlled manner, in order to address aspects such as run-time
evolution of requirements and technology.

This paper gives an overview of ArchWare. The remainder of the paper is organ-
ised as follows. Section 2 introduces architecture-centric model-driven software engi-
neering. Section 3 briefly presents the ArchWare architecture-centric languages: the
description, analysis and refinement languages. Section 4 introduces the ArchWare
architecture-centric integrated development environment. Section 5 addresses related
work and concludes the paper.

2 Architecture-Centric Model-Driven Software Engineering

All forms of engineering rely on models to design real-world systems. Models are
used in many ways: to understand specific system aspects, predict system qualities,
reason about impact of changes, and communicate major system features to stake-
holders.

Figure 1 shows the spectrum of modelling approaches in software engineering
[13]. Each category identifies a particular use of models in assisting software engi-
neers to create running applications (code) for a specific run-time platform as well as
the relationship between the models and the code.

Fig. 1. The Modelling Spectrum.

Models are at the heart of the ArchWare approach. ArchWare provides a model-
driven approach, i.e. the system models have sufficient detail to enable the generation
of a full system implementation from the models themselves. Indeed, “the model is
the code”, i.e. the focus is on modelling and code is mechanically generated from
models. In ArchWare, models are architecture-centric (run-time) models. They are
executable and support analysis and refinement. This is illustrated in Figure 2 which
shows a variety of architecture-centric model-driven activities and stakeholders that
may be used when developing applications in ArchWare.

Typical architecture-centric activities are “define style”, “define architecture”, and
“refine architecture” (the last refinement is code generation). Typical stakeholders are
“style architect”, “application architect”, and “application engineer”.

“Define style” activities, whose principal actors are the “style architects”, represent
the top level inception of a family of software architectures. An architecture style
defines a domain specific architecture description “profile”, including formal defini-
tions of what an architectural element is, and what its invariant properties (including
qualities) are, how elements can be combined, which constraints apply, and which
processes can be applied to architecture elements and whole architecture descriptions
(notably w.r.t. refinement and evolution).

“Define architecture” activities, whose principal actors are the “application archi-
tects”, may use the domain specific styles defined by the style architect to describe a

Code Only Code Visuali-

zation

Model Only Model DrivenRoundtrip

Engineering

Model Model Model Model

Code Code Code Code

The code is
the model

Code and
model coexist

What is a
model?

The model is
the code

Let us do
some design

specific software architecture. In ArchWare an architecture description conforms to
the properties and constraints defined by its style and can represent a system at vari-
ous levels of abstractions (w.r.t. the detail of implementation decisions provided by
the application engineer).

“Refine architecture” activities, whose principal actors are the “application engi-
neer”, support refinement transformations from abstract to more concrete architecture
descriptions. Thus, an abstract – platform independent – architecture description can
be refined to a concrete – platform specific – description of a specific application. The
role of the application engineer is to derive that concrete description by applying
correctness preserving refinements that conform to the constraints defined by the
application architect and by the adopted architecture styles.

It is worth noting that this software engineering process model is not hard-coded in
ArchWare. It is one possible architecture-centric software engineering process model
that can be explicitly defined and enacted in ArchWare. ArchWare provides a library
of software engineering process models that includes this one and they are all evolv-
able.

3 ARCHWARE Architecture-Centric Languages

ArchWare provides languages for describing dynamic architectures, analysing archi-
tecture structural and behavioural properties, and refining architecture descriptions.
These languages are implemented using a software environment for supporting the
evolution of architectural models, and this environment includes the processes used to
develop the environment.

3.1 ARCHWARE Architecture Description Language

In ArchWare, architecture description encompasses two aspects: the expression and
verification of architectural styles (typically carried out by style architects) and of
software architectures themselves (typically carried out by application architects).

define style

style

architect
architecture

style description

application

architect

application

engineer

refine
architecture

instance of

architecture

description and
analysis

refinement of

define
architecture

generated from

application

Fig. 2. ArchWare Architecture-centric Model-driven Software Engineering.

The ArchWare Architecture Description Language (ADL) [50][48] provides the
core structure and behaviour constructs for describing dynamic software architectures.
It is a formal specification language designed to be executable and to support auto-
mated analysis and refinement of dynamic architectures.

The ARCHWARE ADL has as formal foundation the higher-order typed π-calculus
[54], a higher-order calculus for communicating and mobile systems. The
ARCHWARE ADL is itself a formal language defined as a domain-specific extension
of the higher-order typed π-calculus: it is a well-formed extension for defining a cal-
culus of communicating and mobile architectural elements.

