
Parallel Processes with Real-Time and Data:

The ATLANTIF Intermediate Format

Jan Stöcker, Frédéric Lang, and Hubert Garavel

Vasy project-team, Inria Grenoble – Rhône-Alpes/Lig, Montbonnot, France
{Jan.Stoecker,Frederic.Lang,Hubert.Garavel}@inria.fr

Abstract. To model real-life critical systems, one needs“high-level” lan-
guages to express three important concepts: complex data structures,
concurrency, and real-time. So far, the verification of timed systems has
been successfully applied to “low-level” models, such as timed extensions
of automata or of Petri nets. To bridge the gap between high-level lan-
guages, which allow a concise modeling of systems, and low-level models,
for which efficient algorithms and tools have been designed, intermediate
models are needed. In this paper, we propose the Atlantif intermediate
model, an extension with real-time and concurrency of the Ntif (New
Technology Intermediate Format) intermediate model. We define the for-
mal semantics of Atlantif and present a translator from Atlantif to
timed automata (for verification using Uppaal), and to time Petri nets
(for verification using Tina).

1 Introduction

In many cases, asynchronous real-time systems can be modeled as a set of pro-
cesses that run in parallel, communicate, synchronize mutually, and are sub-
ject to quantitative time constraints. The description and verification of asyn-
chronous real-time systems has been a very active research subject, which has led
to numerous theoretical results established upon various low-level models, such
as timed automata [1, 11], timed extensions of Petri nets [32, 16], and timed
process algebras [17, 31, 10, 18, 9, 40, 3, 34, 35, 28]. These models have been at
the basis of successful verification tools, such as AltaRica [15], Kronos [41],
Red [39], Romeo [26], Rtl [17], Tina [5], Uppaal [30], etc.

However, although appropriate for verification, these models are often too
low-level for describing complex systems concisely. Higher-level models are thus
needed. Such models should allow the expression of three aspects formally and
simultaneously:

1. The first aspect is data, ranging from simple types (such as booleans, integers
and enumerated types) to structured types (such a arrays, lists, unions, and
trees). This also includes functions, either predefined or user defined.

2. The second aspect is control , such as communication, synchronization be-
tween processes, and the ability for processes to activate and/or deactivate
each others.

3. The third aspect is real-time, such as delays (inaction of a process during a
predefined time), constraints on the time instants when a process can com-
municate, urgency (indicating that a communication must not be delayed),
and latency [17] (indicating that some time can elapse before a communica-
tion becomes urgent).

This scientific goal has been addressed since the late 80’s, with the defini-
tion of high-level formal models that combine the strong theoretical foundations
of process algebras with language features suitable for a wider industrial dis-
semination of formal methods [36, 31], converging into the E-Lotos language
standardized by Iso [28]. On the other hand, several semi-formal industrial mod-
els based on model-driven tool development are emerging, such as Aadl [20],
SysML [27] and Uml/Marte [19]. However, in both cases, verification tools are
still lacking for these models. This could be adressed by translators from these
high-level models to the low-level models accepted by existing verification tools.
Suitable intermediate models are thus needed to enable a better integration of
timed verification in industrial tool chains.

Related Work. Ntif (New Technology Intermediate Form) [22] is a minimal in-
termediate model for processes with sequential control and complex data. An
Ntif process is an automaton that consists of a set of control states, to each of
which is associated a statement called a multibranch transition and defined using
high-level standard control structures (deterministic and nondeterministic vari-
able assignments, if-then-else and case conditionals, nondeterministic choice,
while loops, etc.) and communication events. This allows a representation of
processes that is more compact than condition/action models such as If [14],
Bip [4], and Lpes [37] and that can be easily translated into such models.

More recently, Ntif found industrial applications in the framework of the
Topcased1 project led by Airbus. The concepts of Ntif served as a basis for
Fiacre (Format Intermédiaire pour les Architectures de Composants Répartis

Embarqués) [6], an intermediate model between industrial models and verifica-
tion tools. Transformations from Aadl and Sdl into Fiacre have been specified,
and Fiacre has been connected to two model checkers: Cadp [24] and Tina [8].

Contribution. As a basis to design the future revisions of Fiacre, we propose in
this paper an enhanced version of Ntif named Atlantif, which provides more
general concurrency and real-time constructs. As regards control, Atlantif pro-
vides a mechanism to synchronize processes, based on a generalization of synchro-
nization vectors. As regards real-time, it associates delays and time constraints to
communications, following the line of prior work that led to the definition of real-
time process algebras, such as ET-Lotos [31], RT-Lotos [17], and E-Lotos.
Atlantif has a formal semantics that is intended to allow semantic-preserving
translations from high-level languages into low-level models, and that satisfies
suitable properties such as time additivity (every sequence of timed transitions
can be collapsed into a single timed transition), time determinism (elapsing of a

1 http://www.topcased.org

certain amount of time leads to a unique state) and maximal progress of urgent

actions (time cannot elapse if an urgent action is possible) [33].
In order to assess our choices, we also present a prototype translator tool

from Atlantif to lower-level models, thus enhancing the cooperation between
different methods. It targets timed automata, suitable as input for the Uppaal
model checker and time Petri nets, suitable as input for the Tina model checker.
We illustrate the benefits of Atlantif and its translators on four examples
borrowed from the literature of real-time models.

