Grennble)l"ll’ ‘
/

/ College doctoral

Institut Polytechnique Ecole doctorale MSTII
de Grenoble

An Intermediate Model for the Verification of
Asynchronous Real-Time Embedded Systems:

Definition and Application of the ATLANTIF language

THESE

présentée et soutenue publiquement le 10 décembre 2009

pour I'obtention du

Doctorat de Grenoble INP

(spécialité informatique)

par

Jan STOCKER

Composition du jury
Président : Roland GROZ

Rapporteurs : Elie NAJM
Francois VERNADAT

Eraminateur : Alain GRIFFAULT
Co-Directeur de thése : Frédéric LANG
Co-Directeur de thése : Hubert GARAVEL

Institut National de Recherche en Informatique et en Automatique
‘ INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ‘ ;‘l] N RIA GRENOBLE - RHONE-ALPES

ET EN AUTOMATIQUE

Remerciements

Tout d’abord, je remercie mon directeur de these Frédéric Lang pour m’avoir proposé
le sujet de these et de m’y avoir guidé a travers les discussions tres intéressantes que
nous avons eues. Je tiens & le remercier aussi pour sa patience (ce qui n’était toujours
pas facile avec moi) et sa bonne humeur. Je remercie aussi Hubert Garavel pour m’avoir
acceulli dans son équipe-projet VASY de 'INRIA et pour m’avoir donné beaucoup d’idées
importantes.

Les collaborateurs de 1’équipe VASY — Olivier, Anton, Marie et tous les autres ont
rendu mon temps a 'INRIA agréable et plein de bons souvenirs. L’aide apportée par les
assistantes de 1’équipe, et surtout par Helen, concernant tous les grands et petits soucis
administratifs, a eu une valeur immense pour moi.

Merci beaucoup aux membres de mon jury, d’avoir accepté ce travail, merci surtout
aux rapporteurs pour leurs remarques constructives et leurs idées pour I'amélioration de
ce manuscrit.

Beaucoup de mes amis, dont plusieurs que j’ai eu la chance de rencontrer pendant mes
trois années passées a Grenoble, ont été a mes cotés dans des temps difficiles et dans des
temps agréables. Loin de ma propre famille, mes colocataires ont été une deuxieme famille
pour moi.

Chaleureusement je dis merci — Herzlichen Dank! — a mes parents et aux autres mem-
bres de ma famille, pour m’avoir toujours encouragé, pour les visites mutuelles et pour
beaucoup de petites et grandes choses.

il

il

Pour ma meére,
parce qu'elle m’'a fait découvrir les mathématiques.

v

Table of Contents

1 Introduction

1.1 Motivation
1.1.1 General context
1.1.2 Abstract modelling
1.2 Overview of this thesis
2 Notation
3 Overview and classification of formal models
3.1 Semantic models
3.1.1 Timed labelled transition systems
3.1.2 Alternative semantic models L.
3.2 Graphical models
3.2.1 Overview
3.2.2 Timed automata L
3.2.3 Time Petrinets
3.2.4 Othermodels
3.3 High-level languages oo oo
3.3.1 Languages based on CCS
3.3.2 Languages based on CSP
3.3.3 Languages based on LOTOS
3.3.4 E-LOTOS and LOTOS NT
3.3.5 Other high-level languages
3.4 Intermediate models
341 TFand IF-2.0
3.4.2 BIP . ..
3.4.3 AltaRica

vi

3.5

The
4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

Table of Contents

3.4.4 MoDeST 39
3.4.5 Promela 40
3.4.6 NTIF 40
3.4.7 Fiacre 40
Summary and observationso 41
3.5.1 Possible approaches: a summary 41
3.5.2 Observations from the comparison 48
syntax and semantics of ATLANTIF 51
Syntax and semantics notationo 51
Overview of ATLANTIF, 52
Basic constructs 56
4.3.1 Types, functions, and constructors 56
4.3.2 EXpressionso 56
4.3.3 Patterns 58
4.3.4 Offers 60
Units o e 60
4.4.1 OVerview e 60
4.4.2 Actions 61
4.4.3 Unit semantics 72
4.4.4 Subunits 73
Synchronizers 75
4.5.1 Syntax descriptiono 75
4.5.2 Static semantics 76
4.5.3 Dynamic semanticso 7
Modules e 78
4.6.1 Syntax descriptiono 78
4.6.2 Static semantics 79
4.6.3 Dynamic semanticso 81
Properties of the semantics 86
4.7.1 Examples and remarks on the formal definitions 86
4.7.2 Properties of the generated TLTS 90
4.7.3 Analysis of therules 95
Conclusion L 103

4.8.1 Suitability as an intermediate format 103

4.8.2 Possible extensionso

5 Translating high-level constructs into ATLANTIF

5.1 Introduction
5.2 Combination of sequential and parallel composition
5.2.1 Statement
5.2.2 Translation to ATLANTIF
5.3 Delay and timed communication
5.3.1 Statement
5.3.2 Translation to ATLANTIF
5.4 Latency
54.1 Statement
5.4.2 Translation to ATLANTIF

5.5 Synchronization vectors and generalized parallel composition

5.5.1 Statement
5.5.2 Translation to ATLANTIF
5.6 Asynchronous termination
5.6.1 Statement
5.6.2 Translation to ATLANTIF
5.7 Exception handling Lo
5.7.1 Statement
5.7.2 Translation to ATLANTIF
5.8 Lossy buffer
5.8.1 Statement
5.8.2 Translation to ATLANTIF

6 Translating ATLANTIF to graphical models

6.1 Timed automata
6.1.1 Motivation and principles L.
6.1.2 Restrictions
6.1.3 Definition of the translator
6.1.4 Discussion

6.2 Time Petrinets
6.2.1 Motivation and principleso

6.2.2 Restrictions

vil

104

107
107
108
108
108
111
111
111
113
113
113
114
114
116
118
118
119
120
120
121
125
125
125

viil

Table of Contents

6.2.3 Definition of the translator
6.2.4 DISCUSSION

6.3 Filacre oo

6.3.1 Motivation and principles oL
6.3.2 Intuition of the translation approach
6.4 Tool implementation
7 Example: a lift
7.1 Modelling in ATLANTIF
7.1.1 The lift example
7.1.2 Representation in ATLANTIF
7.2 Translation to TINA
7.3 Verificationo
7.3.1 State space construction L
7.3.2 Model checkingo
7.4 Conclusion
8 Conclusion
8.1 Contribution
8.1.1 Language features
8.1.2 Comparison of ATLANTIF with related work
8.1.3 Extension of the possibilities to use formal verification
8.2 Perspectives
8.2.1 Advancements of ATLANTIF
8.2.2 Extension of the translations
8.2.3 Development of FIACRE
8.2.4 Using ATLANTIF on more complex specifications
Bibliography
A Additional algorithms and proofs

A.1 Static semantics
A.1.1 Unicity of communication, undelayed next state reachability
A.1.2 Equivalent definition of validity-stable synchronizers
A.1.3 Variable initialization L.

A.2 Translation to graphical models

A.2.1 Translation of an ATLANTIF unit to a TINA TPN
A.3 Translation to Fiacre
A.3.1 The Fiacremodel
A.3.2 Problems to overcome
A.3.3 Restrictions
A.3.4 Definition of the translator

A.3.5 DIScussion,

B Additional examples
B.1 Application of the generalized parallel composition

B.2 Timed semantics in synchronization chains
B3 Lamp

C Complete syntax

D An extended summary in French

X

222
231
231
233
234
234
241

245
245
247
250

251

259

Table of Contents

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
0.2
2.3
5.4
2.5
2.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

6.1
6.2

List of Figures

Trrs with zeno behaviour 0oL 19
Strict zeno TLTS 20
Different LTS extensions (time domain IN) 22
Two timed automata describing a lamp (left) and a person (right) 27
A time Petri net describing a bus and a passenger 30
ATLANTIF program describing a light switch 25
Example of a well-accessible shared variable 74
Independent synchronizationso 82
Machine with error detections, illustrating chains 87
Subsystem started by an auxiliary subsystem (chain with starting) 88
Subsystem started by two auxiliary subsystems (chain with real time) . . . 88
An ATLANTIF specification describing the simplest form of zeno behaviour 92
An ATLANTIF specification with a timelock 94
E-Lotos code for semi-ordered redistribution 108
ATLANTIF translation for semi-ordered redistribution 110
E-Lotos code for different real-time constructs 112
ATLANTIF translation for Fig. 5.3, 112
Syntax of synchronization vectors (EXP.OPEN 2.0) 115
Generalized parallel composition — simplified 115
Generalized parallel composition — complete 116
ET-LoTos code for an example of asynchronous termination 119
ATLANTIF translation for the ET-LoTOS code of Fig. 5.8. 119
Schema of the semantics of the ET-LOTOS example 120
Schema of the semantics of the ATLANTIF code of Fig. 5.9 120
LoTos NT code representing simple exception handling 121
LoTos NT code representing complex exception handling 122
ATLANTIF code representing simple exception handling 123
ATLANTIF code representing complex exception handling 126
ET-LoTos code representing a lossy buffer 127
ATLANTIF code representing a lossy buffer 128
Pseudocode defining the function transitions_and_locations 138
The mapping trans 139

x1

xii

6.3
6.4
6.5
6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32

7.1
7.2
7.3

Al
A2
A3
A4
A5
A6
AT
A8

List of Figures

Fragments of an ATLANTIF module with multiway synchronization. 141
Translation fragments in UPPAAL TAs 142
Translation fragments in UPPAAL TAs — advanced emulation 147
Translation fragments in UPPAAL TAs — advanced emulation with clocks

and discrete variables oL oo 147
Example for a TPN extended with predicate-/action-transitions 150
Example for the composition of untimed Petrinets 152
Composition of time Petri nets (sketch) 152
The mapping trans, 156
Case 2: schema for “wait n; G may in [m,...[" (withn+m >0) ... 158
Case 3: schema for “wait n; G may in Im,...[" (withn+m >0) . .. 158
Case 4: schema for “G may in [0,k]” (with k>0) 159
Case 5: schema for “G may in [0,k[" (with k>0) 159
Case 6: schema for “G must in [0,k]” (with £ >0) 160
Schema for “wait n; G may in [m,k]” (withn+m >0,k>0). 161
Schema for “wait n; G may in Jm,k[” (withn+m >0,k>0). 161
Schema for “wait n; G must in [m,k]” (withn+m >0,k>0) 162
Translation for branching action (not optimized) 163
Optimization for the translation of Fig. 6.19 163
Translation for unit Irregular_Sender (wrong) 163
Translation for unit Irregular_Sender (corrected) 164
Algorithm for composition of transitions in TPNs from ATLANTIF units . . 167
Pseudocode to resolve offers into assignments and a condition (two return

values) 168
Very simple sender/receiver modelo 169
Translation of the very simple sender/receiver model 170
Very simple sender/receiver model (variant) 171
Translation of the very simple sender/receiver model (variant) 171
Component hierarchy of a generated FIACRE program (schema) 175
Schema for the application of the prototype atlantif tool 175
The two generated UPPAAL TA for the light switch example 176
The generated TINA time Petri net for the light switch example 177
ATLANTIF code describing the lift 182
The file 1ift.net 185
The generated TINA TPN of the lift 187
Unicity of communication and undelayed next state reachability 214
Function local_edges 218
Pseudocode for variable usage graph construction 220