The ARCHWARE ADL takes its roots in previous work concerning the use of
π-calculus as semantic foundation for architecture description languages [15][14].
Indeed, a natural candidate for expressing dynamic (run-time) behaviour would be the
π-calculus as it is [43], which provides a general model of computation and is Turing-
complete. This means that in π-calculus “every computation is possible but not neces-
sarily easy to express”. In fact, the classical !-calculus is not suitable as an architec-
ture description language since it does not provide architecture-centric constructs to
easily express architectures in particular w.r.t. architectural structures. Therefore, a
language encompassing both structural and behavioural architecture-centric constructs
is needed. The ARCHWARE ADL is this encompassing language, defined as a domain-
specific extension of the higher-order typed !-calculus. It achieves Turing complete-
ness and high architecture expressiveness with a simple formal notation.

The following general principles guided the design of ARCHWARE ADL:

− formality: ARCHWARE ADL is a formal language: it provides a formal system, at
the mathematical sense, for describing dynamic software architectures and reason-
ing about them;

− run-time viewpoint: ARCHWARE ADL focuses on the formal description of soft-
ware architectures from the run-time viewpoint: the (run-time) structure, the (run-
time) behaviour, and how these may evolve over time;

− executability: ARCHWARE ADL is an executable language: a virtual machine runs
specifications of software architectures;

− user-friendliness: ARCHWARE ADL supports different concrete syntaxes – textual
[17][59] and graphical [6][7] (including UML-based) notations – to ease its use by
architects and engineers.
Based on these general principles, the design of ARCHWARE ADL followed the fol-

lowing language design principles [47][57][58]:

− the principle of correspondence: the use of names are consistent within
ARCHWARE ADL, in particular there is a one to one correspondence between the
method of introducing names in declarations and parameter lists;

− the principle of abstraction: all major syntactic categories have abstractions defined
over them (in ARCHWARE ADL, it includes abstractions over behaviours and ab-
stractions over data),

− the principle of data type completeness: all data types are first-class without any
restriction on their use.
In first-class citizenship, i.e. in addition to rights derived from type completeness

(i.e. where a type may be used in a constructor, any type is legal without exception),
there are properties possessed by all values of all types that constitute their civil rights
in the language. In ARCHWARE ADL they are:

− the right to be declared,
− the right to be assigned,
− the right to have equality defined over them,
− the right to persist.

Additionally, ARCHWARE ADL provides an extension mechanism, i.e. new con-
structs can be defined on top of the language using user-defined mixfix abstractions.
This extension mechanism provides the basis for providing style-based definitions.

In ArchWare, a style notation [16], built on the ARCHWARE ADL, provides the
style constructs from which the base component-and-connector style and other de-
rived styles can be defined. Conceptually, an architectural style includes:

− a set of abstractions for architectural elements,
− a set of constraints (i.e. properties that must be satisfied) on architectural elements,

including legal compositions,
− a set of additional analyses that can be performed on architecture descriptions con-

structed in the style.

ArchWare provides a novel ADL that is general-purpose and Turing-complete. The
advantage w.r.t. other ADLs is that the ARCHWARE ADL supports user-defined archi-
tectural component-and-connector abstractions (instead of being obliged to use hard-
coded abstractions provided by particular ADLs that very often do not meet architect
needs). It can be seen as a second generation ADL: in first generation ADLs, lan-
guages were not complete and architectural (run-time) concepts were hard-coded as
language constructs; in second generation, languages should be complete and archi-
tectural (run-time) concepts should be customisable.

3.2 ARCHWARE Architecture Analysis Language

In ArchWare, architecture analysis encompasses two aspects: the expression and
verification of properties of architectural styles (typically carried out by style archi-
tects) and of software architectures themselves (typically carried out by application
architects).

The ArchWare Architecture Analysis Language (AAL) [4] provides a uniform
framework for specifying relevant properties of styles and architectures. These prop-
erties have different natures: they can be structural (e.g. cardinality of architectural
elements, interconnection topology) or behavioural (e.g. safety, liveness, and fairness
defined on actions of the system). The ARCHWARE AAL complements the
ARCHWARE ADL with features allowing architects to express and verify properties of
software architectures and styles in a natural way. Analysis is intended to be per-
formed according to three approaches: model-checking, theorem proving and specific
external tools.

The ARCHWARE AAL is a formal property expression language designed to sup-
port automated verification. Thereby, one can mechanically check whether an archi-
tecture described in ARCHWARE ADL satisfies a property expressed in ARCHWARE

AAL.
The ARCHWARE AAL has as formal foundation the modal µ-calculus [35], a calcu-

lus for expressing properties of labelled transition systems by using least and greatest
fixed point operators. ARCHWARE AAL is itself a formal language defined as an ex-

tension of the µ-calculus: it is a well-formed extension for defining a calculus for
expressing structural and behavioural properties of communicating and mobile archi-
tectural elements.

