
c t i v i t y

te p o r

2010

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VASY

Validation of Systems

Rhône-Alpes

Project-Team VASY 1

Contents

1 Team 3

2 Overall Objectives 4

2.1 Overview . 4

2.2 Highlights . 4

3 Scientific Foundations 5

3.1 Models and Verification Techniques . 5

3.2 Languages and Compilation Techniques . 5

3.3 Implementation and Experimentation . 6

4 Application Domains 6

5 Software 7

5.1 The CADP Toolbox . 7

5.2 The TRAIAN Compiler . 10

6 New Results 10

6.1 Models and Verification Techniques . 10

6.1.1 The BCG Format and Libraries . 10

6.1.2 The OPEN/CÆSAR and CÆSAR SOLVE Libraries 11

6.1.3 The EVALUATOR Tool . 12

6.1.4 Compositional Verification Tools . 13

6.1.5 Performance Evaluation Tools . 14

6.1.6 Parallel and Distributed Verification Tools 15

6.1.7 Other Tool Developments . 15

6.2 Languages and Compilation Techniques . 17

6.2.1 Compilation of LOTOS . 17

6.2.2 Compilation of LOTOS NT . 18

6.2.3 Source-Level Translations between Concurrent Languages 19

6.3 Case Studies and Practical Applications . 21

6.3.1 Mutual Exclusion Protocols . 21

6.3.2 The FAME2 Architecture . 22

6.3.3 The xSTream Architecture . 22

6.3.4 The Platform 2012 Architecture . 23

6.3.5 The Airbus Avionics Case Studies . 25

6.3.6 The Synergy Reconfiguration Protocol 26

6.3.7 Queuing Networks . 27

6.3.8 Other Case Studies . 28

7 Contracts and Grants with Industry 29

7.1 The EC-MOAN Project . 29

7.2 The Multival Project . 29

7.3 The Topcased Project . 30

2 Activity report INRIA 2010

8 Other Grants and Activities 30
8.1 National Collaborations . 30
8.2 European Collaborations . 31
8.3 International Collaborations . 31
8.4 Visits and Exchanges . 31

9 Dissemination 32
9.1 Software Dissemination and Internet Visibility 32
9.2 Program Committees . 33
9.3 Lectures and Invited Conferences . 34
9.4 Teaching Activities . 35
9.5 Miscellaneous Activities . 35

10 Bibliography 36

Project-Team VASY 3

Vasy is an Inria project team that is also a team of the Lig laboratory, a joint research unit of

Centre National de Recherche Scientifique, Grenoble Inp, Université Joseph Fourier, and Université

Pierre Mendès-France.

1 Team

Team Leader

Hubert Garavel [DR2 Inria, Team Leader]

Administrative Assistant

Helen Pouchot

Inria Staff

Frédéric Lang [CR1 Inria]

Radu Mateescu [CR1 Inria]

Wendelin Serwe [CR1 Inria]

Gwen Salaün [MCF Grenoble Inp]

Software Engineers

Iker Bellicot

Simon Bouland

Yann Genevois

Rémi Hérilier

Alain Kaufmann [until November 30, 2010]

Christine McKinty [since September 1st, 2010]

Vincent Powazny

Damien Thivolle [since December 1st, 2010]

PhD Students

Nicolas Coste [STMicroelectronics, Cifre grant, until January 31, 2010]

Damien Thivolle [Mesr grant, until November 30, 2010]

Meriem Zidouni [Bull, Cifre grant, until February 28, 2010]

4 Activity report INRIA 2010

External Collaborators

Holger Hermanns [Saarland University, until November 30, 2010]

Etienne Lantreibecq [STMicroelectronics]

2 Overall Objectives

2.1 Overview

Created on January 1st, 2000, the Vasy project focuses on formal methods for the design of
reliable systems.

We are interested in any system (hardware, software, telecommunication) that exhibits asyn-
chronous concurrency, i.e., any system whose behavior can be modelled as a set of parallel
processes governed by interleaving semantics.

For the design of reliable systems, we advocate the use of formal description techniques to-
gether with software tools for simulation, rapid prototyping, verification, and test generation.

Among all existing verification approaches, we focus on enumerative verification (also known
as explicit state verification) techniques. Although less general than theorem proving, these
techniques enable an automatic, cost-efficient detection of design errors in complex systems.

Our research combines two main directions in formal methods, the model-based and the
language-based approaches:

• Models provide mathematical representations for parallel programs and related verifica-
tion problems. Examples of models are automata, networks of communicating automata,
Petri nets, binary decision diagrams, boolean equation systems, etc. From a theoret-
ical point of view, research on models seeks for general results, independently of any
particular description language.

• In practice, models are often too elementary to describe complex systems directly (this
would be tedious and error-prone). Higher level formalisms are needed for this task, as
well as compilers that translate high level descriptions into models suitable for verifica-
tion algorithms.

To verify complex systems, we believe that model issues and language issues should be mas-
tered equally.

2.2 Highlights

The 2010 evaluation by the French national agency for the evaluation of research (Aeres)
awarded Vasy the highest possible rating, A+, for the work accomplished in the past four
years. The report noted the high quality of publications, a good level of visibility and recog-
nition internationally, and a real success in technology transfer.

Project-Team VASY 5

3 Scientific Foundations

3.1 Models and Verification Techniques

By verification, we mean comparison — at some abstraction level — of a complex system
against a set of properties characterizing the intended functioning of the system (for instance,
deadlock freedom, mutual exclusion, fairness, etc.).

Most of the verification algorithms we develop are based on the labeled transition systems (or,
simply, automata or graphs) model, which consists of a set of states, an initial state, and a
transition relation between states. This model is often generated automatically from high-level
descriptions of the system under study, then compared against the system properties using
various decision procedures. Depending on the formalism used to express the properties, two
approaches are possible:

• Behavioral properties express the intended functioning of the system in the form of
automata (or higher level descriptions, which are then translated into automata). In
this case, the natural approach to verification is equivalence checking, which consists in
comparing the system model and its properties (both represented as automata) modulo
some equivalence or preorder relation. We develop equivalence checking tools that com-
pare and minimize automata modulo various equivalence and preorder relations; some
of these tools also apply to stochastic and probabilistic models (such as Markov chains).

• Logical properties express the intended functioning of the system in the form of temporal
logic formulas. In this case, the natural approach to verification is model checking, which
consists in deciding whether or not the system model satisfies the logical properties. We
develop model checking tools for a powerful form of temporal logic, the modal µ-calculus,
which we extend with typed variables and expressions so as to express predicates over
the data contained in the model. This extension (the practical usefulness of which has
been highlighted in many examples) provides for properties that could not be expressed
in the standard µ-calculus (for instance, the fact that the value of a given variable is
always increasing along any execution path).

Although these techniques are efficient and automated, their main limitation is the state
explosion problem, which occurs when models are too large to fit in computer memory. We
provide software technologies (see § 5.1) for handling models in two complementary ways:

• Small models can be represented explicitly, by storing all their states and transitions in
memory (exhaustive verification).

• Larger models are represented implicitly, by exploring only the model states and transi-
tions needed for the verification (on the fly verification).

3.2 Languages and Compilation Techniques

Our research focuses on high level languages with executable and formal semantics. The former
requirement stems from enumerative verification, which relies on the efficient execution of high-
level descriptions. The latter requirement states that languages lacking formal semantics are

6 Activity report INRIA 2010

not suitable for safety critical systems (as language ambiguities usually lead to interpretation
divergences between designers and implementors). Moreover, enumerative techniques are not
always sufficient to establish the correctness of an infinite system (they only deal with finite
abstractions); one might need theorem proving techniques, which only apply to languages with
formal semantics.

We are working on several languages with the above properties:

• Lotos is an international standard for protocol description (Iso/Iec standard
8807:1989), which combines the concepts of process algebras (in particular Ccs and
Csp) and algebraic abstract data types. Thus, Lotos can describe both asynchronous
concurrent processes and complex data structures. We use Lotos for various indus-
trial case studies and we develop Lotos compilers, which are part of the Cadp toolbox
(see § 5.1).

• We contributed to the definition of E-Lotos (Enhanced-Lotos, Iso/Iec standard
15437:2001), a deep revision of Lotos, which tries to provide a greater expressive-
ness (for instance, by introducing quantitative time to describe systems with real-time
constraints) together with a better user friendliness. Our contributions to E-Lotos are
available on the Web (see http://www.inrialpes.fr/vasy/elotos).

• We are also working on an E-Lotos variant, named Lotos NT (Lotos New Technol-
ogy) [8, 12], in which we can experiment with new ideas more freely than in the con-
strained framework of an international standard. Like E-Lotos, Lotos NT consists of
three parts: a data part, which enables the description of data types and functions, a
process part, which extends the Lotos process algebra with new constructs such as ex-
ceptions and quantitative time, and modules, which provide for structure and genericity.
The languages differ in that Lotos NT combines imperative and functional features,
and is also simpler than E-Lotos in some respects (static typing, operator overloading,
arrays), which should make it easier to implement. We are developing several tools for
Lotos NT: a prototype compiler named Traian (see § 5.2), a translator from (a sub-
set of) Lotos NT to Lotos (see § 6.2.2), and an intermediate semantic model named
Ntif (New Technology Intermediate Form) [5].