Pseudocode for fix-points of variable definitions in the variable usage graph 221
Pseudocode for the second step of the translation from a unit to a TPN (1) 223
Pseudocode for the second step of the translation from a unit to a TPN (2) 224
Pseudocode for the second step of the translation from a unit to a TPN (3) 225
Pseudocode for the second step of the translation from a unit to a TPN (4) 226

xiii

227
228
229

A.9 Pseudocode for the second step of the translation from a unit to a TPN
A.10 Pseudocode for the second step of the translation from a unit to a TPN

5
6
A.11 Pseudocode for the second step of the translation from a unit to a TPN (7
8

o~~~
S— N N

A.12 Pseudocode for the second step of the translation from a unit to a TPN 230
A.13 Function ATLANTIF _action_to_FIACRE 240
A.14 2 among 3 synchronization formula in the context of an ATLANTIF module 241
A.15 Generated FIACRE program for the module of Fig. A.14 242
A.16 Generated FIACRE program for untimed asynchronous termination 243
B.1 ATLANTIF code for Open Distributed Processes 246
B.2 ATLANTIF program for semantics example 248
B.3 ATLANTIF module describing a light switch 250
D.1 Regles pour la sémantique dynamique des unités 273
D.2 Programme ATLANTIF qui décrit un interrupteur 274

D.3 Schéma pour I'utilisation de I'outil prototype atlantif 283

xiv List of Figures

Chapter 1

Introduction

1.1 Motivation

1.1.1 General context

In the year 2009, the world is more dependent than ever on computer systems, and this
dependency is likely to grow in the future. Money that only exists electronically, the
virtual elimination of distances by cellphones and the Internet, and many other charac-
teristics of the fundamental changes in our culture are nowadays accepted as a normal
part of life.

Technically, much of this has become possible by broad usage of embedded systems i.e.,
very specialised computer systems integrated in electric or electronic devices and control-
ling these devices. The tasks they perform are usually too complex to be carried out by
human beings (e.g., fast calculations on large amounts of input data), or too dangerous
(e.g., on-board control of space vessels, manipulations in nuclear reactors or chemical
factories), or simply too tedious (e.g., control of traffic lights). Often, many embedded
systems are connected and communicate with each other.

Obviously, these numerous dependencies induce risks and vulnerabilities, as failures of
critical systems can lead to serious effects (e.g., unnecessary traffic jams) or even disastrous
consequences (e.g., aircraft crashes). To avoid this, a developer cannot rely exclusively on
common sense, because the parallel execution of several embedded systems easily reaches
a complexity that goes beyond the scope of human imagination.

Therefore, it is essential to find a systematic means to ensure that hard- and software
systems work correctly. When a failure during the usage cannot be risked, it is clear
that these means have to be placed in the design process of such a system. Among the
approaches that exist to this end is to apply a formal method such as model checking.

Model checking begins by describing a system’s behaviour, which includes aspects such
as what messages sends to other systems or to human users, what messages it receives,
how the input data is proceeded, and how much time elapses before a next step is taken.

2 Chapter 1. Introduction

Writing this description is done using a standardized notation, which may either be purely
textual, or a mixture of textual and graphical elements, and which is defined with unam-
biguous, formal semantics.

The next step is to state the properties that must be satisfied in the system e.g., “It is
impossible that the pedestrian light A and the car traffic light B are green at the same
time.”, “When the plane’s speed is greater than 400 km/h, then the flaps must not be
extended.”, or “A warning light has to be lit in the plane’s cockpit if the last weather
forecast received by radio is older than 30 minutes.”. These properties are also given in a
formal language with an unambigous semantics.

Given the formal behaviour description and formulas expressing a required property, algo-
rithms check whether the system satisfies the property: First, they generate a complete set
of all configurations (“states”) that may be reached by the system’s description, including
information on which states may succeed a given state. Then, all possible sequences of
states are checked to see whether the property is true for them or not. This procedure
is repeated for every property. Thus, model checking verifies firmly and, most notably,
exhaustively that the system behaves as it should.

1.1.2 Abstract modelling

Data, concurrency, and real time. Textual languages and graphical models that
are used for system descriptions in model checking must be simple enough to enable
the use of efficient verification algorithms. However, when the objective is to perform
formal verification of realistic systems, simple languages are not appropriate to model
these systems.

For the concerns of this thesis, the term “realistic” refers to three aspects that must be
provided in a suitable language: complex data structures, concurrency, and activity in
real time. These three aspects are discussed below.

To handle complex data structures, a modelling language must cover both representation
and manipulation of data:

e Representation: Simple data types (such as booleans, integers, and enumerated
types) and structured data types (such as arrays, records, lists, unions, sets, and
trees) can occur as parameters in systems we wish to model. Therefore, a suitable
language must offer the possibility of user-defined data types.

For instance, a system describing a mobile phone mast controller might have a data
type client defined as an array containing phone number, service provider, etc., and
another data type connections, defined as a set of client arrays.

e Manipulation: Mathematical functions need to be represented. These may be prede-
fined for standard data types (e.g., addition of integers), but obviously, user-defined
types only make sense when functions also can be user-defined.

For instance, given a variable current_clients of type connections, update functions

1.1. Motivation 3

are necessary to represent new clients entering or current clients leaving the range
of the mast.

To handle concurrency i.e., to describe systems that are composed of two or more inde-
pendent subsystems (which we call processes in the following), a modelling language must
cover communication between processes and process activation and deactivation.

o Communication: When several processes are executing concurrently, interaction
between them has to be possible. For instance, in a system describing a plane, a
cockpit process sends a message to the flaps process to order their extension.

A communication between processes can be asynchronous (i.e., one process sends a
message, then one or several other processes receive the message) or synchronized
(i.e., all processes involved in the communication participate simultaneously). For
synchronous communication, we do not need to identify the sender and the receivers.

e Activation/Deactivation: During the execution of a system, the set of concurrent
processes is not necessarily static: New processes may be created, old ones may
disappear.

For instance, the arrival and the departure of different mobile phone users in the
range of the mobile phone mast can be represented by the activation and deactivation
of several processes, each of which corresponds to one user.

A model of a process expresses the order in which it performs its communications. How-
ever, sometimes such a qualitative description is not sufficient, and it is necessary to
provide quantitative information on how much time elapses during the execution. To
handle real time, a modelling language must cover delays, urgency, and latency.

e Delays: A suitable language must be able to express inaction of a process during
some time. This is usually an abstract representation of an activity that takes time
to be executed, like a physical displacement e.g., the time it takes to extend the
flaps.

e Urgency: When a process is ready to perform a certain communication, it can make
sense to force the immediate execution of this communication, instead of allowing
time to elapse.

For instance, when a mobile phone receives a message from the mobile phone mast
process that there is an incoming call, then the ring tone is played immediately.

e Latency: A further refinement of this idea is to indicate that a limited amount of
time can elapse before a communication becomes urgent.

In the previous example, it could take the mobile phone process an indefinite but
very limited time to decide which ring tone to play.

4 Chapter 1. Introduction

Complex data structures, concurrency, and activity in real time are not independent as-
pects of a system. Combining these aspects requires that we consider additional concepts:

e Transmission of values: In a language that combines data and concurrency, it must
be possible to express that data generated in one process can be used in another
process.

For instance, the process representing the airspeed indicator of a plane must transmit
the value of the current speed to the process representing the autopilot.

e Timeout: In a language that combines time and concurrency, communications may
depend on the elapsing of time. When the system allows for two or more processes
to communicate by a synchronization, the model should be able to express that once
a process is ready to perform the synchronization, it does not wait arbitrarily, but
becomes unavailable for the communication after a certain amount of time.

For instance, after the mobile phone mast has sent a message of an incoming call to
a mobile phone, it only waits one minute for the mobile phone to accept this call.

The need for intermediate models. The description and verification of systems cov-
ering data, concurrency, and time has been a very active research subject for already more
than two decades. In the late 1980s and the 1990s, many approaches belonged to one of
the two following categories:

e High-level languages provide a purely textual and highly expressive syntax that en-
ables very concise descriptions. Most notably, process algebras [97], already provid-
ing concise representations of complex data and concurrency, were extended with
real-time constructs. Process algebras describe the behaviour of a system as an
ordering of communication events, representing how the system is perceived ex-
ternally, while the internal behaviour is abstracted from. Such atomic events are
combined with mathematical operators e.g., expressing that two things happen one
after another (sequential composition) or that two behaviours execute independently
(parallel composition).

Among the process algebras extended with real-time constructs are ACP/SAT [10],
ATP [100], CCS with time [125], ET-Loros [91], xCRL [29], RT-LoTos [47],
Timed CSP [108, 50, 103], Timed LoTos [31]. Various aspects from these languages
converged into the E-LOTOS language standardized by Iso [83].

e Graphical models on the other hand combine textual descriptions with a visual
component, thus enabling a more intuitive application. Most notably, models like
automata networks and Petri nets that already provide intuitive representations of
concurrency were extended with data and real-time constructs. The most famous
of these models are timed automata [4] and time Petri nets [95].

Based on simpler syntax and semantics rules than the process algebras mentioned
above, such graphical models enabled the development of successful algorithms and
software tools for simulation and formal verification.

1.1. Motivation >

Experiences with these two approaches in the modelling of systems with data, concurrency,
and time, revealed complementary strengths and weaknesses:

e High-level languages are very expressive and concise, but their elaborate structure
makes formal verification tools hard to design. In some cases, even the formal
description of their semantics becomes very complex.

e Graphical models serve as input languages for several verification tools, but are of
limited capability for concise descriptions: The representation of a complex system
can easily become unstructured and unreadable due to a large number of overlapping
edges.

To overcome these problems, intermediate models have been developed during the last few
years, with a design inspired from both approaches and aiming to combine the strengths
of each. Ideally, it is then possible to specify a system in a high-level language, then to
translate the specification into an intermediate model, and finally to translate this to a
graphical model, where tools can be applied to perform model-checking, simulation, etc.
The major difficulty in such a translation chain is preservation of semantics: One can use
the results from the graphical model level to reason about the initial specification only if
the semantics of the initial specification are preserved.