Paper outline. In Section 2, we present the syntax and formal semantics of
Atlantif. In Section 3, we show how subsets of Atlantif can be translated
into Uppaal’s timed automata and Tina’s time Petri nets, we present a tool,
and we give examples. In Section 4, we give some concluding remarks.

2 Overview of ATLANTIF

2.1 Syntax

The syntax of Atlantif, given in Fig. 1, is described in Ebnf (Extended Backus-

Naur Form), where parts between square brackets are optional and vertical bars
denote alternatives. Atlantif is a strict superset of Ntif; shading is used to
highlight these extensions, which will be detailed in Sections 2.2 and 2.3.

For conciseness, we will not detail type definitions (including complex data
types, such as records, lists, etc.), type constructors, and function definitions.
There are also Atlantif constructs (mechanisms to start and stop processes,
to share variables between processes, and to perform synchronizations that do
not induce discrete transitions) that will not be detailed in this paper.

2.2 Sequential processes in ATLANTIF

An Atlantif sequential process, called a unit , contains variable declarations
and a list of discrete states, the first of which is taken to be the initial state. To
each discrete state s we associate a multibranch transition of the form“from s A”,
where A is an action, noted act(s). Contrary to usual models, in which actions
are simply “condition/assignment”pairs, Atlantif actions are built using high-
level language constructs combining atomic actions. A particular action is gate

communication, which allows data exchange in the form of offers, each of which
represents either the emission (“!E”) of some value expression E or the reception
(“?P”) of some value that is decomposed against a pattern P using pattern-
matching.

As regards real-time, Atlantif supports either discrete time (corresponding
to a time domain isomorphic to IN) or dense time (corresponding to IR≥0), as well
as untimed behaviour. This timing option is given in the header of a specification
(by the keywords “no time”, “discrete time”, or “dense time”) and taken to
be “no time” if unspecified. Atlantif also has a “wait” action allowing a given
amount of time to elapse (borrowed from process algebras such as Tcsp [36]),
and the following optional additions to gate communication:

X ::= module M is

[(no | discrete | dense) time] (timing options)
type T1 is D1 . . . type Tn is Dn (type declarations)
function F1 is Y1 . . . function Fk is Yk (function declarations)
R1 . . . Rm (synchronizers, defined below)
U0 . . . Ul (unit definitions, defined below)
end module

U ::= unit u is

[variables V0 : T0 [:= E0], . . . , Vn : Tn [:= En]] (local variables)
from s0 A0 . . . from sm Am (list of transitions)
end unit

A ::= V0, . . . , Vn := E0, . . . , En (deterministic assignment)
| V0, . . . , Vn := any T0, . . . , Tn [where E] (nondeterministic assignment)
| reset V0, . . . , Vn (variable reset)
| wait E (delay)
| G O1 . . . On [[must | may] in W] (gate communication)
| to s′ (jump to state)
| A1; A2 (sequential composition)
| if E then A1 else A2 end [if] (conditional)
| case E is P0→ A0 | ... | Pn→ An end [case] (deterministic choice)
| select A0 [] ... [] An end [select] (nondeterministic choice)
| while E do A0 end [while] (loop)
| null (inaction)

O ::= !E (value emission) E ::= V (variable)
| ?P (value reception) | F (E1, . . . , En) (function)

| C(E1, . . . , En) (constructor)

P ::= any T (anonymous variable) | P0 where E (condition) | (P0)
| V (variable) | C(P1, . . . , Pn) (constructor) |

W ::= [E1,E2] |]E1,E2] | [E1,E2[|]E1,E2[(bounded interval)
| [E1, ...[|]E1, ...[(unbounded interval)
| W1 or W2 | W1 and W2 | (W0) (combined intervals)

R ::= sync G [: B] is K end sync (synchronizer declaration)

K ::= u (single unit) N ::= n (natural integer)
| K1 and K2 (synchronization) | N1 or N2 (choice)
| K1 or K2 (alternative) B ::= visible (default value)
| N among (K1, . . . , Km) | hidden

| (K0) | urgent

where terminal and non terminal symbols mean the following:
A : action M : module identifier u : unit identifier
B : visibility specifier N : cardinality list U : unit
C : constructor identifier O : communication offer V : variable identifier
D : type definition P : pattern W : time window
E : expression Q : semantic modality X : module (axiom)
F : function identifier R : synchronizer Y : function definition
G : gate identifier s : state identifier
K: synchronization formula T : type identifier

Fig. 1. Atlantif syntax (shading indicates additions w.r.t. Ntif)

– A time window W that consists of intersections (“and”) and unions (“or”) of
open or closed intervals, where “...”represents infinity. The communication
may happen when the time elapsed since the communication action has been
reached belongs to the time window. If W is unspecified, it is taken to be
“[0, ...[”. The time window thus has the role of a life reducer , similar to that
found in different timed process algebras such as ET-Lotos [31].