3.3 Implementation and Experimentation

As far as possible, we validate our results by developing tools that we apply to complex (often
industrial) case studies. Such a systematic confrontation of implementation and experimen-
tation issues is central to our research.

4 Application Domains

The theoretical framework we use (automata, process algebras, bisimulations, temporal logics,
etc.) and the software tools we develop are general enough to fit the needs of many application
domains. They are applicable to virtually any system or protocol that consists of distributed
agents communicating by asynchronous messages. The list of recent case studies performed
with the Cadp toolbox (see in particular § 6.3) illustrates the diversity of applications:

Project-Team VASY 7

• Hardware architectures: asynchronous circuits, multiprocessor architectures, systems
on chip, networks on chip, bus arbitration protocols, cache coherency protocols, hard-
ware/software codesign;

• Databases: transaction protocols, distributed knowledge bases, stock management;

• Consumer electronics: home networking, video on-demand;

• Security protocols: authentication, electronic transactions, cryptographic key distribu-
tion;

• Embedded systems: smart-card applications, air traffic control, avionic systems;

• Distributed systems: virtual shared memory, distributed file systems, election algorithms,
dynamic reconfiguration algorithms, fault tolerance algorithms;

• Telecommunications: high-speed networks, network management, mobile telephony, fea-
ture interaction detection;

• Human-machine interaction: graphical interfaces, biomedical data visualization;

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic path-
ways.

5 Software

5.1 The CADP Toolbox

Participants: Iker Bellicot, Simon Bouland, Hubert Garavel [contact person], Yann
Genevois, Rémi Hérilier, Alain Kaufmann, Frédéric Lang, Radu Mateescu, Christine
McKinty, Wendelin Serwe, Damien Thivolle.

We maintain and enhance Cadp (Construction and Analysis of Distributed Processes – for-
merly known as Cæsar/Aldébaran Development Package) [2], a toolbox for protocols and
distributed systems engineering (see http://www.inrialpes.fr/vasy/cadp). In this toolbox,
we develop and maintain the following tools:

• Cæsar.adt [10] is a compiler that translates Lotos abstract data types into C types
and C functions. The translation involves pattern-matching compiling techniques and
automatic recognition of usual types (integers, enumerations, tuples, etc.), which are
implemented optimally.

• Cæsar [7] is a compiler that translates Lotos processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purpose). The trans-
lation is done using several intermediate steps, among which the construction of a Petri
net extended with typed variables, data handling features, and atomic transitions.

• Open/Cæsar [11] is a generic software environment for developing tools that explore
graphs on the fly (for instance, simulation, verification, and test generation tools). Such

8 Activity report INRIA 2010

tools can be developed independently of any particular high level language. In this
respect, Open/Cæsar plays a central role in Cadp by connecting language-oriented
tools with model-oriented tools. Open/Cæsar consists of a set of 16 code libraries with
their programming interfaces, such as:

– Caesar Graph, which provides the programming interface for graph exploration,

– Caesar Hash, which contains several hash functions,

– Caesar Solve, which resolves boolean equation systems on the fly,

– Caesar Stack, which implements stacks for depth-first search exploration, and

– Caesar Table, which handles tables of states, transitions, labels, etc.

A number of tools have been developed within the Open/Cæsar environment, among
which:

– Bisimulator, which checks bisimulation equivalences and preorders,

– Cunctator, which performs on-the-fly steady-state simulation of continuous-time
Markov chains,

– Determinator, which eliminates stochastic nondeterminism in normal, proba-
bilistic, or stochastic systems,

– Distributor, which generates the graph of reachable states using several ma-
chines,

– Evaluator, which evaluates regular alternation-free µ-calculus formulas,

– Executor, which performs random execution,

– Exhibitor, which searches for execution sequences matching a given regular ex-
pression,

– Generator, which constructs the graph of reachable states,

– Projector, which computes abstractions of communicating systems,

– Reductor, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– Simulator, Xsimulator, and Ocis, which allow interactive simulation, and

– Terminator, which searches for deadlock states.

• Bcg (Binary Coded Graphs) is both a file format for storing very large graphs on disk
(using efficient compression techniques) and a software environment for handling this
format. Bcg also plays a key role in Cadp as many tools rely on this format for
their inputs/outputs. The Bcg environment consists of various libraries with their
programming interfaces, and of several tools, such as:

– Bcg Draw, which builds a two-dimensional view of a graph,

– Bcg Edit, which allows to modify interactively the graph layout produced by
Bcg Draw,

– Bcg Graph, which generates various forms of practically useful graphs,

Project-Team VASY 9

– Bcg Info, which displays various statistical information about a graph,

– Bcg Io, which performs conversions between Bcg and many other graph formats,

– Bcg Labels, which hides and/or renames (using regular expressions) the transi-
tion labels of a graph,

– Bcg Merge, which gathers graph fragments obtained from distributed graph con-
struction,

– Bcg Min, which minimizes a graph modulo strong or branching equivalences (and
can also deal with probabilistic and stochastic systems),

– Bcg Steady, which performs steady-state numerical analysis of (extended)
continuous-time Markov chains,

– Bcg Transient, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

– Xtl (eXecutable Temporal Language), which is a high level, functional language
for programming exploration algorithms on Bcg graphs. Xtl provides primitives
to handle states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow to
specify in Xtl evaluation and diagnostic generation fixed point algorithms for usual
temporal logics (such as Hml [HM85], Ctl [CES86], Actl [DV90], etc.).

• The connection between explicit models (such as Bcg graphs) and implicit models (ex-
plored on the fly) is ensured by Open/Cæsar-compliant compilers, e.g.:

– Bcg Open, for models represented as Bcg graphs,

– Cæsar.open, for models expressed as Lotos descriptions,

– Exp.open, for models expressed as communicating automata,

– Fsp.Open, for models expressed as Fsp[MK06] descriptions,

– Lnt.Open, for models expressed as Lotos NT descriptions, and

– Seq.open, for models represented as sets of execution trace.

The Cadp toolbox also includes Tgv (Test Generation based on Verification), developed by
the Verimag laboratory (Grenoble) and the Vertecs project team at Inria Rennes.

The Cadp tools are well-integrated and can be accessed easily using either the Eucalyptus
graphical interface or the Svl [4] scripting language. Both Eucalyptus and Svl provide
users with an easy and uniform access to the Cadp tools by performing file format conversions
automatically whenever needed and by supplying appropriate command-line options as the
tools are invoked.

[HM85] M. Hennessy, R. Milner, “Algebraic Laws for Nondeterminism and Concurrency”, Journal of
the ACM 32, 1985, p. 137–161.

[CES86] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications”, ACM Transactions on Programming Languages
and Systems 8, 2, April 1986, p. 244–263.

[DV90] R. De Nicola, F. W. Vaandrager, Action versus State Based Logics for Transition Systems,
Lecture Notes in Computer Science, 469, Springer Verlag, 1990, p. 407–419.

[MK06] J. Magee, J. Kramer, Concurrency: State Models and Java Programs, edition 2006, Wiley,
April 2006.

10 Activity report INRIA 2010

5.2 The TRAIAN Compiler

Participants: Hubert Garavel [contact person], Frédéric Lang.

We develop a compiler named Traian for translating descriptions written in the Lotos NT
language (see § 3.2) into C programs, which will be used for simulation, rapid prototyping,
verification, and testing.

The current version of Traian performs lexical analysis, syntactic analysis, abstract syntax
tree construction, static semantics analysis, and C code generation for Lotos NT types and
functions.

Although this version of Traian is still incomplete (it does not handle Lotos NT processes),
it already has useful applications in compiler construction [3]. The recent compilers developed
by the Vasy project team — including Aal, Chp2Lotos (see § 6.2.3), Evaluator 4.0
(see § 6.1.7), Exp.open 2.0 (see § 6.1.4), Fsp2Lotos (see § 6.2.3), Lnt2Lotos (see § 6.2.2),
Ntif (see § 3.2), and Svl (see § 6.1.4) — all contain a large amount of Lotos NT code,
which is then translated into C code by Traian.

Our approach consists in using the Syntax tool (developed at Inria Rocquencourt) for lexical
and syntactic analysis together with Lotos NT for semantical aspects, in particular the
definition, construction, and traversal of abstract trees. Some involved parts of the compiler
can also be written directly in C if necessary. The combined use of Syntax, Lotos NT,
and Traian proves to be satisfactory, in terms of both the rapidity of development and the
quality of the resulting compilers.

The Traian compiler can be freely downloaded from the Vasy Web site (see http://www.

inrialpes.fr/vasy/traian).

6 New Results

6.1 Models and Verification Techniques

6.1.1 The BCG Format and Libraries

Participants: Hubert Garavel, Alain Kaufmann, Frédéric Lang, Radu Mateescu, Wendelin
Serwe.

Bcg (Binary-Coded Graphs) is both a file format for the representation of explicit graphs and
a collection of libraries and programs dealing with this format. Version 1.0 of the Bcg format
was recently replaced by version 1.1, which can exploit the capabilities of 64-bit addressing.

In 2010, we continued to enhance the Bcg libraries to support explicit graphs larger than a
billion states, as follows:

• A bug has been corrected in the Bcg Edit tool, which could crash in some situations.