A proposition for a new intermediate format. The purpose of this thesis is the
introduction of the new intermediate model ATLANTIF (Asynchronous Timed Language
Amplifying NTIF). Although several propositions for intermediate models have been made
during the last few years, all of them lack important constructs required to support recent
high-level languages:

e Several industrial models based on model-driven tool developement (e.g., AADL [57],
SYsML [72], and UML/MARTE [56]) have only a semi-formal definition. Therefore
they are insuitable for exhaustive formal verification.

e Many approaches consisted of models for the efficient compilation of concurrent sys-
tems with data, yet without real-time constructs. For instance, the OPEN/CAESAR
framework [60] in the CADP toolbox enables formal verification and simulation for
models in different input formats. Similarly, the N1Ps compiler [124] translates
from different high-level modelling languages to a byte-code model enabling model
checking.

e Other models provide formal semantics and real-time constructs, but are limited
to processes whose behaviour is defined by simple transitions instead of high-level
constructs; for instance the ALTARICA [45] model and the Bip [11] model.

e The Ir-2.0 [38] model does not provide communication by synchronization. Other
models, such as MODEST [30], do not provide complex synchronization operators.

6 Chapter 1. Introduction

e Efforts have been made to integrate high-level constructs into sequential processes
of intermediate models, for instance in the NTIF (New Technology Intermediate
Form) [61] model. Partially based on NTIF, the FIACRE [17] model also provides
concurrency and real-time constructs.

However, the real-time constructs provided by FIACRE only can express time con-
straints on a global level i.e., related to a synchronization among several processes
that are ready to communicate. High-level languages like E-LOTOS, on the other
hand, can express time constraints on a local level i.e., processes themselves may
have a limited availability for synchronizations.

Our objective for the definition of ATLANTIF is to overcome these restrictions and to
provide translations to verification tools.

1.2 Overview of this thesis

Chapter 2 will fix the conventions of the notation that is used in this thesis. The remainder
consists of two main parts, described in the following.

Definition of ATLANTIF. Chapters 3 and 4 describe the design of ATLANTIF.

The basis for this design is established in Chapter 3, which presents and analyzes existing
high-level languages, graphical models, and intermediate models along with tool imple-
mentations. A focus will lie on the choices that have to be made when defining a new
model.

Based on this analysis, Chapter 4 formally defines the syntax and semantics of ATLANTIF.
This new model is based on NTIF: The definition of untimed sequential processes with
complex data handling is essentially identical.

ATLANTIF extends NTIF with real-time constructs, expressing delays and time restrictions
in processes as well as urgency. ATLANTIF also introduces concurrency constructs, which
enable the parallel execution and synchronization of processes.

Application of ATLANTIF as intermediate format. Chapters 5, 6, and 7 show
how ATLANTIF can indeed be used as an intermediate model. They describe connections
from high-level languages to ATLANTIF and from ATLANTIF to graphical models.

Chapter 5 lists several examples of constructs typically occurring in high-level languages
(e.g., exception handling and asynchronous termination) and shows how each of them can
also be represented in ATLANTIF.

Chapter 6 presents two translations from subsets of ATLANTIF to other models, timed
automata (UPPAAL) and time Petri nets (TINA).

As an application of Chapters 5 and 6, Chapter 7 provides an example: We model in
ATLANTIF a lift and demonstrate how this specification is translated into a TINA time

1.2. Overview of this thesis 7

Petri net on which model checking is performed.

The conclusion in Chapter 8 compares ATLANTIF with other intermediate models, under-
lining that the range of constructs it provides is not covered by any of them, and thus
showing that ATLANTIF is indeed a contribution for the high-level modelling of systems.
We discuss how ATLANTIF extends the class of systems that can practically be formally
verified, and end with some perspectives for the future of ATLANTIF.

The appendixes contain some additional algorithms and proofs (Appendix A), additional
examples (Appendix B), the complete syntax of ATLANTIF as it is implemented in our
tool (Appendix C), and an extended summary of this thesis in French (Appendix D).

Chapter 1. Introduction

Chapter 2

Notation

The following notation is used throughout this thesis, particularly Chapters 4 and 6. Most
of this notation is in common usage.

e To distinguish the definition of a specific set, a function, etc., we use the notation

x¥ Y, where the object named X is defined by the term Y.

e 1..n and 0..n with n € IN are shorthand notations for the sets {i € IN | 1 <i < n}
and {i € IN | i < n} respectively. Note that 0 € IN.

o Let p,¢' : X — X' be partial functions:

— dom(p) denotes the domain of ¢ i.e., the subset of X on which ¢ is defined.

— image(p), image(y¢') are the images of these function i.e., the subsets of X’ in
which they take values.

— We define the update operator @ and the restriction operator © for elements
T1,..., T, € X by:

vy of ¢" where ¢ : X — X' dom(¢") = dom(p) U dom ('),

! if v €d !
and (Vz € dom(y")) ¢ (z) = o) itz .om(gp)
o(x) otherwise

eod{ry,...,Tn} ©F o where ¢ : X — X', dom (") = dom(p) \ {z1,...,2n},
and (Va € dom(p")) ¢"(x) = p(x)

) 790<yn> = y;w

— If the domain of ¢ is a finite set {y1,...,y,} and v(y1) = y]
— .]. If the domain of

then we also may write o in the form [y; — y1, ..., yn
@ is empty, then we also may write it &.

e)., denotes the set of non-negative rationals and IR>o denotes the set of non-
negative reals.

10 Chapter 2. Notation

e For arbitrary expressions Fi, F, and a variable V', we note [E;/V]FE5 for the ex-
pression that is obtained when each occurrence of V' in Es is replaced by Fj.

e For a set X, card(X) denotes the number of elements (or cardinality) of X. In the
context of this work, this only applies to finite sets.

e For a set X, P(X) denotes the power set of X i.e., the set containing all subsets of
X.

Many definitions are given throughout this thesis. To allow a fast access, the locations of
these definitions are given in the following tables:

Function Definition Page
accept 60
act 61
tloff 140
label 86
new_guard 140
new_limit 141
reach 214
sense 136
shaft 29
tag 75
trans 139
trans, 156
transitions_and_locations 138
type (on expressions) 56
type (on offers) 60
type (on patterns) 58
ucuns 214
update_exp 140
update_exp’ 155
0 81
T 81
p o7
S 9
@ 9
+ (on labels) 69
+ (on (U — D) x D) 86

Table 2.1: List of function definitions

Set Definition Page
accessible(V) 75
D 16
decl(u) 60
def (O) 60
def (P) 58
G 95
L, 61
L, 81
L, 81
match(v, p, P) 59
read(A) 61
read(E) 57
read(O) 60
read(P) 59
read(u) 72
read (W) 65
shadow(U) 215
start(Q) 76
stop(G) 76
sync(Q) 78
S, S, 55
S 81
T 81
use(E) 57
use(O) 60
use(P) 58
U 95
Uy 79
U 95
Val 57
write(A) 61
write(O) 60
write(P) 59
write(u) 72
0.n, 1.n 9

Table 2.2: List of set definitions

11

12

Chapter 2. Notation

Predicate

Definition Page

emission(G, i, ug)
enabled (S, 1, 1, S")
eval(E, p,v)
next_a(o,U, G, o)
next_0(0,U, ty, G, 0)
next_m(m,m, G,)
next—p(pv plvuv G7 pl)
relazed(S)
synchronizing((S, a), , u, (5, o))
up_lim(Q, D, t)
validity_stable(G)
validity_stable' (Q)
valid_active(U)
win_eval (W, p, D)

def

p) =0

IYY:::
S

136
85
57
85
84
84
85
85
83
67
7

215
7
66

9

62
73
73

Table 2.3: List of predicate definitions

Term

Definition Page

binary synchronization
blocking condition
clock

chain

dense time

discrete time
discrete transition
execution path
graphical model
high-level language
intermediate model

labelled transition system

local state

maximal progress of urgent actions

modality

phase

run

store

strong deadline
time additivity
time determinism
time domain
time Petri net
time window
timed automaton

timed labelled transition system

timed transition
timing option
timelock

unit affection
validity-stability
weak deadline
well-binding
well-activatedness
well-accessible

25
62
23
82
17
17
17
72
22
33
37
16
62
18
65
62
19
57
46
18
18
16
28
65
23
17
17
79
19
83
7
46
29
80
74

Table 2.4: List of terms introduced

13

14

Dynamic semantics rule

Definition Page

62
63
69
67
70
70
72
85
64
71
69
69
68
86
67
64
71
71
73

Table 2.5: List of semantic rules

Chapter 2. Notation

Chapter 3

Overview and classification of formal
models

Abstract To be of use, an intermediate model should have an expressive power
that covers the most important constructs of commonly used high-level languages,
while having structural similarities to lower-level models, making them accessible for
translations from the intermediate model. Therefore, this chapter provides a detailed
analysis of existing formats, which starts with presenting common semantic models,
then discusses the most important graphical models, several high-level languages,
and finally several intermediate models. A comparison of these formats at the end
of this chapter concludes that the definition of a new intermediate format is justified.

In this chapter, we make a detailed analysis of existing formal models and languages that
combine expressive power regarding data, concurrency, and real time.

We begin by discussing semantic models i.e., simple models used by other models and
languages to define their formal semantics, thus providing a basis for further comparisons.

We then discuss graphical models, which are situated on a higher level of abstraction. We
define two such models, namely timed automata and time Petri nets, give an overview of
their dialects, and then mention further graphical models. We also list various software
tools that have been developed to perform formal verification on the models presented.

Then, we proceed to high-level languages, by presenting different families of process alge-
bras, which provide more concise notations than graphical models. Only a few software
tools are available to perform formal verification directly on models written in high-level
languages.

With the differences between graphical models and high-level languages identified, we
then explain the need for intermediate models i.e., models using structures and constructs
of graphical models as well as of high-level languages and situated on an intermediate
abstraction level. We then present several existing intermediate models and describe
their expressive power.

15

16 Chapter 3. Overview and classification of formal models

The conclusion of this chapter gives an overview of criteria that can be used to compare
the different models and languages. These criteria represent the choices that have to be
made when defining a new model. Against the background of these choices, we will see
that several combinations of constructs are not provided by any of the existing interme-
diate models, and that therefore the definition of a new intermediate format is justified.
Chapter 4, which gives such a definition, takes the choices identified here as a basis for
the new intermediate format ATLANTIF.

3.1 Semantic models

3.1.1 Timed labelled transition systems
Definitions

This section provides the definition of the timed labelled transition system (TLTS) model,
which most other formalisms in the remainder of this chapter will use to define their
semantics. Thus, it represents a simple, language-independent model and a common
basis for a reasonable comparison between different formal models.

The TrLTS model extends the untimed “labelled transition systems” (LTs) by including
information on time elapsing. We develop the definition through three steps: First, we
formally define the LTS model, which itself is used as a semantic model of untimed systems.
Second, we define a “time domain” structure, which will be used to quantify time. Third,
we combine those two definitions to obtain the TLTS model.

Definition 3.1. A labelled transition system (LTS) is a 4-tuple (3, A, —, Sy), defined as
follows:

e Y is a (possibly infinite) set of states, written S, 5’, Sy, S1, etc.
e Sy € X is called the initial state.

o A is a (possibly infinite) set of discrete labels, written a,d’, ag, a1, etc. It contains
one special element written 7, called the silent label.

o The set of triples — C (X x A x X) is called the transition relation. Following
common practice, we will write S % S instead of (S, a,S’) € —.