– A modality Q among “must” or “may”, “must” indicating that the commu-
nication must occur before the end of the time window (which is called the
deadline), and “may” indicating that time can elapse indefinitely. If unspec-
ified, Q is taken to be “may”. In the classification of [13], “may”corresponds
to weak timed semantics, whereas “must” corresponds to strong timed se-
mantics. Time Petri nets and Fiacre only allow strong timed semantics,
whereas timed automata and most timed extensions of Lotos allow a com-
bination of both, which justifies our choice in Atlantif.

Static semantics. As regards static semantics, Atlantif inherits the same rules
as Ntif [22], namely well-typedness, proper initialization of variables before
use, and restriction of at most one communication on each possible path of a
multibranch transition. We add the constraints that no “wait” action is allowed
in any path following a communication in a multibranch transition, and that
the time window of every “must” communication is either unbounded or right-
closed.

Dynamic semantics – definitions. As regards dynamic semantics, we need the
following definitions inherited from Ntif. We assume a set Val of values , written
v, v′, v0, v1, etc. We note V the set of variables. Partial functions on V → Val ,
called stores , are written ρ, ρ′, ρ0, ρ1, etc. We note dom(ρ) the domain of ρ. The
update operator ⊘ and the restriction operator ⊖ are defined on stores as follows:

ρ ⊘ ρ′
def
= ρ′′ where ρ′′(V) = if V ∈ dom(ρ′) then ρ′(V) else ρ(V)

ρ ⊖ {V1, . . . , Vn}
def
= ρ′′ where dom(ρ′′) = dom(ρ) \ {V1, . . . , Vn}

and (∀V ∈ dom(ρ′′)) ρ′′(V) = ρ(V)

The semantics of expressions is given by a predicate eval(E, ρ, v) that is
true iff the evaluation of expression E in store ρ yields a value v. The semantics
of patterns is given by a pattern-matching function match(v, ρ, P) that returns
either “fail” if v does not match P , or else a new store ρ′ corresponding to ρ

in which the variables of P have been assigned by the matching sub-terms of v.
The semantics of offers is given by a function accept(v, ρ, O), defined by:

accept(v, ρ, !E)
def
= if eval(E, ρ, v) then ρ else fail

accept(v, ρ, ?P)
def
= match(v, ρ, P)

We note S the set of state identifiers assumed to contain a special element δ,
reserved for semantics, which represents an auxiliary discrete state that denotes
the termination of an action, thus enabling the execution of subsequent actions.

The following definitions are also required. We note D the time domain,

t, t′, t0, t1, etc. its elements, and L1
def
= {G v1 . . . vn | G ∈ G, v1, . . . , vn ∈ Val} ∪

{ε} the set of labels, where G denotes the set of gates and ε represents transitions
without communication actions. The binary operator “+” is partially defined on

L1 × L1 → L1 by l + ε
def
= l, ε + l

def
= l, and is undefined if both its operands are

different from ε. We note U the set of unit identifiers and U ,U ′,U0,U1, etc. its
subsets. The semantics of time windows is given by a predicate win eval(W, ρ, D)
that is true iff the evaluation of W in store ρ yields a set of time instants D. We
also define a boolean function up lim(Q, W, ρ, t) returning true iff Q = must

and the set D defined by win eval(W, ρ, D) has a maximum equal to t.

Dynamic semantics – sequential constructs. In Ntif, the semantics of actions

was defined by a relation of the form (A, ρ)
l

=⇒ (s, ρ′), where A is an action, ρ, ρ′

are stores, s ∈ S is a discrete state, and l ∈ L1 is a label [22]. Atlantif extends

this to a relation of the form (A, d, ρ)
l

=⇒ (s, d′, ρ′), where d, d′ have the form
(t, µ), with t a time value (intuitively representing the time that may elapse in
the current unit until the next communication), and µ a boolean (called blocking

condition), that is equal to true iff time is not allowed to elapse after t. This
means that the action A in the context d and ρ evolves to the local state (s, d′, ρ′)
(local states are also written σ, σ′, σ0, σ1, etc.), producing a transition labeled l.
These rules are detailed below, where shading indicates additions w.r.t. Ntif.

(null)
(null, d, ρ)

ε
=⇒ (δ, d, ρ)

(wait)
eval(E, ρ, v) ∧ t ≥ v

(wait E, (t, µ), ρ)
ε

=⇒ (δ, (t − v, µ), ρ)

(assignd)
eval(E0, ρ, v0) ∧ . . . ∧ eval(En, ρ, vn)

(V0, . . . , Vn := E0, . . . , En, d, ρ)
ε

=⇒ (δ, d, ρ ⊘ [V0 7→ v0, . . . , Vn 7→ vn])

(assignn)
v0 ∈ T0, . . . , vn ∈ Tn ∧ ρ′= ρ ⊘[V0 7→ v0, . . . , Vn 7→ vn] ∧ eval(E,ρ′, true)

(V0, . . . , Vn := any T0, . . . , Tn where E, d, ρ)
ε

=⇒ (δ, d, ρ′)

(reset)
(reset V0, . . . , Vn, d, ρ)

ε
=⇒ (δ, d, ρ ⊖ {V0, . . . , Vn})

(to)
(to s, d, ρ)

ε
=⇒ (s, d,ρ)

(comm)
(∀j ∈ 1..n) accept(vj , ρj , Oj) = ρj+1 6= fail∧win eval(W,ρn+1, D) ∧ t ∈ D