The ARCHWARE AAL takes its roots in previous work concerning the extension of
modal operators with data-handling constructs [41], the use of regular expressions as
specification formalism for value-passing process algebras [23], and the extension of
fixed point operators with typed parameters [30].

Indeed, a natural candidate for “pure” behavioural properties would be the modal
µ-calculus, which is a very expressive fixed point-based formalism subsuming virtu-
ally all temporal logics defined so far in the literature [55]. However, since
ARCHWARE AAL must also provide features for expressing structural properties of
architectures [5], the modal µ-calculus is not sufficient. Therefore, a formalism en-
compassing both the predicate calculus and the modal µ-calculus is needed. The
ARCHWARE AAL is, thereby, this encompassing formalism, defined as a domain-
specific extension of the µ-calculus.

The ARCHWARE AAL combines predicate logic with temporal logic in order to al-
low the specification of both structural and behavioural properties. It enables auto-
mated verification of property satisfaction by model checking (through on-the-fly
model checking) or theorem proving (through deductive verification using tabled
logic programming).

3.3 ARCHWARE Architecture Refinement Language

Software applications are usually developed in several steps. Indeed, the concrete
architecture of a software system is often developed through vertical and horizontal
refinements of related architectures that differ respectively w.r.t. abstraction and parti-
tion dimensions.

Vertical refinement steps add more and more details to abstract models until the
concrete architectural model is described. A vertical refinement step typically leads to
a more detailed architecture description that increases the determinism while implying
properties of the abstract description. Generally, an abstract architecture is smaller
and easier to understand and a concrete architecture reflects more implementation
concerns.

Horizontal refinement is concerned with partitioning of an architecture. For in-
stance, partitioning an abstract component in its parts at the same abstraction level.

ArchWare supports both vertical and horizontal refinement. In ArchWare, the un-
derlying approach for architectural refinement is underspecification, i.e. at a high-
level of abstraction, when specifying an architectural element, certain aspects can be
left open. The decrease of this underspecification establishes a refinement relation for
architectural elements.

A refinement relation in ArchWare, from an external or internal point of view,
comprises four forms of refinement:

− behaviour refinement,
− port refinement,
− structure refinement,
− data refinement.

In behaviour refinement, the underspecification may concern the external (observ-
able) behaviour or the internal behaviour of an architectural element. The external
behaviour of an architectural element is the behaviour that its environment can ob-
serve, i.e. its behaviour from an external point of view. The internal behaviour con-
cerns the internal expression of behaviour within the scope of the architectural ele-
ment. The structure of an architectural element is its internal structure in terms of sub-
architectural elements and their connected ports, i.e. the structure within the scope of
the architectural element from an internal point of view. The ports of an architectural
element provide the interaction points (i.e. connections) between the element and its
environment, i.e. its ports from an external point of view.

The most fundamental notion of refinement in ArchWare is behaviour refinement.
The other forms of refinement imply behaviour refinement modulo port, structure and
data mappings.

In general, architectural refinement is a combination of the four forms of refine-
ment. For instance, an architect can define an abstract architecture, then “data” refine
that architecture in order to introduce base and constructed data types, then “port”
refine the architecture to have ports with finer grain connections carrying data of
different types, then “structure” refine its composite behaviour by adding new finer
grain connectors, and so on.

The ArchWare Architecture Refinement Language (ARL) [49] provides constructs
for defining refinements of the four forms cited so far, according to external or inter-
nal points of view. Composite refinements can be defined in terms of refinement
primitives and composite refinements themselves. Refinement primitives comprise:

− adding, removing, replacing or transforming data type declarations of an architec-
ture,

− adding, removing, replacing or transforming ports of an architecture,
− adding, removing, replacing or transforming output and input connections of ports

of an architecture,
− transforming the behaviour of an architecture or the behaviour of a component or

connector in an architecture,
− adding, removing, replacing or transforming components or connectors in an archi-

tecture,
− exploding or imploding components or connectors in an architecture,
− unifying or separating connections of ports in an architecture.

These primitives, applied step by step, allow the incremental transformation of an
architecture description. These transformations are enforced to be refinements if pre-
conditions of refinement primitives are satisfied and proof obligations discarded. A
refinement engine based on rewriting logics [40][12] runs the refinement descriptions
expressed in ARCHWARE ARL generating further refined architectures. Code is gen-
erated from refined (concrete) architectures.