Definition 3.2. A time domain is a structure (D, 0, <,+) satisfying the following:
e The carrier set D is finite or infinite. We write t,t',t1,t9, etc. for its elements.

e < is a total order on D.

e 0 is a minimal element w.r.t. the order < (i.e., (Vt €eD) 0=tV 0 <t).

3.1. Semantic models 17

e + is an associative and commutative operation, totally defined on D x D — D, and
accepting 0 as neutral element.

e Fach element can be complemented to each bigger element. Formally:

(th,tg EID)) (tl <t2<:><5|t3 EID)) t37£0/\t1+t3:t2>

e < is stable by constant addition. Formally:

Vt,t) 0O<t=t <t+1t

As it is common usage, the term time domain will often simply refer to the carrier set .

We say that the time domain is dense if the carrier set is infinite and dense w.r.t. < i.e.,
(Vt1,ty € D) t) <ty = (T3 €D) t1 < t3 < ty. We say that the time domain is discrete if
the carrier set is discrete w.r.t < i.e., (Vt; € D) (Jty € D) t; + ty is the smallest element
greater than ty (thus, each element has a direct successor).

Clearly, being discrete and being dense are mutually exclusive. Examples for dense time
domains are the non-negative rationals), and the non-negative reals IR>y. An example
for a discrete time domain are the natural integers (N, 0, <, +); all other discrete time
domains are isomorphic to this structure. The set {0} is neither discrete nor dense;
obviously this is the only possible example where D is finite.

Definition 3.3. A timed labelled transition system (TLTS) is a 5-tuple (X, A, D, —, Sp),
defined as follows:

e 3 Sy, and A are defined as in Definition 3.1 above.

e D is the carrier set of a time domain such that AND = @. We write [,1', 1y, 11, elc.
for the elements of AU (D \ {0}).

o The set of triples — C (X x (AU (D \ {0})) x X) is called the transition relation.
We will also write S - ' for a triple (S,1,5") € —. Ifl € D, we call (S,1,5") a

timed transition; if [€ A we call it a discrete transition®.

Intuitively, a timed transition (S,¢,S’) represents the elapsing of ¢ time units, and a
discrete transition represents a communication action of the system, either hidden (if
labelled 7) or visible (otherwise).

For given S € ¥,l € AU (D)\ {0}), we may use the shorthand S L, instead of writing
3 ex)st s,

By the condition AND = &, it is assured that each transition is either timed or discrete,
not both. Thus, we impose the assumption that discrete transitions have a duration of zero

!'Note that we use the word “discrete” at the same time to distinguish time domains (which can either be
dense or discrete) and to distinguish transitions in TLTS (which can either be timed or discrete), because
in both cases it is the commonly used term. For a given TLTS, the time domain is fixed, therefore it is
always clear by the context in which sense “discrete” is used.

18 Chapter 3. Overview and classification of formal models

time units. In [100], it has been argued that this assumption does not go against generality
and that it is a useful simplification. [98] even uses a quantum-mechanical argument in
favor of this assumption, by stating that discrete transitions represent energy changes of
a system, which cannot be measured simultaneously with time.

Note that in the literature, a TLTS is sometimes also called timed transition system (TTS)
or labelled timed transition system. Note also that if we choose a time domain such that
D = {0}, then for practical purposes the definition of a TLTS coincides with the definition
of an Lirs.

Properties of TLTSs

In the literature concerning the TLTS model, different authors (e.g., [99, 91]) describe
three properties of well-timedness that a TLTS should satisfy to be intuitively consistent:

Definition 3.4. A Turs (X, L, D, —,Sy) is called well-timed, if and only if the following
three conditions are all true:

1. Time additivity: Two succeeding timed transitions are equal to their sum. Formally,
for each Sy, S5, € ¥,t1,t5 € (D\ {0}):

Sy B2 S, iff (385 € 8) S 2 S5 5 S,

2. Time determinism: From a given state, the elapsing of a given duration cannot lead
to different states. Formally, for each Si,Ss, 53 € .t € (D\ {0}):

if S1 5 Sy and S; 5 S, then Sy = Ss

3. Maximal progress of urgent actions: Assuming a set U C A of labels that are called
urgent. A state allowing a discrete transition with an urgent label must not allow a
timed transition. Formally, for each S; € ¥,1 € At € (D\ {0}):

z'fleUcmdSlL , then—|<51 L)

Intuitively, time additivity expresses that time progress is independent of observation.
Time determinism expresses that time can only advance in one direction. More technically,
the mere elapsing of time does not put constraints on which discrete actions may follow
i.e., it does not resolve any choices. Maximal progress often supposes that the set of urgent
(i.e., undelayable) actions corresponds to the singleton containing the hidden action 7.
Our semantics definition in Chapter 4 will use a different set.

Note that the combination, the definition details and the naming of well-timedness prop-
erties are not entirely consistent in the literature e.g., time additivity is called stutter
closure in [75], and it is described as two properties in [20].

Other interesting properties of TLTSs have been defined. An important one is the so-called
non zenoness, which is discussed in the literature with many variations in terminology
and formal definition, for instance in [75], in [100] (called well-timedness there), or in [90].

3.1. Semantic models 19

Definition 3.5. (i) A run in a TrTs (X, A, D, —, Sp) is an infinite sequence of elements
of X alternating with elements of —, such that it begins with Sy and it has the form
So, (S(], l(), Sl>, Sl, (Sl, ll, SQ), 52, Ce (’LUZth Sl, SQ, ... € E, l(), ll, ...e AU]D) A finite run
is the prefix of a run, such that this prefiz ends with an element of 3.

(ii) The duration of a Tun or a finite run is the sum of all timed labels occurring in it. A
run is diverging if this sum tends to infinity.

(iii) A TvLTS is called zeno if it allows a finite Tun which is not the prefix of a diverging
run. Otherwise, it is called non zeno.

Intuitively, non zeno means that the system represented by the TLTS may always continue
in a way where time may elapse indefinitely. A zeno behaviour can be caused by two
different reasons:

1. The TLTS contains a state that does not have any outgoing transitions. Such a state
is called a timelock state.

2. The TLTS contains a state the runs starting from which have a finite duration (either
because they only contain a finite number of timed transitions, or because their sum
does not diverge). Such a case is shown in Fig. 3.1: There, only one run is possible
and its duration is one time unit; but no finite prefix can reach this duration. Clearly,
such a TLTS describes an unrealistic behaviour.

1 1 1
(B ~(5) (s (s) " (5)7H(5)—~

Figure 3.1: TLTS with zeno behaviour

This definition is a rather general variation of the definitions for zeno behaviour that can
be found in the literature. For our analysis in the following chapter, a tighter definition
will therefore be useful (where a reachable state is a state that is contained in at least one
run):

Definition 3.6. We suppose a dense time domain.

A TLTs is called strict zeno if there is a t € D and a reachable state S satisfying all of
the following:

e There is a run Sy, (So, lo, S1), S1, ... with S = S, for some n € IN, such that for all
i >n, l; is a timed label and ZiZn [, =t.

e For each run Sy, (So,ly, S1), 51, ... with S = S, for some n € IN: For all i > n,
is a timed label and Y . 1; <t (i.e., the mazimal duration after S is limited by t).

>n

e There is no finite run So, (So,lo, S1),...,Sm with S, = S for some n < m and
Y on<iemli =t (i-e., the t time units cannot elapse in finitely many steps).

20 Chapter 3. Overview and classification of formal models

Intuitively, the runs that are decisive for the definition of strict zeno are those that ap-
proach infinitesimally close the bound ¢ without being able to reach it by a finite number
of steps. Note that TrLTSs with timelock states are not necessarily strict zeno, nor is the
Trrs from Fig. 3.1 strict zeno. Thus, zeno does not imply strict zeno. On the other hand,
strict zeno clearly implies zeno.

Figure 3.2: Strict zeno TLTS

A simple example for a strict zeno TLTS is shown in Fig. 3.2. The duration of the only
possible run in this example is En212% = 1, but no finite run of duration 1 is possible. Note
that the satisfaction of time additivity does not prohibit strict zenoness: If we extend the
Twrrs of Fig. 3.2 to its time additive closure (i.e., we add the minimum of additional states
and transitions such that it becomes time additive), it still does not contain a transition
from Sy labelled by 1, because the criterion of time additivity is restricted to sums of two
transitions. By multiple application, this extends to any finite number of transitions, but
not to infinitely many.

Differences between discrete and dense time domains. A TLTS with a discrete
time domain behaves differently from one with a dense time domain. Discrete time is
obviously easier to define, but it is also less intuitive, as it opposes the human perception

of time in reality that can be arbitrarily divided?. Note that discrete time can be adjusted
1 2 1 2

in its granularity: A run S 2058 5 5 Sy %S, ER S % Sg 2, ... is not
necessarily from a TLTS with a dense time domain like @), it can also appear in a
Trrs with a discrete time domain {0, %, %, 1, 1%, S Nevertheless, not every system can
be “discretized” in this way, as shown in [41]. Thus discrete time domains are strictly less
expressive than dense time domains.

A detailed comparison between discrete and dense time domains can be found in [39].

Differences between Q)., and IR>o. Regarding dense time domains, both Q-4 and
IR>(are used in the literature. From a practical point of view however, there is almost
no difference:

e Neither set is “denser” than the other, because @ lies dense in IR and vice versa
i.e., for all #,y € R>o with # < y, there is a z € Qs such that z < z < y (and
conversely).

e Moreover, model theory shows that (Q-,0, <, +) and (IR>, 0, <, +) satisfy elemen-
tary equivalence i.e., each first order logic formula satisfied in one of these structures

2Note that this opinion is not unopposed e.g., [98] states discrete time to be more intuitive, because
system states in a computer change discretely.

3.1. Semantic models 21

is also satisfied in the other3.

Timed properties discussed in formal verification are normally expressed in first
order logic formulas, extended with additional constants. In theory, a formula in
the real numbers structure could express for instance that “precisely /2 time units
elapse” (such examples are discussed in [90]). In practice however, we talk about
automated formal methods, and computers have no means to efficiently represent
irrational numbers®*; therefore this difference is without real impact for us.

Model checking on TLTS

The semantic model (e.g., in form of a TLTS) of a formal specification can be the basis
for model checking, which consists in verifying that a formula given in a temporal logic,
such as p-calculus, CTL, or LiTL, is satisfied by the semantic model of the specification.
Although the cited temporal logics are named “temporal”; they do not express real-time
aspects such as the precise time that elapses between two events, but merely the order
(relative to time elapsing) of events. Therefore, timed extensions to temporal logics have
been defined, such as TCTL (timed CTL) [3] which also provide constructs to express how
much time may or may not elapse between events.

The model checking algorithms defined for TLTSs differ from those defined for Lirss: If the
time domain is infinite, the TLTS is usually, but not necessarily, of infinite size (if the time
domain is dense, then only TLTSs without timed transitions can be smaller than infinite).
Thus, an algorithm has to use symbolic techniques that enable the representation of a
TLTS as a finite structure.