• A bug has been corrected in the Bcg Io tool, which translated correct Bcg 1.0 files to
incorrect Bcg 1.1 files.

Project-Team VASY 11

• We made several optimizations in Bcg Info, significantly improving time performance.

• The dynamic C library automatically generated with each Bcg file was made more
robust to file moves, calls from other directories, and the presence of special characters
in the Bcg file names.

• The C code generated for graphs containing many labels has been improved. The time
needed to read a Bcg graph containing more than 600, 000 distinct labels has been
divided by two.

In addition, we continued our research on the development of a new version 2.0 of the Bcg
format that will further increase the compactness of the format. We implemented a multi-
threaded approach for data compression and experimented with many different compression
algorithms through extensive testing using the high-performance computing facilities provided
by Inria.

6.1.2 The OPEN/CÆSAR and CÆSAR SOLVE Libraries

Participants: Iker Bellicot, Hubert Garavel, Yann Genevois, Radu Mateescu, Wendelin
Serwe.

Open/Cæsar is an extensible, modular, language-independent software framework for ex-
ploring implicit graphs. This key component of Cadp is used to build simulation, execution,
verification, and test generation tools.

In 2010, we optimized the internal memory management of the Open/Cæsar Table 1 to
reduce memory usage, and fixed several bugs in related functions. We also improved the error
messages issued by the Open/Cæsar shell scripts if a file is missing.

Cæsar Solve is a generic software library based on Open/Cæsar for solving boolean equa-
tion systems of alternation depth 1 (i.e., without mutual recursion between minimal and
maximal fixed point equations) on the fly. This library is at the core of several Cadp verifica-
tion tools, namely the equivalence checker Bisimulator, the minimization tool Reductor
and the model checkers Evaluator 3.5 and 4.0. The resolution method is based on boolean
graphs, which provide an intuitive representation of dependencies between boolean variables,
and which are handled implicitly, in a way similar to the Open/Cæsar interface [11].

In 2010, we corrected a bug in the Cæsar Solve library.

The Bes Solve tool (4, 000 lines of C code) enables comparison and crosschecking of the
various resolution algorithms provided by the Cæsar Solve library, as well as a prototype
distributed resolution algorithm. The tool constructs a boolean equation system in memory,
either by reading it from a (possibly compressed) text file, or by generating it randomly
according to a random parameter configuration file. Then, a boolean variable defined in some
equation block of the boolean system can be solved by invoking a resolution algorithm.

In 2010, we tested Bes Solve intensively on several thousands of boolean equation systems.
We corrected several bugs in the prototype distributed resolution algorithm, and we enhanced
Bes Solve with the possibility of solving a list of boolean variables instead of a single one, and
of generating diagnostic files for each of these variables. This enables testing of the repeated

12 Activity report INRIA 2010

execution of boolean resolution algorithms on various variables of the same boolean equation
system.

6.1.3 The EVALUATOR Tool

Participants: Hubert Garavel, Yann Genevois, Alain Kaufmann, Radu Mateescu.

Evaluator is a model checker that evaluates a temporal logic property on a graph represented
implicitly using the Open/Cæsar environment. In version 3.5 of Evaluator, properties are
described in regular alternation-free µ-calculus, a logic built from boolean operators, possibility
and necessity modalities containing regular expressions denoting transition sequences, and
fixed point operators without mutual recursion between least and greatest fixed points. The
input language of the tool also enables the user to define parameterized temporal operators
and to group them into separate libraries. Evaluator works on the fly, meaning that only
those parts of the implicit graph relevant to verification are explored. The model checking
problem is reformulated in terms of solving a boolean equation system. A useful feature of
Evaluator is the generation of diagnostics (examples and counterexamples) explaining why
a formula is true or false.

In 2010, we continued the development of the Evaluator 4.0 prototype tool (4, 800 lines of
Syntax code, 38, 700 lines of Lotos NT code, and 9, 900 lines of C code), which accepts as
input specifications written in Mcl (Model Checking Language), an extension of the regular
alternation-free µ-calculus of Evaluator 3.5 with data-handling and fairness operators.

We improved the rigour of the testing for Evaluator 3.5 and 4.0, creating a test base of
10,000 Bcg graphs and 3,800 Mcl formulas. The combinations of Mcl formula and Bcg
graph tested are no longer static: instead, every Mcl formula is tested on 10 Bcg graphs
that are selected as the most suitable because they contain labels that correspond to action
predicates in the Mcl formula. This enhanced testing revealed several errors, which have
been corrected.

In addition to these bug fixes, we added several enhancements to Evaluator 4.0:

• We improved the handling of weak (possibility and necessity) modalities containing
regular formulas, which characterize sequences of arbitrary length and whose visible
actions can be interspersed with subsequences of zero or more invisible transitions. These
modalities generalize their counterparts proposed by Stirling in the observational modal
µ-calculus, which contained only action formulas and thus were able to characterize only
sequences containing a single visible transition, possibly preceded and followed by zero or
more invisible transitions. The translation of weak modalities into fixed point equations
was enhanced in order to reduce the number of equations, which increases in the same
proportion the efficiency of verification.

• The compilation of numerical expressions (involving the natural, integer, and real data
types) was enhanced by implementing implicit type conversions in order to simplify the
Mcl programs by reducing the number of places where the “of” operator was necessary
to eliminate typing ambiguities.

• The back-end of Evaluator 3.5 was incorporated into Evaluator 4.0 and is invoked
for evaluating temporal formulas specified using the dataless fragment of Mcl.

Project-Team VASY 13

• The manual page of Evaluator 4.0 (49 pages) was completed.

Mcl and Evaluator 4.0 were used successfully for analyzing mutual exclusion proto-
cols [24] (see § 6.3.1), communication protocols (see § 6.3.5), and π-calculus specifications [23]
(see § 6.2.3).

6.1.4 Compositional Verification Tools

Participants: Frédéric Lang, Radu Mateescu.

The Cadp toolbox contains various tools dedicated to compositional verification, among which
Exp.open 2.0, Projector 3.0, Bcg Min, and Svl play a central role. Exp.open 2.0 ex-
plores on the fly the graph corresponding to a network of communicating automata (repre-
sented as a set of Bcg files). Projector 3.0 implements behaviour abstraction [GSL96,KM97]

by taking into account interface constraints. Bcg Min minimizes behaviour graphs modulo
strong or branching bisimulation and their stochastic extensions. Svl (Script Verification
Language) is both a high level language for expressing complex verification scenarios and a
compiler dedicated to this language.

In 2010, we corrected a few bugs in some of these tools and we enhanced them as follows:

• Continuing our effort to connect high-level languages to Cadp (§ 6.2), we extended the
Svl language and compiler to support Lotos NT and Fsp specifications, which can
now be used within Svl scripts in the same way as Lotos specifications.

• In collaboration with Pepijn Crouzen (Saarland University, Germany), we have devel-
oped a new heuristic, named smart reduction, to generate the Bcg graph of an Exp.open
network compositionally, by automatically choosing an appropriate ordering of graph
compositions. This heuristic iteratively selects a subset of the Bcg graphs of the net-
work, composes them, hides as many labels as possible, and minimizes the resulting
composition, until all graphs of the network have been composed. The choice of the
Bcg graphs to be composed at each step relies on metrics that approximate (1) the
proportion of transitions of the composition that can be hidden and (2) the degree of
interleaving of the composition.

We implemented smart reduction in Cadp. The choice of Bcg graphs to be composed
at each step is computed by Exp.open and a new operator named “smart reduction”
has been added to Svl. We evaluated smart reduction on a set of networks. These
experiments show that smart reduction is often more efficient than the leaf reduction
and node reduction heuristics already available in Svl.

[GSL96] S. Graf, B. Steffen, G. Lüttgen, “Compositional Minimization of Finite State Systems using
Interface Specifications”, Formal Aspects of Computation 8, 5, September 1996, p. 607–616.

[KM97] J.-P. Krimm, L. Mounier, “Compositional State Space Generation from LOTOS Programs”,
in : Proceedings of TACAS’97 Tools and Algorithms for the Construction and Analysis of Systems
(University of Twente, Enschede, The Netherlands), E. Brinksma (editor), Lecture Notes in Com-
puter Science, 1217, Springer Verlag, Berlin, April 1997. Extended version with proofs available
as Research Report VERIMAG RR97-01.

14 Activity report INRIA 2010

• We continued to implement the Bcg Min 2.0 tool, a new version of Bcg Min that uses
a partition refinement algorithm based on state signatures [BO05].

We corrected 3 bugs in Bcg Min and we identified a source of inefficiency in the case
of stochastic and probabilistic bisimulations, due to frequent calls to an Open/Cæsar
function that was usually called only once in other contexts. Improving this function
reduced execution time by a factor ranging from 2 to 11 depending on the graph size
and equivalence relation.

We then tested and evaluated the performance of Bcg Min 2.0 on more than 8,000
Bcg graphs. A performance comparison between Bcg Min 1.0 and Bcg Min 2.0 gave
us the following figures: For strong and branching bisimulations, Bcg Min 2.0 runs
20 times faster and uses 1.3 times less memory than Bcg Min 1.0. For the stochastic
and probabilistic variants of strong and branching bisimulations, Bcg Min 2.0 runs 578
times faster and uses 4 times less memory than Bcg Min 1.0; for particular Bcg graphs,
Bcg Min 2.0 runs up to 5,800 times faster than Bcg Min 1.0.