The ARCHWARE ARL is a formal (executable) refinement language providing ar-
chitecture-centric refinement primitives and supporting refinement compositions in
both vertical and horizontal dimensions, from external or internal points of view.
When applied, they refine architectural models described in ARCHWARE ADL output-
ting new refined architectural models also in ARCHWARE ADL.

ARCHWARE ARL provides the required key features for supporting architecture-
centric model-driven formal development. By addressing software development as a
set of architecture-centric model refinements, the refinements between models be-

come first class elements of the software engineering process. This is significant be-
cause a great deal of work takes places in defining these refinements, often requiring
specialized knowledge on source and target abstraction levels, for instance knowledge
on the source application logics and on the targeted implementation platforms. Effi-
ciency and quality of software systems can be improved by capturing these refine-
ments explicitly and reusing them consistently across developments. Thereby, user-
defined refinement steps can be consistently defined, applied, validated, and mechani-
cally automated.

4 ARCHWARE Integrated Development Environment

ArchWare implements a software development environment, i.e. the ArchWare Inte-
grated Development Environment (IDE), to support the application of architecture-
centric processes. The ARCHWARE IDE is composed of:

− The ArchWare Core Environment which provides the ARCHWARE ADL Compiler
and Virtual Machine that supports the enactment of architecture descriptions.

− The ArchWare Core Meta-Process Models which provide the support for software
processes that are used to build and evolve software applications.

− The ArchWare Environment Components which provide the ArchWare tools that
support architecture description, analysis, and refinement processes.

The ARCHWARE ADL Virtual Machine provides the basic support for an evolvable
persistent store used to both control the execution of applications and the processes
used for their development and subsequent evolution [28]. Architecture descriptions
expressed in ARCHWARE ADL will be enacted after compiling the ADL into the Vir-
tual Machine executable code and thus will be preserved (and, more significantly, can
be dynamically evolved) in the target persistent store.

The main ArchWare Core Meta-Process Model is the Process for Process Evolu-
tion (P2E) [29]. This provides a recursive mechanism for selecting a process abstrac-
tion (written in ARCHWARE ADL) from a library of existing abstractions or for pro-
ducing a new (or evolved) abstraction if a suitable one is not available. The recursion
means that abstractions for abstraction production are developed (and evolved) in the
same way. This recursion can apply to any depth.

The ARCHWARE ADL Virtual Machine persistent store provides a repository for
storing, retrieving and refining architectural models. Basic support is provided
through the concept of an architecture “node” which is a reference to a element de-
scription written in ARCHWARE ADL. Nodes are related through a graph structure
where the directional arcs represent different dimensions of refinement supported by
ArchWare. The ARCHWARE IDE provides operations to support the creation and
evolution of this graph structure. There is a refine operation which allows for one
node to be related to another in terms of the child node being a more concrete vertical
refinement of its parent. There is a partition operation which allows for nodes to be
related by horizontal refinement in terms of the child(ren) being parts explosion of the
parent. Methods of vertical and horizontal refinements are written in ARCHWARE

ARL. There is also a satisfy operation to support verification of properties written in
ARCHWARE AAL. The nodes (and graph structure) are evolved using the P2E meta-
process cited so far.

ArchWare Environment Components are implemented either as ADL enactable de-
scriptions (and hence wholly stored in the ADL Virtual Machine persistent store) or
as COTS3-like components integrated by wrapping them using ARCHWARE ADL as
with other application software. Wrapped application components are essentially the
end-user components of an ArchWare-based application in operation.

From the viewpoint of ArchWare users, the establishment of an integrated persis-
tent environment that supports higher-order code yields a new software development
paradigm, hyper-code [61], in which source code may include direct links to data and
code values that exist in the persistent environment. Hyper-code unifies source code
and executable code. The result is that the distinction between them is completely
removed: the software engineer sees only a single code representation form through-
out the software engineering process, during software construction, execution, debug-
ging, and viewing existing code and data.

The integration of hyper-code into the ARCHWARE ADL supports this unified view
[8]: an architecture can be described, then compiled to be executed, afterwards during
execution composed with other descriptions via hyper-code, and so on.

The ARCHWARE IDE is itself an example of an evolutionary software system.
ArchWare adopts the methods and principles it itself is developing in the develop-
ment of the ArchWare Engineering Environment.

5 Related Work and Concluding Remarks

Several architecture description languages (ADLs) have been proposed in the litera-
ture, including: ACME/Dynamic-ACME [26][27], AESOP [25], AML [60],
ARMANI [44], CHAM-ADL [32][33], DARWIN [39], META-H [11], PADL [9],
RAPIDE [52][38], SADL [45][46], σπ-SPACE [15][36], UNICON-2 [19], and
WRIGHT/Dynamic-WRIGHT [2][3].