Some of the syntax restrictions that occur in the graphical models (cf. Section 3.2) are
due to the fact that these models have been developed along with verification algorithms
that use such symbolic representations (e.g., [3]).

3.1.2 Alternative semantic models

TrLrss are a natural extension of LiTss. Although they are the most frequently used
semantic model for timed systems, alternative approaches exist.

Labels with actions and absolute time stamps. The timed model proposed in [9,
85] extends the Lirs model by transitions labelled with expressions of the form a(t), where
a is a (discrete) label, and ¢ a time value. Time is represented in an absolute way i.e.,
the time value expresses how much time has passed between the beginning of the run and
this occurrence of a.

3Elementary equivalence is a less strict relation than isomorphism, the latter obviously not being
satisfied.

4Even if some programming languages denote them as “reals”, floating point numbers are always
rationals.

22 Chapter 3. Overview and classification of formal models

Fig. 3.3 (ii) shows such a semantic model, beside the identically behaving TLTS model in

(1)

1
O‘a/b <)a{l <)a{Z < >a3! @am
(i) (iz) (i)

Figure 3.3: Different LTS extensions (time domain IN)

Labels with actions and relative time stamps. A similar approach [49] uses relative
values instead of absolute values. Transitions are also labelled by expressions of the form
“a(t)”, where a is a (discrete) label, and ¢ a time value, but here, ¢ expresses how much
time has passed between the last transition and the current occurrence of a. This model
is illustrated in Fig. 3.3 ().

Note that in a model using labels with action and time stamp (absolute or relative), the
properties of time additivity and time determinism (cf. Definition 3.4) are automatically
satisfied, because there are no isolated timed transitions.

Relations between different semantic models. As the last remark indicates, mod-
els using labels with actions and time stamps can only define graphs that satisfy time
additivity and time determinism. Thus, not everything that can be expressed in the
TLTS model can be expressed in the alternative models. On the other hand, given that
a Trrs that does not satisfy time additivity and time determinism lacks intuition, this
difference in the expressive power can be seen as irrelevant.

More generally, a translation from labelled transition systems with absolute or relative
time stamps into a corresponding TLTS is always possible, simply by splitting up each
time stamp transition into one timed transition and one discrete transition (or only one
discrete transition if no time elapses). The inverse is not true; for instance, a TLTS only
containing timed transitions has obviously no correspondent in a time stamp model.

3.2 Graphical models

3.2.1 Overview

In this work the term graphical models will refer to models that have been traditionally
defined using a finite graphical notation (despite their possibly infinite behaviour). This
finite representation is realized using symbolic notations, which represent sets of possible
values e.g., by a formula that imposes constraints on the value of a variable. Such notations
are in particular useful to represent real-time behaviour: For instance, when an arbitrary
amount of time may elapse, this amount could be represented symbolically on a single

3.2. Graphical models 23

transition by an interval [0, co[; a semantic model would instead define an infinite number
of transitions. Moreover, graphical models have formally defined and simple semantics.

Graphical models are appropriate to model simple systems. Their strength is the existence
of algorithms that transform graphical models into symbolic representations of TrLTSs [19,
5], which enables model checking to be performed.

In this section, we will discuss two main types of graphical models, namely timed exten-
sions of the automata model and timed extensions of the Petri net model. Several other
models, all of which have been developed along with one specific verification tool, will
also be discussed briefly.

3.2.2 Timed automata
Formal definition

The network of timed automata model is used in several tools for simulation and formal
verification, such as UpPAAL [89], RED [123], SaMm [80], CMc [88], KrRONOS [126], or
RABBIT [27].

Timed automata were originally defined by Alur and Dill [4, 5] and appeared later in
the literature in a large number of variations (such as [75, 12]). The following definitions
represent a common standard among the different definitions.

Definition 3.7. (i) A clock X is a variable that has values ranging in R>q.

(ii) A clock constraint ¢ is an expression recursively defined by one of the following forms:
X<l <X’ “X=-Y<c’c<X-=Y7 “07 or 90 Nd3”, where c € IN and X,Y
are clocks. For a set X of clocks, we write ®x the set of clock constraints built with clocks
from X.

Clocks are used to represent the elapsing of time: All clocks then evolve continously and
with a constant speed that is the same for all clocks.

Definition 3.8. A timed automaton (TA) is a 6-tuple (X, A, L, E, inv,ly), where:

e X is a set of clocks.
o A is a finite set of labels.

e (L, F) is a finite directed graph, where the elements of the set L of nodes are called
locations® and the elements of the set E of edges are called transitions. Fach such
transition is a 5-tuple e = (11,0, a,{X1,..., X}, l2), where

—l,beL

5When we speak of “locations”, we already apply a vocabulary oriented towards the translation to the
UPPAAL tool (cf. Section 6.1). Although in other dialects, locations are called, for instance, “modes” (in
the tools RED and SGM) or “nodes” (in CMC), UPPAAL is not the only dialect using the term “locations”.
For the remainder of Section 3.2.2, we will continue to use UPPAAL vocabulary.

24 Chapter 3. Overview and classification of formal models

— the formula 0 € @y is called the guard
—a€cA
— {X1,..., X} C X is called the clock reset

o inv: L — Py is a function distributing an invariant to each location.

e [y is the initial location.

Semantics. Given a set X of clocks, a function p : X — IR is called a clock interpre-
tation. A clock constraint § € ®y is satisfied by u, if the expression obtained by replacing
in § each clock variable X by the value p(X) evaluates to true.

The semantics of a timed automaton (X', A, L, E, inv, ly) is defined by a TLTS
(3, A, R>,, —, (lo, fto)), where 3, — are the smallest sets satisfying:

e The states of ¥ are tuples of the form (I,), where [€ L and p is a clock interpre-
tation on X.

e The initial state is (lo, po) € 3, where pg is the function that constantly returns
ZET0.

o Timed transition: 1f (I, 1) € ©, t € Rsg, then (I, /) € ¥ and (I, 1) = (I, /) if the
following are true:

— 1/ is a clock interpretation such that for each X € X, p/(X) = u(X) +t. We
use the shorthand notation p/ = p + t.

— For each ¢’ €]0,t], inv(l) is satisfied by pu + t' i.e., the invariant formula of
holds during the entire time elapsing.

e Discrete transition: If (I, u) € ¥, (1,9,a,{X1,..., X, },I') € E, then (I, 1) € ¥ and
(I,) = (I, i) if the following are true:

— ¢ is satisfied by pu.

— ' is a clock interpretation such that for each X € X, p/(X) = 0 if X €
{X1,..., X} and /(X)) = pu(X) otherwise.

— dnv(l') is satisfied by .

Note that the original TA definition of [5] does not contain invariants. The reason for
introducing invariants was to prevent a TA from idling indefinitely in one location. With
this aim, [5] uses Biichi or Muller acceptance conditions, thus forcing a run to contain
infinitely many discrete transitions. But this is a somehow artificial construction, thus
less appropriate for modelling than using invariants.

3.2. Graphical models 25

Parallel composition. The semantics of a network of n timed automata

(Xh A, L17 E17 invl, l(l)), ce (Xn7 A, Ln, En, z'm)l, lg)
is defined by a TrTs (3, A, R>,, —, ((19,...,19), (19, ..., 12))), where 3, — are the small-
est sets satisfying:

e The states of ¥ are tuples of the form ((I1,...,0,), (tt1, ..., itn)), where Iy € Ly, ...,
l, € L, and py, ..., u, are clock interpretations on the sets Xy, ..., &), respectively.

e The initial state is ((19,...,1%), (19, ..., u)) € &, where uf, ..., u® are the functions

that constantly return zero.

e Tumed transition: Time can elapse in the composition if it can elapse in each single
automaton. Formally:

I (I, b))y (1, i) € B, t € Rsg, and (Vi € 1.n) (i, i) — (i, 1), then
(s)y (s)y €S and (1,2 L)y (s - s pin)) = (s dn)s (s 1)

e Discrete transition: In the parallel composition of timed automata, two different
kinds of discrete transition exist. The first kind corresponds to a discrete transition
on the silent label 7 € A in a single automaton, while the others remain unchanged.
Formally:

If (s s ln), (1,5 p1n)) € X and (Fi € 1) (L, i) — (I, p1h),
then ((I1,. .., Uy b)), (1, ooy iy ooy piy)) € 2 and
((Tay e bn)s (1 ooy i) = (D Uy Tn)y (s e e ey (e s i)
The second kind of discrete transition is the synchronization among several timed
automata. For the semantics of synchronizations, several different definitions exist
in the literature, varying in particular about how many TAs synchronize. The three
major approaches are the following:

1. Global discrete synchronization [5]: All automata execute simultaneously the
same action a € (A\ {7}). Formally:
If (I ln), (s -y i) € 2 and (Vi € 1n) (I,) = (I, 1),
then (i, ..., 1), (1, -, py)) € X and
((ll’ s 7ln)’ (:ula s ’lun)) = ((lll? s 71%)’ (:ulla T Hu;z))'

2. Binary synchronization [12]: The set of visible actions (A \ {7}) is composed
of actions of the form “!¢” and co-actions of the form “?¢”.

In a synchronization, one automaton executes an action, and another automa-

ton executes simultaneously the corresponding co-action, while the other au-
tomata remain unchanged. Formally:

I ((Tyyeeoyln), (1, ey i) €2

and (3i,j € Ln,i #) (li i) < (U i) A (Lo = (U, 1)),
then ((14,...,0,), (th, ..., pl,)) € ¥ (where I}, = Iy, 3, = py, for each k # 4,7) and

(s esln)y (1, p1n) = (B) (s s)

26 Chapter 3. Overview and classification of formal models

3. Mazimal event synchronization [126]: The set of visible actions (A\ {7}) is the
power set of a finite set £ of events i.e., each transition in the timed automata
is labelled by a set of one or several events. In a synchronization, several
automata each execute one such event set simultaneously, where (i) every event
must occur in at least two event sets, and (iz) the set of synchronizing automata
must be maximal i.e., if an automaton can execute an event set containing an
occurring event, then it must be among the synchronizing TAs. The other
automata remain unchanged. Formally:

If ((Iy,. .. 0n), (B, .oy i) € 2, and |
(Ji1,...,im € 1. pairwise distinct) (V5 € 1.m) (I, pi;) 4, (l;j,,ugj),
then ((I],...,0,), (1y, ..., 1)) € X and

U i<m 4j
((ll’ s aln)a (:U’lﬂ cee ’lun)) Lj_’ ((lll’ s 712)’ (:U’ll’ s uugm))’
where the following are true:

— U, = lp, pf, = pu, for each k # iy,... iy
- (Vjel.mVeca;) (37 €l.m,j’ #j) e € aj
— (Vjel.mVeca;) (=g € ({1,...,n}\ {it, - sim})) (ligs Hig) —= A e € ag

Example 3.1. We illustrate the definitions of timed automata by a variation on an ex-
ample commonly found in the literature, shown in Fig. 3.4. It consists of a network of
two TAs, one modelling a lamp, the other one a person. Fach automaton uses one clock,
called X for the lamp and Y for the person. We suppose a composition by binary syn-
chronization using the labels “!Push” and “?Push”, representing a light switch button being
pressed.