We used Bcg Min 2.0 to reduce Bcg graphs that could not be reduced in reasonable
time using Bcg Min 1.0. A Bcg graph (698, 000 states, 3.5 million transitions) provided
by STMicroelectronics was reduced for probabilistic branching bisimulation in less
than 20 minutes, using 71 MB memory. Another Bcg graph (459 million states, 3
billion transitions) provided by Cea/Leti was reduced for branching bisimulation in 3
hours, using 60 GB memory. For the largest Bcg graph minimized so far (841 million
states, 3.5 billion transitions), strong bisimulation reduction took less than 8 hours and
83 GB memory and branching bisimulation reduction took less than 8 hours and 132
GB memory.

Bcg Min 2.0 became part of Cadp in March 2010, replacing Bcg Min 1.0.

6.1.5 Performance Evaluation Tools

Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu.

In addition to its verification capabilities, the Cadp toolbox contains several tools dedicated
to performance evaluation, namely Bcg Min, Bcg Steady, Bcg Transient, Cunctator
and Determinator. In contrast to most Cadp tools that operate on labeled transition
systems, these tools operate on probabilistic/stochastic models derived from discrete-time
and continuous-time Markov chains.

In 2010, we corrected a bug in the Bcg Steady and Bcg Transient tools, so that the
order of columns in output is preserved. This means that in a series of experiments that
invoke Bcg Steady and Bcg Transient, the order of throughputs now remains the same.

We continued working on the Cunctator tool added to Cadp in 2009 (1, 700 lines of C
code), which performs on-the-fly steady-state simulation of continuous-time Markov chains.
In addition to correcting a bug that occasionally caused erroneous display of the results on
64-bit systems, we enhanced Cunctator with two new options enabling the user to choose
between four different random number generators (instead of only one generator available

[BO05] S. Blom, S. Orzan, “Distributed State Space Minimization”, Springer International Journal on
Software Tools for Technology Transfer (STTT) 7, 3, 2005, p. 280–291.

Project-Team VASY 15

previously) and to specify that a given number of states are stored in an internal cache in
order to speed up simulation by avoiding the recomputation of certain sequences of internal
transitions.

6.1.6 Parallel and Distributed Verification Tools

Participants: Hubert Garavel, Rémi Hérilier, Radu Mateescu.

Distributor performs exhaustive reachability analysis and generates the labelled transition
system corresponding to a Bcg graph, Lotos program, composition expression, Fsp program,
Lotos NT program, or sequence file. Additionally, this program can generate a reduced
labelled transition system by applying tau-compression or tau-confluence reductions on the
fly. Compared to Generator and Reductor, which are sequential programs executing on
a single machine, Distributor implements a distributed algorithm (derived from [6]) that
runs on several machines in a grid configuration. Each machine is used to generate and store
a part of the labelled transition system. This allows Distributor to exploit the computing
resources (memory and processors) provided by many machines.

In 2010:

• We ported Distributor, Bcg Merge, and the Caesar Network library used by
distributed Cadp tools to the 64-bit platforms that support Cadp.

• We fixed a small number of bugs in these tools, as well as in the Caesar Network
network communication library on which they are built. We deactivated label parsing
by the Distributor (not visible to end users), thereby improving processing time. We
added options to enable or disable label parsing when using Bcg Merge. We also fixed
a bug in the Cpu usage displayed by the real-time monitor of Distributor.

6.1.7 Other Tool Developments

Participants: Hubert Garavel, Yann Genevois, Rémi Hérilier, Frédéric Lang, Radu
Mateescu, Wendelin Serwe, Damien Thivolle.

A key objective for the future of Cadp is the ability to support recent computing platforms.
This is a heavy task because of the number of tools in Cadp, their intrinsic complexity, and
their reliance upon third-party software. In 2010, we continued our efforts in this direction:

• We added support for Solaris Intel 32- and 64-bit systems, and for Mac OS X 10.6
(”Snow Leopard”) systems with 64-bit kernels.

• We made changes to handle the latest versions of Cygwin on Windows and recent
versions of the supported C compilers.

• We updated the installation framework and enhanced the installation documentation,
including information on using the new supported platforms.

16 Activity report INRIA 2010

• We made minor modifications to the Eucalyptus user interface and error messages.
We fixed a bug in the information displayed on certain recent Linux systems. We
modified the Eucalyptus tool, adding support for Fsp and Lotos NT specifications.
We enhanced support for Pdf, PostScript, zipped files, and files of unknown format.

• We enhanced support for the Emacs, XEmacs, and jEdit text editors in Cadp, notably
adding support for editing Lotos NT files.

Because of the growing usage of Cadp in industry and academia, we pursued our efforts to
master the software quality of Cadp and to improve performance:

• We continued building a comprehensive validation framework, based on non-regression
testing and semantical checking for the Cadp tools. This framework allows functional
testing of individual tools as well as integration testing for several Cadp tools used
together to perform complex verification scenarios on various computing platforms and
using various compilers.

• We developed a number of complex, internal tools, both to improve routine testing and
to facilitate support of Cadp users.

• We continued gathering large collections of benchmarks (Bcg graphs, boolean equation
systems, µ-calculus formulas, etc.) for testing the Cadp tools extensively. We defined a
set of rules for managing these benchmarks, making it easier to add new test patterns
automatically, and scripts to check test integrity.

• To facilitate contributions from users to our test suite, we improved the Contributor
tool, optimizing the code to improve performance, and enhancing the user interface.

• We implemented a comprehensive suite of scheduled automatic tests that run on the
Pipol platform of Inria. These tests, which check the 40 Cadp demos, validate changes
on all the supported architectures, and monitor performance changes.

Other research teams took advantage of the software components provided by Cadp (e.g., the
Bcg and Open/Cæsar environments) to build their own research software. We can mention
the following developments:

• the LTSmin toolset for manipulating LTSs [BvdPW10], developed at the University of
Twente (The Netherlands);

• the Tepawsn tool environment for the design of power-aware wireless sensor net-
works [MVL+09,MKVL10] developed at Xi’an Jiaotong-Liverpool University (China), Vy-
tautas Magnus University (Lithuania), and Solari (Hong Kong);

[BvdPW10] S. Blom, J. van de Pol, M. Weber, “LTSmin: Distributed and Symbolic Reachability”,
Computer Aided Verification; Lecture Notes in Computer Science 6174, 2010, p. 354–359.

[MVL+09] K. Man, T. Vallee, H. Leung, M. Mercaldi, J. van der Wulp, M. Donno, M. Pastrnak,
“TEPAWSN - A tool environment for Wireless Sensor Networks”, in : Proceedings of the 4th
IEEE Conference on Industrial Electronics and Applications, ICIEA 2009. (Xi’an, China), IEEE,
p. 730–733, May 2009.

[MKVL10] K. Man, T. Krilavicius, T. Vallee, H. Leung, “TEPAWSN: A Formal Analysis Tool for
Wireless Sensor Networks”, International Journal of Research and Reviews in Computer Science
1, 2010, p. 24–26.

Project-Team VASY 17

• the Alvis modelling language for design and verification of embedded systems [SMM10],
developed at the Agh University of Science and Technology (Krakow, Poland);

• the JTorX tool for model-based testing of software [Bel10], developed at the University
of Twente (The Netherlands);

• the Argos tool for analysing Uml descriptions [KSA10], developed at Graz University of
Technology (Austria);

• the Henshin language and toolset for transformation of Eclipse models [ABJ+10], devel-
oped at Cwi Amsterdam (The Netherlands) and the Technical Universities of Marburg
and Berlin (Germany);

• the TTool environment for system-level design space exploration [KAP10], developed at
Telecom ParisTech (Sophia Antipolis, France);

• the Clove and Mint tools for creating composed web and grid services [Tan10], developed
at the University of Stirling (Scotland, United Kingdom);

• the Kmelia tools for component-based systems [AAAL09], developed at the University of
Nantes (France).

6.2 Languages and Compilation Techniques

6.2.1 Compilation of LOTOS

Participants: Hubert Garavel, Wendelin Serwe.

The Cadp toolbox contains several tools dedicated to the Lotos language, namely the

[SMM10] M. Szpyrka, P. Matyasik, R. Mrówka, “Alvis approach to Hexor robot controller devel-
opment”, in : Proceedings of the 17th International Conference on Mixed Design of Integrated
Circuits and Systems (MIXDES) (Wroclaw, Poland), IEEE, p. 595–600, June 2010.

[Bel10] A. Belinfante, “JTorX: A tool for on-line model-driven test derivation and execution”, in :
Tools and Algorithms for the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010 (Paphos, Cyprus), Lecture Notes in Computer Science, 6015, Springer Verlag, p. 266–
270, March 2010.

[KSA10] W. Krenn, R. Schlick, B. K. Aichernig, “Mapping UML to Labeled Transition Systems for
Test-Case Generation”, Formal Methods for Components and Objects, Lecture Notes in Computer
Science 6286, 2010, p. 186–207.

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, “Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations”, Model Driven Engineering Languages
and Systems, Lecture Notes in Computer Science 6394, 2010, p. 121–135.