(G O1 . . . On Q in W, (t, µ), ρ1)
G v1...vn=⇒ (δ, (t, up lim(Q, W, ρn+1, t)), ρn+1)

(seq1)
(A1, d, ρ)

l1=⇒ (δ, d′, ρ′) ∧ (A2, d
′, ρ′)

l2=⇒ σ

(A1; A2, d, ρ)
l1+l2=⇒ σ

(seq2)
(A1, d, ρ)

l
=⇒ (s, d′, ρ′) ∧ s 6= δ

(A1; A2, d, ρ)
l

=⇒ (s, d′, ρ′)

(select)
k ∈ 0..n ∧ (Ak, d, ρ)

l
=⇒ σ

(select A0 [] . . . [] An end, d, ρ)
l

=⇒ σ

(case)

eval(E, ρ, v) ∧ (∀j < k) match(v, ρ, Pj) = fail

∧ match(v, ρ, Pk) = ρk ∧ (Ak, d, ρk)
l

=⇒ σ

(case E is P0 → A0 | . . . | Pn → An end, d, ρ)
l

=⇒ σ

(while1)
eval(E, ρ, true) ∧ (A;while E do A end, d, ρ)

l
=⇒ σ

(while E do A end, d, ρ)
l

=⇒ σ

(while2)
eval(E, ρ, false)

(while E do A end, d, ρ)
ε

=⇒ (δ, d, ρ)

(ε-elim)
(A, d, ρ)

ε
=⇒ (s, d′, ρ′) ∧ s 6= δ ∧ (act(s), d′, ρ′)

l
=⇒ (s′, d′′, ρ′′)

(A, d, ρ)
l

=⇒ (s′, d′′, ρ′′)

Fig. 2 gives an example of a system composed of a user and a lamp. The user,
modeled by the User unit, pushes repeatedly a button using gate Push. Between
two pushes, the user may wait indefinitely, but must wait at least one time unit.
The lamp, modeled by the Lamp unit, has three levels of brightness, modeled by
the three discrete states Off , Low , and Bright . When the lamp is off (state Off),
pushing the button switches it on with low brightness (state Low). If the next
push happens within less than 5 time units then the lamp gets brighter (state
Bright). If it happens after 5 time units then the lamp is switched off.

module Light is dense time from Low
sync Push is User and Lamp end sync select Push in [0, 5[;
init User , Lamp (∗ initially started units ∗) to Bright
unit User is [] Push in [5, ...[;

from Rdy to Off
wait 1; Push ; to Rdy end select

end unit from Bright
unit Lamp is Push; to Off

from Off end unit

Push ; to Low end module

Fig. 2. Atlantif program describing a light switch

2.3 Concurrency in ATLANTIF

In Atlantif, a specification contains several units synchronized with respect to
synchronizers (Fig. 1), which are a generalization of synchronization vectors [2,
12]. A synchronizer is invoked every time a unit reaches a communication action
i.e., every time it wants to propose a rendezvous to its environment. Precisely,
a synchronizer has the form “sync G : B is K end sync”, where:

– G is a gate that triggers the synchronizer.
– B is an optional tag attached to G, noted tag(G), which may take one out

of three different values: “visible” induces a transition labeled by G and
the offers exchanged on G; “hidden” induces an internal transition called τ -
transition; and “urgent”behaves like the latter, but also blocks time when a
synchronization is possible. If no tag is specified, the synchronizer is visible.

– K is a formula consisting of unit identifiers and boolean operators, which
denotes combinations of units that must synchronize, each such combination
being called a“synchronization set”. The set of synchronization sets attached
to G, noted sync(G), is defined as follows:

sync(u) = {{u}}
sync(K1 and K2) = {S1 ∪ S2 | S1 ∈ sync(K1) ∧ S2 ∈ sync(K2)}
sync(K1 or K2) = sync(K1) ∪ sync(K2)
sync(n among (K1, . . . , Km)) = sync(K ′

1 or . . .or K ′
k), where

{K ′
1, . . . , K

′
k} = {(Ki1 and . . .and Kin

) | 1 ≤ i1 < . . . < in ≤ m}
sync(n1 or . . .or nl among (K1, . . . , Km)) =

sync(n1 among (K1, . . . , Km) or . . .or nl among (K1, . . . , Km))

To express concurrency, other intermediate models (such as Cæsar net-
works [21] or communicating state machines [29]) combine communications of
processes into Petri net-like transitions. A drawback of this approach is that the
number of transitions in the resulting model can be the product of the numbers
of transitions in each process. Synchronizers provide a more symbolic approach
that avoids these problems, while being general enough to express the following:

– Competition between synchronizing processes can be expressed by synchro-
nizers denoting several synchronization sets e.g., in “u1 and (u2 or u3)”, u2

and u3 compete to synchronize with u1.
– Multiway synchronization can be expressed by synchronization sets contain-

ing more than two units e.g., in “u1 and u2 and u3”, the three units u1, u2

and u3 must synchronize altogether.
– The generalized parallel composition operators of [25] can also be expressed.

For instance, “par G#2, G#3 in u1||u2||u3 end par”, which means that
either two or three processes among u1, u2, and u3 synchronize on G, can
be expressed by “sync G is 2 or 3 among (u1, u2, u3) end sync”.