The lamp has three levels of brightness, modelled by the three locations Off, Low, and
Bright, where Off is the initial location (indicated in Fig. 3.4 by the double ring). When the
lamp is off (location Off), pushing the button switches it on with low brightness (location
Low). If the next push happens within less than 5 time units then the lamp gets brighter
(location Bright). If it happens after 5 time units then the lamp is switched off.

The person has three different activities, each of which corresponds to a location: Dozing,
Working, and Phoning, where Dozing s the initial location. When the person is dozing,
he may either push the button once and then phone for at least 1,000 time units or he may
push the button twice fast (modelled by an intermediate location) and work for at least
1,000 time units. When he is finished phoning or working, he pushes the button once and
gets back dozing.

Tool implementations

Several tools that perform simulation and/or formal verification on timed automata have
been implemented since the 1990s, each with its own dialect. We briefly present some of
them in the following and describe how they extend the TA model of Definition 3.8:

e UprPAAL [89] extends the TA model with data handling: It is possibile to define
local and global variables of simple types (integers and booleans) and structured

3.2.

Graphical models 27

Figure 3.4: Two timed automata describing a lamp (left) and a person (right)

types (arrays and records). Variables can be manipulated by transitions and/or
be used in the guard expression of transitions. UPPAAL also introduces several
time-blocking constructs, such as urgent transitions, urgent locations, and commited
locations. Details of the syntax and semantics definition of this TA dialect are given
in Section 6.1.1 on page 130.

UPPAAL is designed for simulation and CTL model checking.

RED [123] also adds local and global variables, but only of simple types (integers
and booleans). Communication is implemented using the binary synchronization
approach. RED performs TCTL model checking and bisimulation checking.

KRONOS [126] implements an important extension of clock resets during a transi-
tion: A clock can either be reset or it can be assigned the value of another clock,
which sometimes allows smaller descriptions e.g., the FDDI benchmark [51]. In one
automaton, several initial locations may be defined, from which one is chosen non-
deterministically. KRONOS uses the maximal event synchronization and is designed
for TcTL model checking.

RABBIT [26] encapsulates one or several timed automata in a module, from which
a hierarchical structure can be constructed. Communication is implemented using
the binary synchronization approach.

SaMm [80] extends the transitions of timed automata with priorities and with different
kinds of urgency. Also, the definition of integer variables is possible. Communica-
tion is implemented using the binary synchronization approach. SGM allows model
checking on TcTL formulas.

The tool HyTech [74] applies to hybrid automata [73]. Although defined indepen-
dently, hybrid automata (HA) can be seen as a generalization of timed automata,

28 Chapter 3. Overview and classification of formal models

where clocks are replaced by hybrid variables, which can change their value arbi-
trarily (but possibly within the limits of certain constraints) during the elapsing of
time. Intuitively, hybrid variables can be used to represent “environmental” values,
such as temperature, pressure, etc. Note that clocks are then special cases of hybrid
variables, their value increasing linearly at the same rate as time.

Verification is possible, but only with strong restrictions on how hybrid variables
evolve [74, 8]; in HyTech, it is limited to reachability analysis.

e CMC [88] applies to networks of timed automata using general discrete synchroniza-
tion extended with renaming functions. It performs model checking on properties
expressed in the timed modal logic L, [87].

A variation of the tool, named HcMc [44], applies to hybrid automata.

It should be noted that most of these tools are prototypes used to experiment model
checking algorithms rather than robust and mature software tools. The UPPAAL tool
with its detailed documentation and its graphical user interface is the most important
exception to this observation.

3.2.3 Time Petri nets
Formal definition

Different extensions of the Petri net model are the basis for several tools for simulation
and formal verification e.g., TINA [16], RoMEO [65], CPN Tools [107], OrIs [113], and
others. We begin by presenting the most influential extension of the Petri net model,
initially defined by Merlin [95]. Its central idea is to associate a time interval with each
transition, expressing how much time can elapse before this transition is fired. Formally:

Definition 3.9. Let I be the set of intervals in (R>oU{oo}). A time Petri net (TPN) is
a 7-tuple (P, T, in, out,my, lab, I;), satisfying the following:

o (P, T,in,out,mgy) is a standard Petri net i.e., P is a finite set of places, T is a
finite set of transitions, in, out are mappings from T to multi-sets in P indicating
the in-places and the out-places of a transition, and mq is a multi-set in P, called
the initial marking.

e [ab: T — A maps each transition to a label.

o [is a mapping from T to 1. For a transition r € T, I4(r) is called the static firing
interval.

A TPN is 1-bounded if at any time, each place contains at most one token. Consequently,
such a net contains no transition that has two or more times the same in-place or the
same out-place. In this thesis, almost all TPNs we discuss will be I-bounded nets. Given
this restriction, we will use the following (commonly used) conventions for the graphical
representation of TPNs:

3.2. Graphical models 29

A circle represents a place.

e A dot in a circle represents a token in a place.

A rectangular box represents a transition. Labels and static firing intervals will
occur within or right of the box. Firing intervals that are unbounded for their
maximum are written [z, oo or |x, col.

An arc (i.e., a directed edge) from a place to a transition represents the place being
an in-place of the transition. An arc from a transition to a place represents the place
being an out-place of the transition.

Semantics. We now define the semantics of a TPN R = (P, T, in, out, mq, lab, I;), where
we will use the following terms:

e A marking is a multi-set in P, where each element represents one token in the
corresponding place.

e A transition r € T' is enabled by a marking m if in(r) C m.

The semantics of R is defined by a TLTS of the form (3, A, R>¢, —, (mo, Iy)), where X, —
are the smallest sets satisfying:

e The states of ¥ are tuples of the form (m, I'), where m is a marking and [is a partial
function from P to I. The domain of I is given by the set of enabled transitions.

e (myg, Iy) € X, where I is the restriction of I to the transitions enabled by my.

o Timed transition: If (m,I) € ¥,t € R>o, and for each r € dom([), t is in or below
I(r), then (m, shift(I, —t)) € % and (m,) = (m, shift(I, —t)).
The auxiliary function shift : I x IR — I is used to shift an interval (closed, half-
open, or open) to the right (if the second argument is positive) or to the left (if the

second argument is negative), while in the second case the shift is limited by zero.
Formally (assuming 1,2 € {[,]}):

hWr+z,y+20 ifx+2>0

shift(ix, ylo, 2) o [0,y + 2% ifr+z2<0andy+2>0
[0, 0] otherwise

e Discrete transition: If (m,) € ¥, r € T enabled by m and 0 € I(r), then (m/,I") €

Y and (m, 1) lablr), (m/,I'), where m’ = (m \ in(r)) U out(r) and I’ is defined by
I'(r'y=1(r") if " € dom(I) \ {r}, otherwise I'(r") = I(r').

We say that r is fired.

30 Chapter 3. Overview and classification of formal models

Example. We illustrate the definition of time Petri nets by the example shown in
Fig. 3.5, describing a bus shuttle between stop A and stop B, and a passenger who
wants to take a bus from B to A. Initially, the token in the place “at home” indicates that
the passenger is at home (next to stop B), and the token in the place “A” indicates that
the bus is at stop A. At any moment, the passenger may go to stop B (token in the place
“B (passenger)”), where she waits five to ten minutes at maximum, before going back
home. If a bus arrives in that time, she may board it within one minute, and arrives at A
15 to 18 minutes later. The bus takes 10 to 12 minutes to go from A to B and waits up
to one minute before leaving B, either with (place “passenger in bus”) or without (place
“empty bus”) the passenger.

passenger empty
in bus bus

‘ [15, 18] ‘ ‘ [15, 18] ‘

Figure 3.5: A time Petri net describing a bus and a passenger

It is possible to extend this example e.g., by initializing the net with several tokens in the
place at home. This corresponds to several passengers taking the bus independently.

Variations, extensions, and tool implementations

Several different approaches to extending (time) Petri nets exist:

e In [106], durations instead of time intervals are associated with transitions. Thus,
time elapsing occurs as a consequence of the firing of a discrete transition, whereas
in the TPN model time elapsing and discrete transitions are independent.

Such Petri nets with durations are called timed Petri nets, and this model is clearly
also intuitive. However, timed Petri nets are not compatible with the TLTS model,
and it seems difficult to introduce a notion of synchronization. Moreover, very few
theoretical results on verification exist, in contrast to the TPN model. Therefore,
we will not detail the timed Petri net approach.

e In [36], the authors propose to generalize the definition of TPN to three variations:
A T-TPN is a TPN as given in Definition 3.9, a P-TPN associates time intervals to

3.2. Graphical models 31

places (indicating at which time a token created in this place may be used to fire a
transition) instead of transitions, and an A-TPN associates time intervals to those
arcs representing in-places (indicating at which time a token in this in-place may be

used to fire this transition)®.

e There are two main possibilities for introducing priorities into a TPN: Either as a
partial order on the set T'i.e., a transition may not be fired if a transition with higher
priority is enabled [109], or as a partial order on the set of labels i.e., a transition
with label [may not be fired if a transition with label I’ is enabled and [’ has higher
priority than [.

The first approach could for instance be applied in the bus example of Fig. 3.5: The
transition representing the bus leaving B with the passenger would have priority
over the transition representing the bus leaving B without the passenger i.e., the
passenger takes the bus when it is available.

e In [2], transitions are defined with inhibitor places in addition to their in- and out-
places. When there is a token in such an inhibitor place, the transition cannot be

fired.

Complementary to inhibitor places are test places: A transition with such a test
place can only be fired if the latter contains a token; firing the transitions, however,
does not consume the token.

It would be possible to extend this list. For instance in recent years, research efforts
have been made in defining and analysing TPN extensions such as Stopwatch-TPNs,
Scheduling-TPNs, Preemptive-TPNs, etc. [18, 65, 42], but these extensions are not of
direct interest in the context of this thesis, so are not discussed.

Several tools for verification on time Petri nets have been implemented since the 1980s.
The following list presents briefly some of them:

e The toolbox TINA [16] applies to TPNs extended with priorities on transitions, test
places, and inhibitor places. Moreover, it allows variable manipulation by external
C functions.

For verification, TINA provides model checking by an extension of LrL [22]. Tt
also provides translations to several other model checking tools such as MEC [7]
and CADP [63]. Details on the syntax and semantics definitions of the TiNA TPN
dialect will be given in Section 6.2.1.

e The tool ROMEO [65] applies to TPNs extended with test places, inhibitor places,
and stopwatches, and enables model checking either directly of TCTL [3] formulas
or indirectly by translations to timed automata.

6Unless if we want to point out this difference, we will continue to write “TPN” when we mean “T-
TPN”.