[KAP10] D. Knorreck, L. Apvrille, R. Pacalet, “Formal system-level design space exploration”, in :
10th Annual International Conference on New Technologies of Distributed Systems (NOTERE),
Tozeur, Tunisia, IEEE, p. 1–8, June 2010.

[Tan10] L. Tan, An Integrated Methodology for Creating Composed Web/Grid Services, PdD Thesis,
University of Stirling, Scotland, UK, September 2010.

[AAAL09] P. Andre, G. Ardourel, C. Attiogbé, A. Lanoix, “Using Assertions to Enhance the Correct-
ness of Kmelia Components and their Assemblies”, in : 6th International Workshop on Formal
Aspects of Component Software (FACS 2009), Eindhoven, The Netherlands, 263, Elsevier, p. 5–30,
October 2009.

18 Activity report INRIA 2010

Cæsar.adt compiler [10] for the data type part of Lotos, the Cæsar compiler [7] for the
process part of Lotos, and the Cæsar.indent pretty-printer.

In 2010, in addition to fixing seven bugs in the Cæsar and Cæsar.adt compilers, we improved
the Lotos dedicated tools of Cadp as follows:

• We added a means to enable a user to indicate whether values of a given sort are “canoni-
cal” and will be stored automatically in a hash table the maximal size of which is specified
by the user. We added further checks to detect uncanonical sorts in Cæsar.adt, with
informative messages when such sorts are detected, enabling the user to modify these
sorts to make them canonical so they can be stored in hash tables.

• We modified the string management library so that strings can now be stored in hash
tables. This means it is now possible to model check programs that manipulate variable-
length strings. We also fixed a bug in this library.

• We added a new option to Cæsar and Cæsar.adt, which can be used to print list
types using the usual user-friendly notation.

• The standard definition of the Lotos language considers “i” or “I” as a reserved key-
word denoting the internal gate and forbids its use elsewhere. The error messages issued
by Cæsar and Cæsar.adt when “i” is used incorrectly have been improved. We re-
laxed the rules for using “i” as a type, sort, operation, process, variable, or specification
identifier. A new option can be used to instruct Cæsar and Cæsar.adt to apply the
Lotos standard strictly, rather than the new relaxed rules.

• To facilitate evolution, we merged the code bases for Cæsar 6.3 and Cæsar 7.1, which
had diverged over time.

6.2.2 Compilation of LOTOS NT

Participants: Hubert Garavel, Rémi Hérilier, Frédéric Lang, Christine McKinty, Vincent
Powazny, Wendelin Serwe.

Regarding the Lotos NT language — a variant of E-Lotos created by the Vasy project
team — we worked along two directions:

• We continued enhancing the Traian compiler (see § 5.2), which generates C code from
Lotos NT data type and function definitions. Traian is distributed on the Internet
(see § 9.1) and used intensively within the Vasy project team as a development tool for
compiler construction [3].

In 2010, Traian was essentially in maintenance mode. We did, however, correct one
bug and we ported the related shell scripts to add support for the new Solaris Intel 32-
and 64-bit architectures.

• The Lnt2Lotos and Lpp tools convert Lotos NT code to Lotos, thus allowing the
use of Cadp to verify Lotos NT descriptions. This tool suite has been used successfully
for many different systems (see § 6.3.1, § 6.3.2, § 6.3.4, § 6.3.5, § 6.3.6, and § 6.3.7).

Project-Team VASY 19

In 2010, the Lnt2Lotos tool was also enhanced significantly, leading to a new stable
version, 5.1, which was incorporated into Cadp in January 2010. The enhancements
include:

– Several changes have been made to the treatment of infix functions and construc-
tors.

– A new option has been added to Lnt2Lotos and Lnt.Open to store all the
character strings in a hash table.

– The “Lnt v1” library was enriched with new functions for manipulating strings
and with support for real numbers in floating point notation.

– Important enhancements have been made to enable Lnt2Lotos to handle external
C code that is provided by the user.

– Support for lists, sets, and ordered lists has been improved.

– Changes were made in the syntax of Lotos NT patterns and value expressions,
avoiding syntactic ambiguities, and fixing a bug regarding unary operators used
without parentheses.

– Support for multi-module compilation was added.

– Several improvements were made to the generated Lotos code, and the error
messages and warnings issued in the case of a serious syntax error in the source
Lotos NT code were improved. The test suite for Lnt2Lotos was improved, and
many new tests were added.

– Major improvements were made to the Lnt2Lotos Reference Manual, providing
new information as well as clarifications and improvements to the existing informa-
tion.

We also developed Lnt.Open, a shell script that automates the conversion of Lotos NT
programs to Lotos code and provides a connection between Lnt2Lotos and the
Open/Cæsar environment. Lnt.Open takes as input the principal module of a
Lotos NT specification and an Open/Cæsar application program. Lnt.Open first
translates the complete Lotos NT specification (i.e., the principal module and all in-
cluded modules) into Lotos by calling Lpp and Lnt2Lotos, then compiles the gen-
erated Lotos specification by calling Cæsar.adt and Cæsar, and finally invokes the
Open/Cæsar application program. Lnt.Open is now the recommended tool for using
Lotos NT specifications in conjunction with Cadp.

6.2.3 Source-Level Translations between Concurrent Languages

Participants: Simon Bouland, Hubert Garavel, Rémi Hérilier, Frédéric Lang, Radu
Mateescu, Gwen Salaün, Wendelin Serwe, Damien Thivolle.

Although process algebras are, from a technical point of view, the best formalism to describe
concurrent systems, they are not used as widely as they could be [13]. Besides the steep
learning curve of process algebras, which is traditionally mentioned as the main reason for this
situation, it seems also that the process algebra community scattered its efforts by developing
too many languages, similar in concept but incompatible in practice. Even the advent of two

20 Activity report INRIA 2010

international standards, such as Lotos (in 1989) and E-Lotos (in 2001), did not remedy
this fragmentation. To address this problem, we started investigating source-level translators
from various process algebras into Lotos or Lotos NT, so as to widen the applicability of
the Cadp tools.

In 2010, in addition to the Lnt.Open tool suite (see § 6.2.2), we worked on the following
translators:

• We continued to enhance Fsp.Open, which provides a transparent interface between
Fsp and the Open/Cæsar environment. This tool first invokes Fsp2Lotos and then
Exp.open 2.0 on the generated network of Ltss. We added support for Fsp files to
Eucalyptus. We fixed a bug in Fsp.Open that caused premature deletion of certain
files when invoking Ocis or Xsimulator. We fixed a bug in Fsp2Lotos that caused
a syntax error if the first character of the Fsp input filename was not a letter. We
added two options to Fsp.Open to control the types of messages that are displayed.
We also collected new examples of Fsp code to enhance our test suite, organized into a
package now containing 775 examples. An article on Fsp2Lotos was published in an
international journal [18].

• We continued our work on the Flac tool, which translates a Fiacre program into a
Lotos program automatically, for verification using Cadp. In 2010, 5 bugs reported
by users of Flac were corrected. Those corrections led to revisions 66 to 70 of the
Flac code, which is available on the development forge dedicated to Fiacre compilers1.
We collected new examples of Fiacre code to enhance our test suite, organized into a
package now containing 73 examples. We also wrote an 8-page document explaining how
each Fiacre construct (type, statement, process, component, etc.) can be translated
into the Lotos NT language.

• Our study of avionics protocols (see § 6.3.5) has shown the feasibility of a systematic
translation from Sdl to Lotos NT. To help users (e.g., Airbus) translating their own
Sdl specifications into Lotos NT, we have written a document describing translation
rules that can be applied systematically. This document is structured as a set of files,
each of which concerns a particular construct of Sdl (variables, literals, signals, pro-
cedures, etc.). Each file consists of two sections: the first section recalls the informal
semantics of the Sdl construct; the second section explains how this Sdl construct can
be expressed in Lotos NT.

• Bpel (Business Process Execution Language) [JE07] is a language inspired by the π-
calculus [Mil99] and standardized by the Oasis consortium (led by Ibm and Microsoft)
to describe the orchestrations of Web services. Bpel depends on other W3c standard
Xml-related languages: Xml Schema for data types, XPath for data expressions, and
Wsdl for declaring the interfaces (communications links and link functions) of a Web
service.

1http://gforge.enseeiht.fr/projects/fiacre-compil

[JE07] D. Jordan, J. Evdemon, “Web Services Business Process Execution Language Version 2.0”,
Oasis standard, OASIS, Billerica, Massachussets, April 2007.

[Mil99] R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University Press,
1999.

Project-Team VASY 21

Following interest expressed by research teams at Mit and the Polytechnic University of
Bucharest, we designed translation rules from Bpel to Lotos NT in order to formally
verify Bpel services with Cadp. We began to develop an automated translator.

In 2010, we drastically improved our translation. We formally defined the translation
rules we had sketched last year. In the process of doing so, we found inaccuracies
that we corrected. A better understanding of Bpel, Xml Schema, XPath, and Wsdl
enabled us to include many constructions that we had originally chosen to ignore. We
also improved the translation from Xml Schema to Lotos NT. We improved several
aspects of the translator, including the addition of a command-line interface.