Dynamic semantics – concurrency and real-time. Contrary to Ntif, which had
no parallel semantics as it was limited to sequential processes, Atlantif sup-
ports a second layer of semantics for concurrency and real-time. It is given by a
Tlts (Timed Labeled Transition System) of the form (S, T, S0), where:

– S is a set of global states (as opposed the local states) of the form (π, θ, ρ)
(written S, S′, S0, S1, etc.), where π : U → S is a function, called state

distribution, that maps each unit to its current discrete state, θ : U →
(D×Bool) is a function, called time distribution, that maps each unit to its
current time value and blocking condition, and ρ is a store. Note that the
set of active units is given by dom(π) and dom(θ), with dom(π) = dom(θ).

– T is a set of transitions defined as a relation in S × L2 × S, where L2
def
=

L1∪{τ}∪(D\{0}). Transitions labeled in D\{0} are called timed transitions,
whereas the other transitions are called discrete transitions.

– S0 ∈ S is the initial state, which is defined by S0
def
= (π0, θ0, ρ0), where π0 is

a function that maps each unit to its initial discrete state (defined implicitly
as the first discrete state in the corresponding unit), θ0 : U 7→ (D×Bool) is
the function that constantly returns (0, false), and ρ0 is the store that maps
each variable to its initial value, if any.

We define the following predicates:

– The predicate enabled(S, l, µ, S′), defined on S × (L1 \ {ε}) × Bool × S, is
true iff (1) a transition labeled l may occur in global state S and leads to
global state S′ and (2) the disjunction of the blocking conditions in the local
states reached via this transition equals µ. Formally:

enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′))
def
= (∃{u1, . . . , um} ∈ sync(G))

(∀i ∈ 1..m) (act(π(ui)), θ(ui), ρ)
G v1...vn=⇒ (si, (ti, µi), ρi) ∧ si 6= δ ∧

µ =
∨

i=1..m µi ∧ π′ = π ⊘ [ui 7→ si | i ∈ 1..m] ∧
θ′ = θ ⊘ [ui 7→ (0, false) | i ∈ 1..m] ∧ ρ′ = ρ ⊘ ρ1 ⊘ . . . ⊘ ρm

– Time cannot elapse in a global state if an urgent communication is enabled
i.e., a communication on a gate whose synchronizer is tagged urgent or a
communication of the form “G O1 . . . On must in W” when the deadline of
W has been reached. The predicate relaxed(S), defined on S, is true iff time
can elapse in S. Formally:

relaxed(S)
def
= (∀ G v1 . . . vn, µ, S′)

enabled(S, G v1 . . . vn, µ, S′) ⇒ (¬µ ∧ tag(G) 6= urgent)

Discrete transitions are defined by rule (rdv) as follows:

(rdv)
enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′))

(π, θ, ρ)
label(G v1...vn)
−−−−−−−−−−→ (π′, θ′, ρ′)

where function label transforms a non-ε label of L1 into a discrete label of L2:

label(G v1 . . . vn)
def
= if tag(G) = visible then G v1 . . . vn else τ

Timed transitions are defined by rule (time), which allows t units of time to
elapse as long as no urgent communication is enabled. The new state is calculated

by increasing all relative times by t, using “+” defined by (∀u) (θ + t)(u)
def
=

(tu + t, µu) where θ(u) = (tu, µu).

(time)
t > 0 ∧ (∀ t′ < t) relaxed((π, θ + t′, ρ))

(π, θ, ρ)
t
−→ (π, θ + t, ρ)

We illustrate the semantics by deriving two Tlts transitions for the light
switch example shown in Fig. 2, page 7. We show that when User is in state Rdy

and Lamp in state Low , 3 time units may elapse before the button is pushed.

Formally: (π, θ, ∅)
3
−→ (π, θ + 3, ∅)

Push
−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅), where

π
def
= [User 7→ Rdy,Lamp 7→ Low], and θ

def
= [User 7→ (0, f),Lamp 7→ (0, f)]

(where f is a shorthand for false).

First, (π, θ, ∅)
3
−→ (π, θ + 3, ∅) comes from the following derivation:

3 > 0 ∧ (∀t′ < 3)relaxed ((π, θ + t′, ∅))

(π, θ, ∅)
3
−→ (π, θ + 3, ∅)

(time)

Second, (π, θ + 3, ∅)
Push
−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅) comes from:

{User , Lamp} ∈ sync(Push) ∧ (act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅) ∧

(act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅)

(π, θ + 3, ∅)
Push
−−−→ (π ⊘ [Lamp 7→ Bright], θ, ∅)

(rdv)

The premiss (act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅) comes from the following,

recalling that act(Rdy) = “wait 1; Push; to Rdy”:
eval(1, ∅, 1) ∧ 3 ≥ 1

(wait 1, (3, f), ∅)
ε

=⇒ (δ, (2, f), ∅)
(wait)

(Push; to Rdy, (2, f), ∅)
Push
=⇒ (Rdy, (2, f), ∅)

(act(Rdy), (3, f), ∅)
Push
=⇒ (Rdy, (2, f), ∅)

(seq
1
)