32 Chapter 3. Overview and classification of formal models

e The tool ORIS [113] applies to TPNs extended with preemption and probabilistic
behaviour. It mainly targets scheduling problems, and enables model checking on
formulas of the temporal logic RTTL [102].

e Several tools, such as CpN Tools [107] or ITCPN [1], perform verification on timed
extensions of the coloured Petri net model. In such a net, a data type is associated
with each place and a value (“colour”) of this type with each token created in this
place.

e The tool INA [117] applies to a discrete time variant of the TPN model, extended
with coloured tokens. It provides model checking on CTL [46] formulas.

3.2.4 Other models

Several other models have been defined that are situated at a similar abstraction level to
timed automata and time Petri nets, and which also have formal semantics based on the
TrTs model. In most cases these models are linked to one specific tool implementation.
In the following paragraphs, we give a brief overview of some models (note that it should
not be assumed that the corresponding tools are all still maintained).

TASM. The TasMm (Timed Abstract State Machines) [104] model is also based on the
idea of several automata (called machines) composed of states and transitions between
states.

Real-time behaviour is implemented by associating a duration with each transition, either
as a constant or as an interval. Concurrency is implemented by having several machines in
parallel. Between these machines, communication is possible by binary synchronization
(cf. Section 3.2.2). Data handling is implemented by either global or local variables,
whereas data transmission by synchronization is not possible.

The main objective of the TAsM language is the representation of resource consumption
e.g., to enable the calculation of the worst or best case execution time. The latter is
implemented by a translation of a subset of TASM to UPPAAL timed automata.

Verus. The Verus [43] model handles processes whose description is strongly inspired
from programming languages. In terms of automata-based languages, a Verus process has
a single state with a single transition, where the transition is expressed using a complex
syntax that combines (deterministic and non-deterministic) assignments (to boolean and
integer variables) and delay statements by conditional structures and loops.

Real-time behaviour is implemented in a simple and rigid way by constant delay state-
ments, using a discrete time domain. Concurrent processes can only communicate by
global variables.

Formal verification is defined on formulas of the temporal logic RTcTL [55], which is a
real-time dialect of CTL.

3.3. High-level languages 33

Clocked Transition Modules. The CTM [28] model, the input language for the tool
STeP, can be seen as a variation of networks of timed automata, in which no locations
are defined. Instead, each process (called a clocked transition system, CTS) is defined by
several transitions that can only be executed when a constraint formula on the variables
(discrete variables and clocks) is satisfied. These transitions are labelled and may contain
variable assignments.

The time domain is dense. Parallel composition between different CTSs is implemented
by a simple form of the maximal event synchronization (cf. Section 3.2.2), where each
label corresponds to a single event. Furthermore, communication is possible by global
variables.

I/O interval structures. I/O interval structures are the input model used by the
tool Raven [110]. In this model, each such structure is a very simple variant of a timed
automaton: The time domain is discrete, and each transition has a time constraint that
depends on the time elapsed since the last discrete transition. Time can only elapse if
a discrete transition is possible in the future (this is a rigid version of the “invariant”
construct from the TA model).

Communication between different I/O interval structures is only possible by boolean vari-
ables; there is no synchronization.

The tool implements formal verification by the temporal logic CCTL (which is an extension

of CTL).

3.3 High-level languages

A graphical approach is rarely appropriate for modelling of realistic systems, for several
reasons. For example, in a graphical approach, the set of processes is static (no processes
can be created or terminated during execution), communication is limited to simple con-
cepts (binary or global synchronization, cf. Section 3.2.2), and the structure of states and
transitions is rigid and can be artificial. In short, the simplicity of the provided constructs
can make the modelling of complex systems a cumbersome task.

To palliate this, high-level modelling languages have been developed. Those languages
are purely textual and provide powerful constructs that enable modularity, composabil-
ity, and concise notations. In particular, they avoid a state/transition-structure, with the
benefit of a relatively free composition of statements for communication, along with con-
trol structures that allow different kinds of composition, such as sequential composition,
parallel composition, and repetition by recursion or by loop constructs.

Not all formal description techniques provide formal semantics, as pointed out in [40].
However, a formal semantics definition is clearly necessary to perform formal verification.
Therefore, we only consider high-level languages defined with a formal semantics.

Among these, process algebras [14] are a natural choice: The semantics of a process
algebra is given by a set of rules, each one transforming one syntax term into another

34 Chapter 3. Overview and classification of formal models

syntax term, where each transformation corresponds to a transition in a (timed) labelled
transition system i.e., syntax terms also correspond to semantic states. These rules are
usually defined in the simple style of Plotkin’s structural operational semantics [105].

Process algebras express the communication between concurrent processes in form of a
mutual synchronization, as opposed to buffer communication (where sending and receiving
of a message are two successive events) or shared variables (which opposes the intuition
of independent systems). Such a synchronization is considered to be performed simulta-
neously in two or more processes on a gate (or communicating port), which generalizes
the idea of labels as they appear in semantic and graphical models.

The expressive power of the first process algebras (around 1980) included control struc-
tures such as sequential and parallel composition of terms, choice between terms, and
recursion. During the 1980s, extensions introduced data representation and manipula-
tion, and finally real-time concepts were implemented in e.g. [108].

There are also well-known problems shared by all high-level languages, such as the steep
learning curve encountered by system designers (caused by the high level of abstrac-
tion) that still hinders broad industrial application. Therefore, some effort has been put
on defining languages considered as “next generation languages”, such as E-LOTOS [83]
(which became an Iso standard in 2001) and LoTos NT [115], that combine the strong
theoretical foundations of process algebras with language features suitable for a wider in-
dustrial dissemination of formal methods. Such features include complex data structures,
a more flexible parallel composition, and exception handling.

In the remainder of this section, we will give short descriptions of those languages that
were, directly or indirectly, of influence for the definition of ATLANTIF.

3.3.1 Languages based on CCS

The seminal language CCS (Calculus of Communicating Systems) proposed by Milner [97]
is mainly aimed at studying theoretical problems. The syntax of CCS composes commu-
nication actions’ by constructs expressing e.g., concurrency, action prefixing, and choice.
Due to the simplicity of its syntax and semantics, CCS influenced most other high-level
languages, at least in parts. However, CCS does not include data and real-time aspects.

The first real-time extensions appeared around the year 1990. We only cite two of them:
Temporal CCS [98] introduces operators for either fixed or unspecified time delays, which
can be used to derive more complex constructs, such as time-outs (cf. 1.1.1). The time
domain is considered to be discrete.

Timed CCS [125] also provides fixed delays, but extends the unspecified delays by intro-
ducing a time capture operator “@Q”: The construct “u@t.P” may delay a certain time,
then perform the action u; afterwards, each occurrence of ¢ in P (e.g., as parameter for
delays) is replaced by the delay elapsed before performing p. Moreover, the time domain
is generalized to be either discrete or dense.

7[97] states that “the behaviour of a system is exactly what is observable, and to observe a system is
exactly to communicate with it”.

3.3. High-level languages 35
3.3.2 Languages based on CSP

The language CSP (Communicating Sequential Processes) was developed by Hoare [77]
around the same time as CCS, but with a stronger orientation towards industrial appli-
cations by a more pragmatic approach. CSP does not include data and real-time aspects.

Tcsp (Timed CSP) [108] extends CSP with an independent fixed delay action. It also
supposes a constant delay value that always elapses between two discrete transitions, thus
avoiding strict zeno behaviours (cf. Definition 3.6). Moreover, Timed CSP supposes an
orthogonal time concept i.e., elapsing of time has no influence on which actions can be
performed. The time domain used is the set of positive real numbers.

Tcsp was revised in [103], most notably by deleting the constant delay between two
discrete transitions; it also introduces a concept of “signals”. As in [108], this revision
does not introduce data-related constructs.

In [58], the language CSP-OZ is defined as a combination of CSP with Object-Z [53]. The
Object-Z part provides data in form of object-oriented type definitions. In [78], CSP-OZ-
DC is defined as a futher extension of CSP-OZ with a subset of Duration Calculus [127],
providing real-time constructs.

3.3.3 Languages based on LOTOS

The language LoTos [81] (Language Of Temporal Ordering Specification) is an ISO stan-
dard for formally describing concurrent and communicating systems. It also provides data
types, which can be either predefined or user-defined algebraic data types. Such type dec-
larations are strictly separated from the control part of a LOTOS specification. The latter
is defined in the usual process algebra style, inspired from both CCS and CSP.

Like for CCS and CSP, many extensions of LOTOS have been proposed, of which we only
cite the most relevant to this work. Regarding real time, the first extensions occurred
around 1990, e.g.,/ T-LoTos [31] and perhaps most influential, ET-LoTOS (Enhanced
Timed LoTos) [91]. ET-LOTOS reuses the idea of a time capture operator as defined
in Timed CCS (cf. Section 3.3.1), and at the same time, it extends this construct with
a second meaning: An action with an attached “@Q¢” may optionally have also attached
a boolean formula SP, which expresses how much time may elapse before the action
occurs i.e., if d time units elapse, the action can only occur if [d/t]|SP evaluates to true.
Furthermore, ET-LOTOS provides a fixed delay operator and a generalized (i.e., either
discrete or dense) time domain.

RT-LoTos (Real Time LOTOS) [47] is based on the ideas of ET-LOTOS, but contains
several differences. First, the powerful but sometimes cumbersome time capture is re-
placed by a much simpler (and less expressive) constant time restriction of the form “{d}”
(corresponding in ET-LoToS to a formula SP = t < d). Second, RT-LOTOS intro-
duces a latency operator, which can delay urgent actions. Another further extension to
ET-LoTO0s is defined in [76], where a “suspend/resume” mechanism is proposed.

36 Chapter 3. Overview and classification of formal models

3.3.4 E-LOTOS and LOTOS NT

Different ideas on how to extend LOTOS converged into E-LOTOS (eztended LOTOS) [83],
also an ISO standard. The main objectives for this revision were to enhance the user
friendliness (e.g. with data definitions closer to programming languages), but also to
enhance the expressive power. The extensions include a generalized parallel composition
(a single construct that expresses for several gates and several processes the combination
of processes that can synchronize on which gates), symmetrical sequential composition
(both the left and the right side of a sequential composition can be arbitrary terms,
whereas the prefixed sequential composition of LOTOS only permitted atomic actions on
the left side), exception handling (unexpected events may raise an ezception, which leads
to the execution of a specially defined code, the exception handler), and of course real-time
constructs. The latter are mostly inspired from the ideas introduced in ET-LOTOS.

The language LoTOs NT (LOTOS Nouvelle Technologie) [115], which has been developed
in parallel with E-LOTOS, can be seen as a dialect with small differences in syntax and
semantics.

3.3.5 Other high-level languages

The language ACP (Algebra of Communicating Processes) [13] features in particular a
communication function, which defines the synchronization of concurrent processes inde-
pendently of the process terms, thus enabling a simpler notation of processes. Neither
data nor real-time constructs are provided.