ADLs provide both a concrete syntax and a formal, or semi-formal, semantics.
Typically, they embody a conceptual framework reflecting characteristics of the do-
main for which the ADL is intended and/or an architectural style [42].

The focus of ArchWare is on languages and tools for the formal modelling of dy-
namic software architectures (evolvable at design and run-time), and for the com-
puter-aided formal analysis and refinement of these models. In a broad sense the
ARCHWARE ADL is composed of a set of integrated notations: the architecture de-
scription notation (the core), the style definition notation, the property expression
notation, and the refinement definition notation. No other ADL provides a compre-
hensive set of notations for describing dynamic architectures.

But how does ArchWare compare with related work? Comparing ADLs objec-
tively is a difficult task because their focuses are quite different. Most ADLs essen-
tially provide a component-and-connector built-in model of architecture description
and formalise topological constraints. The reason for this is probably that structure is
certainly the most understandable and visible part of an architecture. But behavioural
and quality aspects are not completely neglected. They are often taken into account
(even if partially) in most ADLs. They are certainly an essential part of architecture
description.

3 Commercial off-the-shelf (COTS).

ARCHWARE ADL is the most general among studied ADLs. Instead of hard coding
a specific component-and-connector viewpoint model, it is a general-purpose ADL
that can be used to define, in a compliant way, different user-defined component-and-
connector viewpoint models.

ARCHWARE AAL provides the notation to express properties of architectures de-
scribed in ARCHWARE ADL.

ARCHWARE AAL combines predicate logic with temporal logic in order to allow
the specification of both structural properties and behavioural properties concerning
architecture descriptions obtained by instantiating a given style.

Regarding behavioural properties, the choice of modal µ-calculus as the underlying
formalism provides a significant expressive power. Moreover, the extension of µ-
calculus modalities with higher level constructs such as regular formulas inspired
from early dynamic logics like PDL [21] facilitates the specification task of the practi-
tioners, by allowing a more natural and concise description of properties involving
complex sequences of actions. The extension of fixed point operators with data pa-
rameters also provides a significant increase of the practical expressive power, and is
naturally adapted for specifying behavioural properties of value-passing languages
such as the ARCHWARE ADL.

In the context of software architectures, several attempts at using classical process
algebras and generic model-checking technology have been reported in the literature.
In [31], various architectural styles (e.g., repository, pipe-and-filter, and event-action)
are described in LOTOS, by using specific communication patterns and constraints on
the form of components, and verified using the CADP toolbox [20][24]. In [53], sev-
eral variants of the pipe-and-filter style are described in LOTOS and analysed using
CADP. In [34], the transformation of software architectures specified in LOTOS and
their verification using the XTL model-checker [41] of CADP are presented. Finally,
an approach for checking deadlock freedom of software architectures described using
a variant of CCS is described in [10]. All these works provide rather ad-hoc solutions
for a class of software architectures limited to static communication between architec-
tural elements, and can be subsumed by the more general framework provided by
ARCHWARE ADL/AAL and verification tools.

Regarding structural analysis, ACME, ARMANI, CHAM-ADL, DARWIN,
RAPIDE, SADL, WRIGHT and others addressed mainly properties like completeness
and consistency of software architectures. Most of those approaches propose a less or
more sophisticated language for describing properties to analyse.

The main limitation of most of these approaches with regard to ArchWare objec-
tives is that they address either structural or behavioural properties, but not both as in
ArchWare.

As regards architecture refinement, with the exception of a variant of FOCUS [56],
i.e. FOCUS/DFA [51], RAPIDE and SADL, there is no proposal for a rigorous calcu-
lus based on architectural terms. In the case of SADL the refinement is only struc-
tural. In the case of RAPIDE it is only behavioural (supported by simulations). In
both cases, clear architectural primitives for refining architectures are not provided
and the refinement supported is only partial. ARCHWARE ARL, like the B [1] and Z
[18] formal methods, provides operations to transform specifications. However,
unlike FOCUS, B and Z, ARCHWARE ARL has been specially designed to deal with
architectural elements of any architectural style. Unlike SADL, ARCHWARE ARL
supports underspecification. In FOCUS/DFA, refinement is essentially logical impli-
cation. In SADL, it is restricted by faithful interpretation. In RAPIDE, it is defined by

simulations. In ArchWare, it is based on property implication, where the properties to
be preserved are defined by the architect.