• We considered the π-calculus [Mil99], a process algebra based on mobile communica-
tion. We proposed a general method for translating the finite control fragment of the
π-calculus (obtained by forbidding recursive invocations of an agent through parallel
composition operators) into Lotos NT. The mobile communication is encoded using
the data types of Lotos NT, each channel name being represented as a value of an enu-
merated data type. The binary synchronization of π-calculus is enforced by associating
a Lotos NT gate to each parallel composition operator present in the π-calculus spec-
ification and by tagging each synchronization with the unique identifiers of the sender
and receiver agents. The translation preserves the operational semantics by mapping
each transition of a π-calculus agent to a single transition of the resulting Lotos NT
term.

The translation was implemented in the Pic2Lnt tool (900 lines of Syntax code, 2, 300
lines of Lotos NT code, and 500 lines of C code), developed using the Syntax/Traian
technology. The tool was tested on 160 examples of π-calculus specifications, including
most of the examples provided in the Mobility Workbench distribution. This work led
to a publication in an international conference [23].

6.3 Case Studies and Practical Applications

6.3.1 Mutual Exclusion Protocols

Participants: Radu Mateescu, Wendelin Serwe.

Mutual exclusion protocols are an essential building block of concurrent systems to ensure
proper use of shared resources in the presence of concurrent accesses. Many variants of mu-
tual exclusion protocols exist for shared memory, such as Peterson’s or Dekker’s well-known
protocols. Although the functional correctness of these protocols has been studied extensively,
relatively little attention has been paid to their performance aspects.

In 2010, we considered a set of 23 mutual exclusion protocols for two processes with a shared
memory. We specified each protocol in Lotos NT, using a set of generic modules to describe
shared variables and the overall architecture (in total, 2, 700 lines of Lotos NT code). Then,
we compositionally added Markov delays modelling the latencies of read/write accesses on
shared variables, so as to obtain the Interactive Markov Chain (Imc) corresponding to each
protocol (up to 30, 000 states and 40, 000 transitions).

We verified functional properties using the same set of Mcl [14] formulas for each protocol
(in total, 300 lines of Mcl). The mutual exclusion property was easy to express as an Mcl

22 Activity report INRIA 2010

formula, but other properties (livelock and starvation freedom, independent progress, and
unbounded overtaking) turned out to be quite involved because they belong to the µ-calculus
fragment of alternation depth two; fortunately, we succeeded in expressing them using the
infinite looping operator of Mcl, which can be checked in linear time. Finally, using the
performance evaluation tools of Cadp, we minimized the Imcs modulo stochastic branching
bisimulation and computed the steady-state throughputs of the critical section accesses, by
varying several parameters (relative speeds of processes, ratio between the time spent in critical
and non-critical sections, etc.).

These experiments enabled us to compare the protocols according to their efficiency (steady-
state throughputs). We observed that symmetric protocols are more robust when the difference
in execution speed between processes is large, which confirms the importance of the symmetry
requirement originally formulated by Dijkstra [Dij65]. The quantitative results corroborated
those of functional verification: the presence of (asymmetric) starvation of processes, detected
using temporal formulas, was clearly reflected in their steady-state throughputs. This work
led to a publication in an international conference [24].

6.3.2 The FAME2 Architecture

Participants: Radu Mateescu, Meriem Zidouni.

In the context of the Multival (see § 7.2) contract, together with Bull we studied the Mpi
software layer and Mpi benchmark applications to be run on Fame2 (Flexible Architecture
for Multiple Environments), a Cc-Numa multiprocessor architecture developed at Bull for
teraflop mainframes and petaflop computing.

In 2010, we pursued the study of the “barrier” primitive of Mpi, which allows several parallel
processes to synchronize (each process arriving at the barrier waits for all the others to arrive)
before continuing their execution. Our goal was to estimate the latency of the barrier primi-
tive (i.e., the average time taken by a process to traverse the barrier) on different topologies,
different software implementations of the Mpi primitives, and different cache coherency proto-
cols. Based on the Lotos NT specifications extended with Markov delays that we previously
developed for several protocols implementing the barrier primitive, we were able to compute,
using the Cunctator on-the-fly steady-state simulator, the latency for the centralized, com-
bining, and tournament protocols for three different topologies and configurations containing
up to 16 processes.

These results were presented in the PhD thesis of Meriem Zidouni [17], defended on May 25,
2010.

6.3.3 The xSTream Architecture

Participants: Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, Wendelin Serwe.

In the context of the Multival contract (see § 7.2) together with STMicroelectronics,
we studied xSTream, a multiprocessor dataflow architecture for high-performance embedded

[Dij65] E. W. Dijkstra, “Cooperating Sequential Processes”, research report, Technological University,
Eindhoven, the Netherlands, 1965.

Project-Team VASY 23

multimedia streaming applications. In this architecture, computation nodes (e.g., filters)
communicate using xSTream queues connected by a NoC (Network on Chip). An xSTream
queue generalizes a bounded Fifo queue in two ways: it provides additional primitives (such
as peek to consult items in the middle of the queue, which is not possible with the standard
push/pop primitives of Fifo queues), and a backlog (extra memory) to allow the increase of
the queue size when the queue overflows.

In 2010, we continued performance evaluation studies to predict latency and throughput of
communication between xSTream queues, which are composed of two queues (called push
and pop, respectively) communicating over the NoC taking advantage of the flow-control
mechanism offered by xSTream. We consolidated our Ipc (Interactive Probabilistic Chains)
approach undertaken in 2008. This approach is inspired by Interactive Markov Chains [Her02],
but uses probabilities instead of stochastic distributions and a central clock governing all
delays.

Firstly, we used the Ipc approach to compute the average throughput of the put operation for
different sizes of the push and pop queues. Our experiments show that the relative size of the
push and pop queues forming an xSTream queue might influence the average throughput of
the push operation, although all xSTream queues with the same overall size (sum of push
and pop queues) are functionally equivalent (i.e., branching bisimilar). We observed that an
xSTream queue performs best when the sizes of both queues are as similar as possible. We
also observed that larger push queues better support bursts of messages, which can be better
absorbed.

Secondly, we studied the impact of the flow-control mechanism on performance. Therefore, we
considered a system of two xSTream queues (i.e., two pairs of push and pop queues) sharing
the NoC, studying the effect on the throughput of the first xSTream queue for various
consumption rates of the other xSTream queue. In the case that the messages of the first
xSTream queue are rapidly consumed, i.e., removed from the pop queue of the first xSTream
queue, we observed that the flow-control mechanism has no impact on the throughput of the
second xSTream queue. In the case that the messages of the first xSTream queue are
consumed slowly, we observed that the flow-control mechanism impacts the throughput of the
second xSTream queue. Indeed, without the flow-control mechanism, the second xSTream
queue is slowed down proportionally to the first xSTream queue, whereas with the flow-
control mechanism, the performance of the second xSTream queue even increases and tends
towards the values observed for a single xSTream queue.

These results were presented in the PhD thesis of Nicolas Coste [16], defended on June 25,
2010.

6.3.4 The Platform 2012 Architecture

Participants: Hubert Garavel, Frédéric Lang, Etienne Lantreibecq, Wendelin Serwe.

In the context of the Multival contract (see § 7.2), STMicroelectronics studied
Platform 2012, a many-core programmable accelerator for ultra-efficient embedded com-
puting in nanometer technology. This flexible and configurable multi-cluster platform fabric

[Her02] H. Hermanns, Interactive Markov Chains and the Quest for Quantified Quality, LNCS, 2428,
Springer Verlag, 2002.

24 Activity report INRIA 2010

targets a range of emerging video, imaging, and next-generation immersive multimodal ap-
plications. Configurability options include the number of clusters, the number and type of
processing elements (Pe) per cluster, specialization of the architecture and instruction-set of
the Pes, and finally, support of hardware-accelerated Pes. The platform is supported by a
rich programming environment which embodies a range of platform programming models.

In 2010, we concentrated on two blocks of Platform 2012:

• Hws (HardWare Synchronizer) is a hardware block providing mechanisms that allow
the implementation of software routines for synchronization between execution threads
of several processors. One of these mechanisms is the System Messenger based on asyn-
chronous message queues. STMicroelectronics decided to analyze the correctness
of the System Messenger, in particular to verify properties such as correct routing and
absence of message loss.

The System Messenger comes with a set of usage rules that must be respected by the soft-
ware, otherwise there are no correctness guarantees whatsoever. Therefore, we advised
STMicroelectronics to use a constraint-oriented modelling style, i.e., to represent
each usage constraint as a process to be composed in parallel with the System Messenger
and the other constraints. We further reduced the size of the model by applying data
abstractions (e.g., to reduce the number of bits per message) and symmetry arguments
(e.g., to limit the number of processors). We also added processes to model the appli-
cation software, considering two scenarios, namely n senders with one receiver, and one
sender with n receivers. This led to a Lotos NT model (eleven modules, 300 lines), for
which we generated the state spaces (about 2, 000 states and 3, 000 transitions for each
scenario). For all scenarios, we verified that the messages sent from the same sender to
the same receiver are received in the same order. For the n-senders-one-receiver scenario,
we also verified that no message is lost, and for the one-sender-n-receivers scenario, we
also verified that the messages are correctly routed to their destination.