Different timed extensions for ACP are defined and discussed in [85]. The ideas for the
additional constructs are similar to those discussed in the preceding sections i.e., fixed
delays, time restrictions, and urgency are provided, and the time domain is discrete. As
we already mentioned in Section 3.1.2, the semantics are defined by transition systems
providing labels with actions and absolute time stamp, instead of the TLTS model.

The language pCRL (micro Common Representation Language) [71] extends ACP with
abstract data types. In [29], a real-time extension is proposed, where the time domain is
discrete and time elapsing is represented by a special “tick” action, on which all processes
have to synchronize. The revised version mCRL2 [70] extends puCRL regarding data
representation and communication.

Another early timed language is ATP [100], which extends a process algebra (with simi-
larities to CCS and ACP) with a fixed delay (of one time unit), urgent actions, and time
restrictions for actions. The originally discrete time domain is later generalized into an
arbitrary time domain. Data types are not provided.

We finish this necessarily highly incomplete list by mentioning Timed x [120], which
has the interesting characteristic of not being the extended but the simplified version of
another language: Timed x restricts the hybrid variables provided by Hybrid x [121] to
timed variables (cf. Section 3.2.2 on page 28), which enables the expression of delayable
and urgent actions, independent fixed delays, and a dense time domain.

3.4. Intermediate models 37
3.4 Intermediate models

Inconveniences in the approaches of graphical models and high-level languages have been
observed for several years, in particular the following:

e The development of verification tools for specifications given in high-level languages
providing concurrency, data, and time is difficult: The TLTS defined by such a speci-
fication is usually infinite, even in a simple case (cf. Section 3.1.1 on page 21). Thus,
symbolic representation techniques would have to be found for the tool. Moreover,
high-level languages have complex rules where a transition often depends on the
existence of other transitions (e.g., by urgency constraints as described in Defini-
tion 3.43.), which is not trivial to check in an infinite model.

In practice, verification tools for such high-level languages only apply to significantly
limited subsets of the languages [94]. Therefore, although high-level languages are
appropriate for modelling complex systems, their practical application for verifica-
tion purposes is restricted.

e Although graphical models basically share the problems of infinite semantic models,
their syntax and their semantics rules are much simpler, which makes the develop-
ment of verification tools posssible.

But at the same time, as discussed in the introduction of Section 3.3, modelling of
complex systems using graphical models is often difficult.

Thus, there is clearly a gap between the modelling in high-level languages and the verifi-
cation in tools conceived for graphical models. Several works [37, 61, 21] proposed to fill
this gap by intermediate models that satisfy the following:

e They have constructs of high-level languages, such as user-defined data types, choice
operators, complex communication definitions, or action-independent delays.

e They enable formal verification either indirectly (i.e., via a translation to another,
ususally graphical, model) or directly. Providing this possibility usually means that
the model has similarities to graphical models.

In the sequel, we briefly present the central ideas and the most distinctive features of a
few intermediate models. Complete definitions of their syntax and semantics are beyond
the scope of this work.

3.4.1 1IF and IF-2.0

The Ir (Intermediate Format) model [37] extends networks of automata. A specification
consists of several processes that can communicate by sending and receiving signals and
by dynamically creating and deleting other processes. A communication by a signal corre-
sponds to two different discrete transitions: one for the emission and one for the reception.

38 Chapter 3. Overview and classification of formal models

The approach is therefore different from the communication by synchronization used in
most other models discussed in this chapter. The IF model supports data, providing sev-
eral predefined types (booleans, integers, and floats), user-defined types (constructed by
enumerations, records, and arrays), and the possibility to import externally-defined data

types.

Each process contains several discrete states. Transitions between discrete states are
defined by a precondition (i.e., a condition that has to be satisfied before the transition is
taken) and an action (i.e., variable assignment, signal emission, signal reception, starting
of a process instance, or stopping of a process instance).

The revised version IF-2.0 [38] introduces constructs for real-time behaviour in a very
similar way to timed automata i.e., using clocks (cf. Definition 3.7) that can be used in
preconditions and that can be reset in actions. Furthermore, a transition between discrete
states also contains a tag that expresses whether the transition is urgent. The time domain
is dense.

The formal semantics are defined using two relations: first a relation defining the discrete
transitions in a single process, and a second relation, defined using the first relation, for
discrete transitions of one process among many and for time elapsing in all processes.

The Ir model is conceived as a pivot language in translation chains from semi-formal
models, such as UML and SDL, to different tools such as KRONOS (cf. Section 3.2.2) and
toolboxes such as CADP [63] to perform verification and simulation. Therefore, the syntax
and semantics of IF are designed to meet models as UML and SDL.

3.4.2 BIP

The Bip (Behaviour, Interaction, Priority) [11] model also supposes several concurrent
processes (called components). The central idea is to define specifications with a clear sep-
aration between three different levels [67]: First, behaviour of single components, second,
interaction between those components, and third, priorities that control the interactions.
Data can be defined in the form of local variables, where the available types are those of
the C programming language.

Each component contains several discrete states. Transitions between discrete states are
defined by a precondition, a label (called a port), and a variable update.

Communications between processes are defined using connectors, which can have the
form of either a rendezvous or of a broadcast. A rendezvous connector enables one, two,
or several components with a certain port each to synchronize. A broadcast connector
enables a single component (the emitter) with a certain port and an arbitrary set of other
components with certain ports (the receivers) to synchronize. A connector can also assign
local variables in the synchronizing components, possibly parameterized by local variables
of another synchronizing component.

Bi1p provides a modular structure: Instances of components can be grouped into com-
pounds, which themselves may also be part of another compound.

3.4. Intermediate models 39

Real-time behaviour can be defined for single components. Transitions in such components
may be defined as urgent. If no urgent transition is enabled, time may elapse (only on
a discrete domain). Hybrid variables can be defined in a timed component and therefore
change their values during the elapsing of time.

3.4.3 AltaRica

The Timed ALTARICA [45] model shares many properties with Ir-2.0 and Brp: Tt is also
based on a set of concurrent processes (called components) with local variables. Simple
data types (booleans, integers, and enumerations) are provided, as well as user-defined
types (using records and arrays). Components can be grouped (into nodes) to achieve
modularity. Synchronizations in ALTARICA correspond to the rendezvous communica-
tions of Bip. Priorities can be defined between transitions.

The real-time behaviour is implemented in a way similar to timed automata, using clocks,
clock constraints on transitions, and invariants on discrete states. The time domain is
dense.

In [45], a translation from Timed ALTARICA to timed automata in the UPPAAL dialect
is defined, thus enabling verification.

3.4.4 MoDeST

The MODEST (Modelling and Description Language for Stochastic Timed systems) [30]
is also based on a set of concurrent processes. These sequential processes are defined in
the style of high-level languages i.e., atomic actions such as communications and variable
assignments are composed by operators such as sequential composition and choice. With
this structure, MODEST is the only intermediate model presented here that is defined
without discrete states.

Moreover, MODEST stands out as having several features not provided in the other inter-
mediate models: The choice between different actions can be extended to a probabilistic
choice, exception handling can be used, and variables can be assigned nondeterministi-
cally. Real-time syntax is defined by clocks, clock constraints on actions, and a concept
of urgency that is similar to the invariant construct of timed automata. Communica-
tion between parallel processes is provided by synchronization on gates (for each gate,
a synchronization is defined among all processes using this gate) and by shared (global)
variables.

The semantic model defined for MODEST is a probablistic extension of the timed au-
tomata model.

40 Chapter 3. Overview and classification of formal models

3.4.5 Promela

The PROMELA (PROcess MEta LAnguage) [79] model is the input language for the model
checking tool SPIN, which checks formulas of the temporal logic LTL. The model general-
izes the automata model, by defining processes which can be instantiated instead of rigid
automata.

Although based on the graphical intuition of states and transitions between states, the
syntax of PROMELA is purely textual and similar to programming languages like C. The
standard syntax of PROMELA does not provide constructs that express real-time aspects.
The PROMELA dialect defined in [35] provides an extension with real-time constructs,
where the time domain used in this model is discrete.

3.4.6 NTIF

The NTIF (New Technology Intermediate Form) [61] model has been conceived to rep-
resent sequential processes handling complex data structures. NTIF has no constructs
expressing concurrency or real time, but those were intended for future work (and this
thesis should be considered as a part of such future work).

An NTIF process is an automaton containing a set of control states. Each state is associ-
ated with a statement called a multibranch transition. Such transitions are defined using
high-level standard control structures (such as deterministic and nondeterministic vari-
able assignments, if-then-else and case conditionals, nondeterministic choice, and while
loops) and communication events. This approach enables a representation of processes
that is more compact than in models using condition/action transitions (i.e., transitions
defined by a precondition and a communication action or an assignment).

A translation from NTIF to the IF model (cf. Section 3.4.1) has been defined. More
recently, NTIF has found industrial applications in the framework of the TOPCASED®
project led by AIRBUS.

3.4.7 Fiacre

The FIACRE (Format Intermédiaire pour les Architectures de Composants Répartis Em-
barqués) [17, 15] model is mainly based on the two models NTIF and V-COTRE. V-
COTRE [21] is also an intermediate model defined to compile higher-level specifications
into timed automata, time Petri nets, and transition systems.

A FIACRE process provides roughly the same constructs as an NTIF automaton, in partic-
ular the concept of discrete states associated with multibranch transitions. Several con-
current processes can be composed in a hierarchical structure (inherited from V-COTRE)
and communicate using synchronization vectors [6, 33], which enables synchronizations
on different gates among one, two, or several processes.

8http://www.topcased.org

3.5. Summary and observations 41

It is also in these synchronization vectors that real-time behaviour is implemented: Each
vector may define a time interval using an approach very similar to that of time Petri
nets (cf. Section 3.2.3), notably, reaching a limit of such an interval blocks the elapsing of
time. Note that timed constraints cannot be specified explicitely in sequential processes.

FIACRE is situated as a pivot element in translation chains. Translations into FIACRE have
been defined from the industrial models AADL and SDL, and translations from FIACRE
have been defined into the language LOTOS (cf. Section 3.3.3), which creates a connection
to the CADP [63] toolbox, and into the time Petri net dialect of the tool TINA [23] (cf.
Section 3.2.3).

Remark 3.1. [t should be noted that a separation line between graphical and intermediate
models 1s not easy to draw; it is clearly debatable whether some models listed here would
be better in Section 3.2.4 or wvice versa. As a rule of thumb, an intermediate model
corresponds to a graphical model that firstly is extended significantly with language features
borrowed from high-level languages and secondly provides a translation to one or several
tools based on graphical models for verification purposes. Detailed descriptions of such
approaches are given e.qg., in [37, 61].

3.5 Summary and observations

3.5.1 Possible approaches: a summary

In this section, we give an overview of the choices that can be made when defining a
language or a model expressing data, concurrency, and real time, based on the analysis
of the models presented in this chapter. This overview will be the basis for the design
choices that we will make in the next chapter.

Moreover, it will allow us to understand more precisely what exactly is meant by data, by
concurrency, and by real time, which we only described on a more intuitive level before
(cf. Section 1.1.2). It can be seen that design choices may have an impact on the syn