The ARCHWARE ARL provides a novel language that on the one side has been spe-
cifically designed for architectural refinement taking into account refinement of be-
haviour, port, structure, and data from an architectural perspective and on the other
side is based on preservation of properties. The core of ARCHWARE ARL is a set of
architecture transformation primitives that support refinement of architecture descrip-
tions. Transformations are refinements when they preserve properties of the more
abstract architecture. Core properties are built-in. Style-specific or architecture-
specific properties are user defined. The underlying foundation for architected behav-
iours is the higher-order typed π-calculus. Satisfying proof obligations in ARCHWARE

ARL is supported by the ArchWare analysis tools, which comprises a model checker,
a prover and specific evaluators.

A detailed positioning of ARCHWARE ADL, AAL and ARL w.r.t. the state-of-art is
given in [22][37][49].

ARCHWARE languages have been applied in several realistic case studies and in-
dustrial business cases at Thésame (France) and Engineering Ingegneria Informatica
(Italy). The pilot project at Thésame aims to develop and evolve agile integrated in-
dustrial process systems. The pilot project at Engineering Ingegneria Informatica aims
to develop and evolve federated knowledge management systems. ARCHWARE lan-
guages have also been used by the CERN (Switzerland) for architecting human com-
puter interfaces for monitoring particle accelerator restart. Ongoing work focuses on
customisations of the ARCHWARE IDE for automating engineering processes in these
applications.

Besides providing languages, frameworks, processes, and tools for architecture-
centric model-driven engineering, ArchWare enforces a novel relationship between
software systems and their development environments. Indeed, in ArchWare, soft-
ware systems and the software development environments that support their engineer-
ing are both evolving artefacts; the keystone of ArchWare is recognising that compo-
sitional, architecture-centric evolutionary approaches (supported by adequate formal
languages, frameworks, processes and tools) are needed to effectively construct and
operate both kinds of systems. Thus, ArchWare solutions are applied consistently to
the software systems being engineered as well as to the software engineering process
and environment themselves. Jointly, they exploit the many advantages of the Arch-
Ware architecture-centric compositional and evolutionary framework. This gives the
possibility of an ongoing link between software systems and their software engineer-
ing processes in order to support continuous evolution, thereby accommodating
change over their lifetime.

References

1. Abrial J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. Allen R.: A Formal Approach to Software Architectures. PhD Thesis, Carnegie Mellon
University, 1997.

3. Allen R., Douence R., Garlan D.: Specifying and Analyzing Dynamic Software Architec-
tures. In Fundamental Approaches to Software Engineering, LNCS 1382, Springer Verlag,
1998.

4. Alloui I., Garavel H., Mateescu R., Oquendo F.: The ArchWare Architecture Analysis Lan-
guage: Syntax and Semantics. Deliverable D3.1b, ArchWare European RTD Project, IST-
2001-32360, January 2003.

5. Alloui I., Oquendo F.: Supporting Decentralised Software-intensive Processes using ZETA
Component-based Architecture Description Language. Enterprise Information Systems,
Joaquim Filipe (Ed.), Kluwer Academic Publishers, 2002.

6. Alloui I., Oquendo F.: The ArchWare Architecture Description Language: UML Profile
for Architecting with ArchWare ADL. Deliverable D1.4b, ArchWare European RTD Pro-
ject, IST-2001-32360, June 2003.

7. Alloui I., Oquendo F.: Describing Software-intensive Process Architectures using a UML-
based ADL, Proceedings of the 6th International Conference on Enterprise Information
Systems (ICEIS’04), Porto, Portugal, April 2004.

8. Balasubramaniam D., Morrison R., Kirby G., Mickan K.: Integration of Hyper-code and
Structural Reflection into ArchWare ADL. Deliverable D1.5, ArchWare European RTD
Project, IST-2001-32360, February 2003.

9. Bernardo M., Ciancarini P., Donatiello L.: Architecting Systems with Process Algebras.
Technical Report UBLCS-2001-7, July 2001.

10. Bernardo M., Ciancarini P., Donatiello L.: Detecting Architectural Mismatches in Process
Algebraic Descriptions of Software Systems, Proceedings of the 2nd Working IEEE/IFIP
Conference on Software Architecture, Amsterdam, IEEE-CS Press, August 2001.

11. Binns P., Engelhart M., Jackson M., Vestal S.: Domain-Specific Software Architectures for
Guidance, Navigation, and Control. International Journal of Software Engineering and
Knowledge Engineering. 1996.

12. Bolusset T., Oquendo F.: Formal Refinement of Software Architectures Based on Rewrit-
ing Logic, ZB2002 International Workshop on Refinement of Critical Systems: Methods,
Tools and Experience, Grenoble, Janvier 2002.

13. Brown A.W.: An Introduction to Model Driven Architecture – Part I: MDA and Today’s
Systems. The Rational Edge, February 2004.