At last, the premiss (Push; to Rdy , (2, f), ∅)
Push
=⇒ (Rdy , (2, f), ∅) comes from:

(Push, (2, f), ∅)
Push
=⇒ (δ, (2, f), ∅)

(comm)
(to Rdy, (2, f), ∅)

ε

=⇒ (Rdy, (2, f), ∅)
(to)

(Push; to Rdy, (2, f), ∅)
Push
=⇒ (Rdy, (2, f), ∅)

(seq
1
)

The premiss (act(Low), (3, f), ∅)
Push
=⇒ (Bright , (3, f), ∅) is derived similarly by

the rules (comm), (to), (seq1), and (select).
With this semantic approach, we respect the standard property that time

must elapse at the same speed in all units. Furthermore, the following proposition
shows that this semantics has the suitable properties mentioned in Section 1.

Proposition. The Tlts corresponding to the semantics of an Atlantif spec-
ification satisfies the properties of (i) time additivity (two successive delays are
equal to their sum), (ii) time determinism (no state allows two different succes-
sors after the same delay) and (iii) maximal progress of urgent actions (no delay
is possible in states where an urgent action is possible).

Proof. (i) Let S, S′ be global states. We must show that ∀ t1, t2 ∈ (D \ {0}):

S
t1+t2−−−→ S′ iff (∃ S′′) S

t1−→ S′′ and S′′ t2−→ S′

We define S
def
= (π, θ, ρ). We note that time can only elapse using the (time)

rule, which does not modify π and ρ and increases θ by some delay. Therefore,
the above statement can be rephrased as:

(π, θ, ρ)
t1+t2−−−→ (π, θ + (t1 + t2), ρ)

iff (π, θ, ρ)
t1−→ (π, θ + t1, ρ) and (π, θ + t1, ρ)

t2−→ (π, (θ + t1) + t2, ρ)
Given the definition of +, it is obvious that θ + (t1 + t2) = (θ + t1) + t2. From
the premiss of rule (time), we can reduce the above goal to the obvious following
statement:

(∀ t′ < t1 + t2) relaxed((π, θ + t′, ρ))
iff (∀ t′ < t1) relaxed((π, θ + t′, ρ)) and (∀ t′ < t2) relaxed((π, θ + (t1 + t′), ρ))

(ii) Again, we note that time can only elapse using rule (time), which for given
global state S and time t defines a unique successor state.
(iii) Let S be a global state allowing an urgent action, i.e. ¬relaxed(S). Then the
premiss of rule (time) cannot be satisfied in S i.e., time cannot elapse in S. ⊓⊔

3 Automated Translations to Verification Tools

We developed a prototype translator tool, which maps Atlantif models to
either the TA (timed automata) used by the tool Uppaal [30] or the TPN (time

Petri nets) used by Tina [8]. Outlines of these mappings are given in this section.
We assume the reader is familiar with Uppaal’s TA and Tina’s TPN.

Common restrictions. Some concepts of Atlantif cannot be mapped to neither
Uppaal’s TA nor Tina’s TPN. Concretely, Atlantif models must use dense
time; expressions in wait actions and time windows must be integer constants;
nondeterministic assignments are not supported; patterns must be made up of
either variables or constants exclusively. In addition, while loops are not yet
supported in the translation to TA, although the translation would be feasible.

Translation to UPPAAL. Each Atlantif unit is mapped to a TA. Each discrete
state s is mapped to a TA location (also named s) and an invariant is synthesized
from the must constraints of multibranch transitions originating from s. The
action act(s) is decomposed into one TA transition for each branch of control. If
a gate communication admits several synchronization sets containing the current
unit, then it is split into one transition for each such synchronization set. Since
TA do not allow communication offers, data exchanges are emulated using TA
shared variables.

A key issue is that Uppaal’s TA synchronizations involve at most two au-
tomata2, whereas Atlantif allows multiway synchronizations involving n > 2
units. The solution requires that exactly one unit sends data (i.e., all offers are
emissions), whereas the (n − 1) other units receive data (i.e., all offers are re-
ceptions): the gate communication in the sender unit is split into a sequence of
(n − 1) communications, each of which synchronizes with a receiver.

Translation to TINA. Each Atlantif unit is mapped to a TPN. Each discrete
state s is mapped to a TPN place (also named s) and the corresponding action
act(s) is decomposed into several TPN transitions, each TPN transition being
labeled by a gate. As regards time constraints, we only consider time intervals
and we implement a solution inspired from [7], that requires additional auxiliary
places and transitions. Given a communication on a gate G, which corresponds
to a Petri net transition T , we calculate the sum m of all delays that occur in
“wait” actions preceding the communication. We remove these wait actions and
we increase the bounds of the time window by m. The resulting time window is
then implemented in the form of zero, one, or two new transitions as follows:

– If the lower bound of the time window is n > 0, then we add an unlabeled
transition with time constraint “[n, ω[” (or “]n, ω[”, if the bound is strict), no
out-place and a new in-place s1. We add s1 both to the inhibitor places of T ,
and to the out-places of every transition for which s is already an out-place.

– If the modality of the communication is may and the time window has an
upper bound n, then we add an unlabeled transition with time constraint
“]n, ω[” (or “[n, ω[”, if the bound is strict), no out-place and a new in-place
s2. We add s2 to the in-places of T and the new transition is given priority
over T .