• Dtd (Dynamic Task Dispatcher) is a hardware block that dispatches a set of application
tasks on a set of Pes. It is called dynamic because each task itself might add tasks to the
set of those to be dispatched by the Dtd. The Dtd is synthesized from a C++ model,
optimized to generate an efficient hardware block. Due to the intrinsic complexity of
the Dtd, STMicroelectronics was interested in the co-simulation of this C++ code
with a formal model of the Dtd.

In a first step, we developed a Lotos NT model of the Dtd capable of handling four
Pes (1, 200 lines of Lotos NT). We also modelled as Lotos NT processes the different
sets of tasks corresponding to various applications. To express the operations provided
by the Dtd, we had to include a call-stack in the model of each Pe, as a means of
circumventing the static-control constraints of Cæsar forbidding recursion over parallel
composition. STMicroelectronics judged Lotos NT to be essential in modelling
the Dtd, because using Lotos instead would have been extremely difficult, requiring
complex continuations with numerous parameters.

Then, we generated the state space (about 20, 000 states and 80, 000 transitions) for
a simple application (containing one fork on two Pes), and verified several properties,
such as the absence of deadlocks, and the correctness of the assertions inserted in the
model. This allowed us to point out a difference between our implementation and the one

Project-Team VASY 25

from the architect, highlighting a high sensibility on the order of terms in an equation,
revealing an under-specified mechanism. We also verified the correctness of a complex
optimization.

Having gained confidence in the Lotos NT model, we wrote a program to automati-
cally generate a Lotos NT model of the Dtd capable of handling n Pes. For n = 4,
this program yielded exactly the model discussed above. Using this program, we then
generated a Lotos NT model for n = 16, i.e., the number of Pes handled by the C++
model used for synthesis. We applied the Exec/Cæsar framework to co-simulate the
C++ and Lotos NT models of the Dtd, a challenge being the connection of the asyn-
chronous Lotos NT model with the synchronous C++ model, because one step of the
C++ model corresponds, in general, to several transitions of the Lotos NT model.

These case studies enabled us to discover and correct several bugs in Cadp.

6.3.5 The Airbus Avionics Case Studies

Participants: Simon Bouland, Hubert Garavel, Frédéric Lang, Wendelin Serwe, Damien
Thivolle.

In the context of the Topcased project (see § 7.3), we studied how Cadp can be used to
verify avionics protocols. We have addressed case-studies provided to us by Airbus:

• We continued the study [9] of a ground/plane communication protocol based on Tftp
(Trivial File Transfer Protocol) that was started in 2008. This protocol was specified as
an automaton described in Sam [TGC08], a graphical synchronous language developed by
Airbus. To verify this protocol using Cadp, a Lotos NT specification was produced
for an entire system in which two synchronous Tftp automata execute asynchronously
and communicate with each other using Udp (User Datagram Protocol) links. This is a
typical example of a Gals (Globally Asynchronous, Locally Synchronous) system. The
Tftp automata were produced using a systematical translation from Sam to Lotos NT.
The Udp links, which may lose, duplicate and/or reorder messages, were modelled as
bounded Fifo queues and bag data structures. We specified correctness properties in
temporal logic and verified them using the Evaluator 3.5 and 4.0 model checkers of
Cadp, revealing a number of errors. Simulations were carried out using the Executor
tool of Cadp to quantify the impact of these errors on the overall protocol performance.
The Lotos NT code was optimized, and Svl scripts were generated to automate the
approach. We used the 64-bit versions of Cadp to generate larger Bcg graphs (up to
1.5 billion states and 6.8 billion transitions), and enhanced the model checking approach
by using label hiding.

In 2010, we continued our work on this case study, notably by rewriting certain cor-
rectness properties more concisely. An extended version of [9] was produced. This case
study was presented in the 2-hour introduction to Topcased 2, where it is described as
a typical application of formal verification to avionics systems.

2http://gforge.enseeiht.fr/docman/view.php/52/3627/TOPCASED-presentation-2h.pdf

[TGC08] D. Thivolle, H. Garavel, X. Clerc, “Présentation du langage SAM d’Airbus”, INRIA/VASY,
16 pages, 2008.

26 Activity report INRIA 2010

• Airbus still has Sdl specifications for its A3xx airplanes, but the ObjectGeode tool
used for their analysis is no longer supported. In this context, we studied how Sdl
specifications could be translated into Lotos NT(see § 6.2.3). We considered two Sdl
sample specifications, developed by Airbus and provided to us by Cs and Ensieta:

– The Afn (Air Traffic System Facilities Notification) specification consists of 12, 500
lines of Sdl code (excluding comments). It has been completely translated by
hand into 4, 100 lines of Lotos NT code (excluding comments). The state space
of two of the processes of the Afn has been generated: the Logon Manager (43, 591
states and 91, 875 transitions) and the Cad Manager (36, 710 states and 78, 337
transitions). Also, the interactive simulation tool Ocis has been used to simulate
the Afn specification, which allowed us to verify the existence of particular traces.

– The Cpdlc (Controller Pilot Data-link Communication) specification consists of
57, 200 lines of Sdl code (comments excluded). The manual translation into
Lotos NT is still in progress, but 18, 700 lines of Lotos NT code (comments
excluded) have already been generated and compiled. To date, this is the largest
Lotos NT specification ever written.

6.3.6 The Synergy Reconfiguration Protocol

Participants: Gwen Salaün, Hubert Garavel.

A major factor in the complexity of modern component-based software systems is their ability
to dynamically reconfigure themselves as directed by changing circumstances. While express-
ing a desired reconfiguration is relatively simple, actually evolving a running system, without
shutting it down, is complex, especially when considering failures that may happen during
the reconfiguration process. At the heart of this reconfiguration capability lies the reconfigu-
ration protocol that is responsible for incrementally and correctly evolving a running system.
This protocol is implemented in the Synergy virtual machine, the prototype of an ongoing
research programme on reconfigurable and robust component-aware virtual machines.

In 2010, we worked with Fabienne Boyer and Olivier Gruber (Sardes project-team) who
designed the Synergy virtual machine. We specified the reconfiguration protocol using
Lotos NT and verified it with Cadp. The specification in Lotos NT consists of three
parts: data types (300 lines), functions (2500 lines), and processes (900 lines). From this
protocol specification, the current configuration, and the target configuration required after
reconfiguration, Cadp generated Ltss describing all the possible executions of the protocol.

In a second step, we used these Ltss to verify three facets of the protocol:

• We identified 8 structural invariants, and we checked that they are preserved during
reconfiguration.

• We specified reconfiguration grammars ensuring that components respect the correct or-
dering of actions throughout the protocol. We verified that, for each component involved
in a system under reconfiguration, its grammar is never violated. This is checked using
hiding and reduction techniques on the whole state space to keep only operations cor-
responding to that component, and then checking (using the Bisimulator equivalence
checker) that the resulting Lts is branching equivalent to the grammar.

Project-Team VASY 27

• Because the two checks described above might not detect subtle errors that can occur in
the specification (such as forbidden sequences of actions), we used temporal properties
to complement these checks by analysing the application order of operations during
the protocol execution. We formulated 14 µ-calculus properties that the protocol must
satisfy and verified them with Evaluator.

Experiments were conducted on more than 200 hand-crafted configuration examples, ranging
from simple to pathological. The formal analysis of the protocol and its specification over
several iterations led us to make numerous revisions and improvements to the protocol itself
and to its specification as we gained a better understanding of the finer points. We made 16
successive versions of the specification in all, revising several parts of the protocol, including
introduction of two additional wire/unwire phases (a single wire/unwire phase was originally
defined), several corrections of the failure propagation algorithm, and several corrections in
the reconfiguration grammar and structural invariants. These iterations enabled us to fix bugs
in some pathological cases that would have been impossible to identify manually. A paper
presenting this experience has been submitted to an international conference.

6.3.7 Queuing Networks

Participants: Hubert Garavel, Holger Hermanns, Radu Mateescu.

Qnap [VP84] is a software application for building, manipulating, and solving queuing net-
work models. It contains several resolution algorithms for model description, analysis, and
presentation of results. Bull has been using Qnap for a long time to carry out performance
analysis, and is investigating options for replacing it.

In 2010, we undertook a comparative study of Qnap and Cadp, by considering two examples
of Qnap models:

• A memory allocation model [VP84, § 6.3] consisting of a set of terminals and three cus-
tomer stations (one Cpu and two disks). We specified several variants of this model in
Lotos NT, differing in how the synchronization between stations is done and how the
customer queues are implemented. Using the Cunctator steady-state simulator, we
were able to compute throughput values that were very similar (identical to two decimal
places) to those in [VP84], which shows the capability of Imcs to model basic queuing
network systems.

• A larger example provided by Bull (3, 300 lines of Qnap code) modelling a realistic
system consisting of a multiprocessor architecture, an Mpi middleware layer, and a
Linpack application running on top of them. We studied how this queuing network
model could be reformulated as a set of communicating Lotos NT processes. This also
suggested ideas for extending the performance analysis tools of Cadp in order to handle
models with distribution laws that are not exponential.

[VP84] M. Veran, D. Potier, “QNAP 2:A portable environment for queueing systems modelling”,
research report number RR-0314, INRIA, June 1984, http://hal.inria.fr/inria-00076243.