14. Chaudet C., Greenwood M., Oquendo F., Warboys B.: Architecture-Driven Software Engi-
neering: Specifying, Generating, and Evolving Component-Based Software Systems. IEE
Journal: Software Engineering, Vol. 147, No. 6, UK, December 2000.

15. Chaudet C., Oquendo F.: A Formal Architecture Description Language Based on Process
Algebra for Evolving Software Systems. Proceedings of the 15th IEEE International Con-
ference on Automated Software Engineering (ASE’00). IEEE Computer Society, Grenoble,
September 2000.

16. Cimpan S., Leymonerie F., Oquendo F.: The ArchWare Foundation Styles Library. Report
R1.3-1, ArchWare European RTD Project, IST-2001-32360, June 2003.

17. Cimpan S., Oquendo F., Balasubramaniam D., Kirby G., Morrison R.: The ArchWare Ar-
chitecture Description Language: Textual Concrete Syntax. Deliverable D1.2b, ArchWare
European RTD Project, IST-2001-32360, December 2002.

18. Davies J., Woodcock J.: Using Z: Specification, Refinement and Proof. Prentice Hall Inter-
national Series in Computer Science, 1996.

19. DeLine R.: Toward User-Defined Element Types and Architectural Styles. Proceedings of
the 2nd International Software Architecture Workshop, San Francisco, 1996.

20. Fernandez J-C., Garavel H., Kerbrat A., Mateescu R., Mounier L., Sighireanu M.: CADP
(CAESAR/ALDEBARAN Development Package) – A Protocol Validation and Verifica-
tion Toolbox, Proceedings of the 8th International Conference on Computer-Aided Verifi-
cation, New Brunswick, USA, LNCS 1102, Springer Verlag, August 1996.

21. Fischer M.J., Ladner R.E.: Propositional Dynamic Logic of Regular Programs. Journal of
Computer and System Sciences Vol. 18, 1979.

22. Gallo F. (Ed.): Annual Report: Project Achievements in 2002. Appendix B: Survey of
State-of-the-Art and Typical Usage Scenario for ArchWare ADL and AAL. Deliverable
D0.4.1, ArchWare European RTD Project, IST-2001-32360, February 2003.

23. Garavel H.: Compilation et Vérification de Programmes LOTOS. Thèse de Doctorat, Univ.
Joseph Fourier (Grenoble), November 1989. Chapter 9: Vérification (In French).

24. Garavel H., Lang F., Mateescu R.: An Overview of CADP 2001. European Association for
Software Science and Technology (EASST) Newsletter, Vol. 4, August 2002.

25. Garlan D., Allen R., Ockerbloom J.: Exploiting Style in Architectural Design Environ-
ments. Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, New Orleans, 1994.

26. Garlan D., Monroe R., Wile D.: ACME: An Architecture Description Interchange Lan-
guage. Proceedings of CASCON'97, Toronto, November 1997.

27. Garlan D., Monroe, R., Wile D.: ACME: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems, Leavens G.T, and Sitaraman M.
(Eds.), Cambridge University Press, 2000.

28. Greenwood M., Balasubramaniam D., Cimpan S., Kirby N.C., Mickan K., Morrison R.,
Oquendo F., Robertson I., Seet W., Snowdon R., Warboys B., Zirintsis E.:Process Support
for Evolving Active Architectures, Proceedings of the 9th European Workshop on Software
Process Technology, LNCS 2786, Springer Verlag, Helsinki, September 2003.

29. Greenwood M., Robertson I., Seet W., Snowdon R., Warboys B.: Evolution Meta-Process
Model. Deliverable D5.3, ArchWare European RTD Project, IST-2001-32360, December
2003.

30. Groote J. F., Mateescu R.: Verification of Temporal Properties of Processes in a Setting
with Data. Proceedings of the 7th International Conference on Algebraic Methodology and
Software Technology, Amazonia, Brazil, LNCS 1548, January 1999.

31. Heisel M., Levy N.: Using LOTOS Patterns to Characterize Architectural Styles, Proceed-
ings of the International Conference on Theory and Practice of Software Development,
LNCS 1214, Springer Verlag, 1997.

32. Inverardi P., Wolf A.: Formal Specification an Analysis of Software Architectures using
the Chemical Abstract Machine Model. IEEE Transactions on Software Engineering, Vol.
21, No. 4, April 1995.

33. Inverardi P., Wolf A., Yankelevich D.: Static Checking of System Behaviors using Derived
Component Assumptions. ACM Transactions on Software Engineering and Methodology,
Vol. 9, No. 3, July 2000.

34. Kerschbaumer A.: Non-Refinement Transformation of Software Architectures. Proceedings
of the ZB2002 International Workshop on Refinement of Critical Systems: Methods, Tools
and Experience, Grenoble, Janvier 2002.