2 Uppaal also allows a broadcast communication, which is inapt for our purpose,
because Uppaal’s broadcast is not blocking.

– If the modality of the communication is must and the time window has an
upper bound n, then we add an unlabeled transition with time constraint
“[n, n]”, no out-place and a new in-place s3. We add s3 to the in-places of T

and all transitions except those created for other must constraints are given
priority over this new unlabeled transition.

The TPNs corresponding to each unit are combined into a single one by
merging synchronizing transitions, using the method described in [7].

Tool implementation. Our prototype translator was implemented using the
method proposed in [23] and consists of 538 lines of C code, 2, 193 lines of
Syntax code, and 13, 146 lines of Lotos NT code. The tool architecture is
schematized in Fig. 3.

module Light is
...
end module

Atlantif file

pr t7 > t2
...
pl p1 : Off (1)
net Light

tool

</system></nta>

...
<nta><declaration>

<?xml version=...>

Atlantif

simulation /
verification

simulation /
verification

Uppaal

Tina
translation to Tina

translation to Uppaal

Fig. 3. The Atlantif to Uppaal / Tina translation tool

We applied this translator to four examples, namely the light switch presented
in Fig. 2 (page 7), the CSMA/CD protocol, which is a common benchmark speci-
fication [41], a stop-and-wait protocol, implemented with one sender, one receiver
and two transmission channels, and a train gate controller. The translations into
TA and TPN of the light switch example are shown in Fig. 4 and 5 respectively.

Ready

(CLOCK_User>=1)
Button_1?

CLOCK_User = 0
Off Low

Bright

Button_1!
CLOCK_Lamp = 0

(CLOCK_Lamp>=5)
Button_1!

CLOCK_Lamp = 0

(CLOCK_Lamp<5)
Button_1!
CLOCK_Lamp = 0

Button_1!
CLOCK_Lamp = 0

Fig. 4. The two automatically generated Uppaal TA for the light switch example

Fig. 6 compares the size of Atlantif programs with the size of the corre-
sponding TA and TPN. It shows that Atlantif enables shorter descriptions, in
particular due to its concise syntax for time and its ability to define multiway
synchronizations. Note that the number of locations of the TA generated for the
CSMA/CD is the same as in a handwritten specification available on the web3.

3 http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#CSMA

p2 Low

t2

Button

t3

Button

t4

Button p3 Bright

t1

Button

p1 Off

p5 Ready_aux p4 Ready

t6

[1,ω[

p6 Low_aux

t7

[5,ω[

Fig. 5. The automatically generated Tina time Petri net for the light switch example

Atlantif Uppaal-TA Tina-TPN
disc. states trans. locations trans. places trans.

Light switch 4 4 4 5 6 6
CSMA/CD (3 Stations) 12 12 14 42 40 142
Stop-and-wait 10 10 10 12 29 56
Train Gate Controller 12 12 18 18 23 18

Fig. 6. Size comparison: Atlantif vs. generated Uppaal vs. generated Tina

These results suggest that the TA translation is efficient for programs with
multiple occurrences of simple synchronizers (i.e., synchronizers involving at
most two units), whereas the TPN translation is efficient for limited occurrences
of more complex synchronizers.

4 Conclusion

This paper proposes Atlantif, a simple and elegant extension of the intermedi-
ate model Ntif [22] with concurrency and real-time, intended for a better inte-
gration of formal verification tools in industrial environments. Thus, Atlantif
supports the three main concepts needed to model complex asynchronous real-
time systems: elaborate data types, concurrency, and quantitative time.

Atlantif has a simple timed semantics, where time elapsing is concentrated
in a single rule, which satisfies time additivity, time determinism, and maximal
progress. This goal is not obvious to achieve: for example, complex syntactic
restrictions had to be brought to E-Lotos to ensure those properties; as another
example, RT-Lotos does not satisfy time additivity.

We also presented a translator mapping Atlantif to two advanced verifica-
tion tools, Uppaal [30] and Tina [8].

As regards future work, we plan to extend our translator with new features
and to use it on larger industrial examples. Atlantif could also be a basis to
enhance the Fiacre intermediate model [6] used in the Topcased project.

References

[1] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, April 1994.

[2] A. Arnold. MEC: A System for Constructing and Analysing Transition Systems.
In Proc. of Workshop on Automatic Verification Methods for Finite State Systems,
LNCS 407. Springer Verlag, 1989.

[3] J. Baeten and C. Middelburg. Real time and discrete time. In Process Algebra
with Timing . North-Holland, 2001.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Compo-
nents in BIP. In Proc. of SEFM . IEEE Computer Society, 2006.

[5] B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent
Systems Using Time Petri Nets. IEEE Transactions on Software Engineering ,
17(3):259–273, 1991.

[6] B. Berthomieu, H. Garavel, F. Lang, and F. Vernadat. Verifying Dynamic Prop-
erties of Industrial Critical Systems Using TOPCASED/FIACRE. ERCIM News,
75:32–33, October 2008.

[7] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between Timed
Automata and Bounded Time Petri Nets. In Proc. of FORMATS , LNCS 4202.
Springer-Verlag, 2006.