35. Kozen D.: Results on the Propositional µ-Calculus. Theoretical Computer Science 27:333-
354, 1983.

36. Leymonerie F., Cimpan S., Oquendo F. : Extension d'un langage de description architectu-
rale pour la prise en compte des styles architecturaux : application à J2EE. Proceedings of
the 14th International Conference on Software and Systems Engineering and their Applica-
tions. Paris, December 2001 (In French).

37. Leymonerie F., Cimpan S., Oquendo F., "État de l'art sur les styles architecturaux : classifi-
cation et comparaison des langages de description d'architectures logicielles", Revue Génie
Logiciel, No. 62, September 2002 (In French).

38. Luckham D.C., Kenney J.J., Augustin L.M., Vera J., Bryan D., Mann W.: Specification and
Analysis of System Architecture Using RAPIDE. IEEE Transactions on Software Engi-
neering, Vol. 21, No. 4, April 1995.

39. Magee J., Dulay N., Eisenbach S., Kramer J.: Specifying Distributed Software Architec-
tures. Proceedings of the 5th European Software Engineering Conference, Sitges, Spain,
September 1995.

40. Martí-Oliet N., Meseguer J.: Rewriting Logic: Roadmap and Bibliography. Theoretical
Computer Science, 2001.

41. Mateescu R., Garavel H.: XTL: A Meta-Language and Tool for Temporal Logic Model-
Checking. Proceedings of the 1st International Workshop on Software Tools for Technol-
ogy Transfer, Aalborg, Denmark, July 1998.

42. Medvidovic N., Taylor R.: A Classification and Comparison Framework for Architecture
Description Languages. Technical Report UCI-ICS-97-02, Department of Information and
Computer Science, University of California. Irvine, February 1997.

43. Milner R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, 1999.

44. Monroe R.: Capturing Software Architecture Design Expertise with ARMANI. Technical
Report CMU-CS-98-163, Carnegie Mellon University, January 2001.

45. Moriconi M., Qian X., Riemenschneider R.A.: Correct Architecture Refinement. IEEE
Transactions on Software Engineering, Vol. 21, No. 4, April 1995.

46. Moriconi M., Riemenschneider R.A.: Introduction to SADL 1.0: A Language for Specify-
ing Software Architecture Hierarchies. Computer Science Laboratory, SRI International,
Technical Report SRI-CSL-97-01, March 1997.

47. Morrison R.: On the Development of S-algol. PhD Thesis, University of St Andrews, 1979.
48. Oquendo F.: The ArchWare Architecture Description Language: Tutorial. Report R1.1-1,

ArchWare European RTD Project, IST-2001-32360, March 2003.
49. Oquendo F.: The ArchWare Architecture Refinement Language. Deliverable D6.1b,

ArchWare European RTD Project, IST-2001-32360, December 2003.
50. Oquendo F., Alloui I., Cimpan S., Verjus H.: The ArchWare Architecture Description Lan-

guage: Abstract Syntax and Formal Semantics. Deliverable D1.1b, ArchWare European
RTD Project, IST-2001-32360, December 2002.

51. Philipps J., Rumpe B.: Refinement of Pipe and Filter Architectures. Proceedings of FM’99,
LNCS 1708, 1999.

52. RAPIDE Design Team: Guide to the RAPIDE 1.0. Language Reference Manuals, Stanford
University, July 1997.

53. Rongviriyapanish S., Levy N.: Variations sur le Style Architectural Pipe and Filter. Actes
du Colloque sur les Approches Formelles dans l'Assistance au Développement de Logiciels
(AFADL'00), Grenoble, France, January 2000.

54. Sangiorgi, D., Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD Thesis, University of Edinburgh, 1992.

55. Stirling C.: Modal and Temporal Properties of Processes. Springer Verlag, 2001.
56. Stolen K., Broy M.: Specification and Development of Interactive Systems. Springer Ver-

lag, 2001.
57. Strachey C.: Fundamental Concepts in Programming Languages. Oxford University Press,

Oxford, 1967.
58. Tennent R.D.: Language Design Methods based on Semantic Principles. Acta Informatica

8, 1977.
59. Verjus H., Oquendo F.: The ArchWare Architecture Description Language: XML Concrete

Syntax. Deliverable D1.3b, ArchWare European RTD Project, IST-2001-32360, June 2003.
60. Wile D.: AML: An Architecture Meta Language. Proceedings of the 14th International

Conference on Automated Software Engineering, pp. 183-190. Cocoa Beach. October
1999.

61. Zirintsis, E.: Towards Simplification of the Software Development Process: The Hyper-
code Abstraction. PhD Thesis, University of St Andrews, 2000.