[8] B. Berthomieu and F. Vernadat. Time Petri Nets Analysis with TINA. In Proc.
of QEST , 2006.

[9] S. Blom, N. Ioustinova, and N. Sidorova. Timed Verification with µCRL. In PSI ,
LNCS 2890, 2003.

[10] T. Bolognesi and F. Lucidi. LOTOS-like Process Algebras with Urgent or Timed
Interactions. In Proc. of FORTE’91 . North Holland, 1991.

[11] S. Bornot, J. Sifakis, and S. Tripakis. Modelling Urgency in Timed Systems. In
Proc. of COMPOS , LNCS, 1997.

[12] A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In Proc. of CAV , LNCS, 1996.

[13] M. Boyer and O. H. Roux. Comparison of the Expressiveness of Arc, Place and
Transition Time Petri Nets. In Proc. of ICATPN, LNCS, Springer-Verlag, 2007.

[14] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. Tools and Applications II:
The IF Toolset. In Proc. of SFM , 2004.

[15] F. Cassez, C. Pagetti, and O. Roux. A timed extension for AltaRica. Fundamenta
Informaticæ, 62(3-4):291–332, August 2004.

[16] A. Cerone and A. Maggiolo-Schettini. Time-based expressivity of Time Petri Nets
for system specification. Theoretical Computer Science, 216(1):1–54, 1999.

[17] J.-P. Courtiat and R. Cruz de Oliveira. On RT-LOTOS and its Application to the
Formal Design of Multimedia Protocols. Annals of Telecommunications, 50(11-
12):888–906, Nov/Dec 1995.

[18] J. W. Davies and S. A. Schneider. A Brief History of Timed CSP. Theoretical
Computer Science, 138(2):243–271, February 1995.

[19] M. Faugère, T. Bourbeau, R. de Simone, and S. Gérard. MARTE: Also an UML
Profile for Modeling AADL Applications. In Proc. of ICECCS . IEEE, 2007.

[20] P. Feiler, D. Gluch, and J. Hudak. The Architecture Analysis & Design Language
(AADL): An Introduction. Technical note, Carnegie Mellon, 2006.

[21] H. Garavel. Compilation et vérification de programmes LOTOS . PhD thesis,
Université Joseph Fourier (Grenoble), 1989.

[22] H. Garavel and F. Lang. NTIF: A General Symbolic Model for Communicating
Sequential Processes with Data. In Proc. of FORTE , LNCS 2529. Springer Verlag,
2002. Full version available as INRIA Research Report RR-4666.

[23] H. Garavel, F. Lang, and R. Mateescu. Compiler Construction using LOTOS NT.
In Proc. of CC , LNCS 2304. Springer Verlag, 2002.

[24] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In Proc. of CAV , LNCS 4590.
Springer Verlag, 2007.

[25] H. Garavel and M. Sighireanu. A Graphical Parallel Composition Operator for
Process Algebras. In Proc. of FORTE/PSTV . Kluwer, 1999.

[26] G. Gardey, D. Lime, M. Magnin, and O. Roux. Roméo: A tool for analyzing time
Petri nets. In Proc. of CAV , LNCS. Springer-Verlag, 2005.

[27] M. Hause. The SysML Modelling Language. In Fifteenth European Systems
Engineering Conference, 2006.

[28] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization, September 2001.

[29] G. Karjoth. Implementing LOTOS Specifications by Communicating State Ma-
chines. In Proc. of CONCUR, LNCS 630. Springer Verlag, 1992.

[30] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer , 1(1 - 2):134–152, October 1997.

[31] L. Léonard and G. Leduc. A Formal Definition of Time in LOTOS. Formal
Aspects of Computing , pages 28–96, 1998.

[32] P. M. Merlin. A study of the recoverability of computing systems. PhD thesis,
Univ. of California, Irvine, 1974.

[33] X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process Algebras.
In Proc. of REX Workshop. Springer-Verlag, 1992.

[34] Xavier Nicollin and Joseph Sifakis. The Algebra of Timed Processes ATP: Theory
and Application. Information and Computation, 114(1):131–178, 1994.

[35] J. Ouaknine and J. Worrell. Timed CSP = closed timed ε-automata. Nordic
Journal of Computing , 10(2):99–133, 2003.

[36] G. M. Reed and A. W. Roscoe. A Timed Model for Communicating Sequential
Processes. Theoretical Computer Science, 58:249–261, 1988.

[37] M. A. Reniers and Y. S. Usenko. Analysis of Timed Processes with Data Using
Algebraic Transformations. In Proc. of TIME . IEEE, 2005.

[38] T. Sadani, M. Boyer, P. Saqui-Sannes, and J.-P. Courtiat. Effective Representation
of RT-LOTOS Terms by Finite Time Petri Nets. In Proc. of FORTE, 2006.

[39] F. Wang. Symbolic Simulation Checking of Dense-Time Automata. In Proc. of
FORMATS, LNCS. Springer-Verlag, 2007.

[40] W. Yi. CCS + Time = An Interleaving Model for Real Time Systems. In Proc.
of Automata, Languages and Programming, LNCS 510, 1991.

[41] S. Yovine. Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer, 1(1/2):123–133, October 1997.