28 Activity report INRIA 2010

6.3.8 Other Case Studies

Other teams also used the Cadp toolbox for various case studies. To cite only recent work
not already described in previous Vasy activity reports, we can mention:

• experimentation on learning algorithms [RSBM09];

• comparison of model checkers for Erlang [GDEF10];

• performance evaluation for NoCs [FTHJ09,FTHJ10];

• translation validation of multi-clocked Signal specifications [PGBL10];

• verification of web service composition [DBGW10,Dum10];

• model checking self-stabilizing systems[BBBS10];

• formal description and validation of production workflows [CLM03];

• verification of the behavioural properties for group communications [ABHM10];

[RSBM09] H. Raffelt, B. Steffen, T. Berg, T. Margaria, “LearnLib: a framework for extrapolating
behavioral models”, in : International Journal on Software Tools for Technology Transfer (STTT),
Special Section on FMICS 05 (Lisbon, Portugal), Springer Verlag, p. 393–407, April 2009.

[GDEF10] Q. Guo, J. Derrick, C. B. Earle, L.-A. Fredlund, “Model-Checking Erlang - A Comparison
between EtomCRL2 and McErlang”, in : Testing - Practice and Research Techniques, 5th Inter-
national Academic and Industrial COnference, TAIC PART 2010, Windor, UK, Springer Verlag,
p. 23–38, September 2010.

[FTHJ09] S. Foroutan, Y. Thonnart, R. Hersemeule, A. Jerraya, “Analytical computation of packet
latency in a 2D-mesh NoC”, in : Joint IEEE North-East Workshop on Circuits and Systems and
TAISA Conference, 2009. NEWCAS-TAISA ’09 (Toulouse, France), IEEE, p. 1–4, July 2009.

[FTHJ10] S. Foroutan, Y. Thonnart, R. Hersemeule, A. Jerraya, “A Markov chain based method
for NoC end-to-end latency evaluation”, in : IEEE International Symposium on Parallel and
Distributed Processing, Workshops and Phd Forum (IPDPSW), (Atlanta, Georgia, USA), IEEE,
p. 1–8, April 2010.

[PGBL10] J. C. Peralta, T. Gautier, L. Besnard, P. Le Guernic, “LTSs for Translation Validation of
(multi-clocked) SIGNAL specifications”, in : 8th IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE (Grenoble, France), IEEE, p. 199–208, July
2010.

[DBGW10] C. Dumez, M. Bakhouya, J. Gaber, M. Wack, “Formal Specification and Verification of
Service Composition using LOTOS”, in : Proceedings of the 7th ACM International Conference
on Pervasive Services (ICPS 2010) (Berlin, Germany), ACM, July 2010.

[Dum10] C. Dumez, Approche dirigée par les modèles pour la spécification, la vérification formelle et la
mise en oeuvre de services Web composés, PdD Thesis, Universite de Technologie de Belfort-
Montbeliard, August 2010, http://hal.inria.fr/tel-00515130.

[BBBS10] A. Basu, B. Bonakdarpour, M. Bozga, J. Sifakis, “Systematic Correct Construction of Self-
stabilizing Systems: A Case Study”, Stabilization, Safety, and Security of Distributed Systems;
Lecture Notes in Computer Science 6366/2010, 2010, p. 4–18.

[CLM03] V. Carchiolo, A. Longheu, M. Malgeri, “Using Lotos in Workflow Specification”, in :
Proceedings of ICEIS (3)’03, p. 364–369, 2003.

[ABHM10] R. Ameur-Boulifa, L. Henrio, E. Madelaine, “Behavioural models for group communica-
tions”, in : Proceedings of the International Workshop on Component and Service Interoperability,
WICS’10 (Malaga, Spain), 2010.

Project-Team VASY 29

• automated formal analysis of Cress web and grid services [Tan09];

• distributed model checking for group-based applications [HM10];

• automated analysis of ToolBus scripts [FKLU10];

• validation of semantic composability [ST10].

7 Contracts and Grants with Industry

7.1 The EC-MOAN Project

Participants: Hubert Garavel, Radu Mateescu.

Vasy participates in the Ec-Moan (Scalable modelling and analysis techniques to study emer-
gent cell behavior: Understanding the E. coli stress response) project no. 043235, funded by the
Fp6 Nest-Path-Com European program. It gathers seven participants: Inria Rhône-Alpes
(Vasy and Ibis project teams), Université Joseph Fourier (Grenoble), University of Twente,
Free University of Amsterdam, University of Edinburgh, Cwi Amsterdam, and Masaryk Uni-
versity Brno. Ec-Moan aims to develop new, scalable methods for modelling and analyzing
integrated genetic, metabolic, and signaling networks, and the application of these methods
for a better understanding of a bacterial model system.

Ec-Moan started on February 1st, 2007 and completed in January 2010. In 2010, our efforts
focused on the implementation and experimentation of on-the-fly reductions of automata mod-
ulo weak τ -confluence relations, which can improve the performance of verification by several
orders of magnitude. This work led to an article accepted for publication in an international
journal.

7.2 The Multival Project

Participants: Nicolas Coste, Hubert Garavel, Rémi Hérilier, Holger Hermanns, Alain
Kaufmann, Frédéric Lang, Etienne Lantreibecq, Radu Mateescu, Christine McKinty,
Vincent Powazny, Wendelin Serwe, Meriem Zidouni.

Multival (Validation of Multiprocessor Multithreaded Architectures) is a project of Mina-
logic, the pôle de compétitivité mondial dedicated to micro-nano technologies and embedded
software for systems on chip (EmSoC cluster of Minalogic). It is funded by the French

[Tan09] L. Tan, “Case Studies Using CRESS to Develop Web and Grid Services”, research report,
Department of Computing Science and Mathematics, University of Stirling, December 2009.

[HM10] L. Henrio, E. Madelaine, “Experiments with distributed Model-Checking of group-based ap-
plications”, research report, INRIA Sophia-Antipolis. Presented at the Sophia-Antipolis Formal
Analysis Group 2010 Workshop, SAFA2010, October 2010.

[FKLU10] W. Fokkink, P. Klint, B. Lisser, Y. S. Usenko, “Automated Translation and Analysis of a
ToolBus Script for Auctions”, Fundamentals of Software Engineering 5961, 2010, p. 308–323.

[ST10] C. Szabo, Y. M. Teo, “On Validation of Semantic Composability in Data-Driven Simulation”,
in : IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS), IEEE, p. 1–8,
May 2010.

30 Activity report INRIA 2010

government (Fonds Unique Interministériel) and the Conseil Général de l’Isère. Multival
addresses verification and performance evaluation issues for three innovative asynchronous
architectures developed by Bull, Cea/Leti, and STMicroelectronics.

Multival started in December 2006 and was extended until May 2011. In 2010, we focused
our activities on the enhancement of Cadp (see § 6.2.2 and § 6.2.3) and on case studies in
collaboration with our partners to verify and predict the performance of the architectures
Fame2 (see § 6.3.2), xSTream (see § 6.3.3), and Platform 2012 (see § 6.3.4).

7.3 The Topcased Project

Participants: Simon Bouland, Hubert Garavel, Frédéric Lang, Wendelin Serwe, Damien
Thivolle.

Topcased (Toolkit in OPen-source for Critical Application and SystEms Development) is a
project of Aese, the French pôle de compétitivité mondial dedicated to aeronautics, space,
and embedded systems. This project gathers 23 partners, including companies developing
safety-critical systems such as Airbus (leader), Astrium, Atos Origin, Cs, Siemens Vdo,
and Thales Aerospace.

Topcased develops a modular, open-source, generic Case (Computer-Aided Software Engi-
neering) environment providing methods and tools for embedded system development, ranging
from system and architecture specifications to software and hardware implementation through
equipment definition. Vasy contributes to the combination of model-driven engineering and
formal methods for asynchronous systems.

Topcased started in August 2006 and completed in December 2010. In 2010, we enhanced
the Flac translator from Fiacre to Lotos (see § 6.2.3) and we worked on several case studies
provided to us by Cs and Ensieta (see § 6.3.5).

H. Garavel is the Inria representative at the Topcased executive committee, for which he
served as the secretary during the elaboration phase of the Topcased proposal.

8 Other Grants and Activities

8.1 National Collaborations

From 2004 to 2010, the Vasy project team played an active role in the joint research center
between Inria Rhône-Alpes and the Leti laboratory of Cea-Grenoble. In collaboration
with Leti scientists (Edith Beigné, François Bertrand, Fabien Clermidy, Virang Shah, Yvain
Thonnart, and Pascal Vivet), Vasy developed software tools for the design of asynchronous
circuits and architectures such as Gals (Globally Asynchronous Locally Synchronous), NoCs
(Networks on Chip), and SoCs (Systems on Chip). In 2010, this collaboration was pursued
as part of the Multival project (see § 7.2).

Additionally, we collaborated in 2010 with the following Inria project teams:

• Oasis (Sophia-Antipolis): distributed verification tools (Eric Madelaine);

Project-Team VASY 31

• Pop-Art (Rhône-Alpes): behavioural adaptation of software services and conformance
checking of choreography specifications (Javier Cámara and Gregor Goessler);

• Sardes (Rhône-Alpes): verification of protocols for component-based architectures and
virtualization (Fabienne Boyer, Olivier Gruber, and Noël de Palma).

8.2 European Collaborations

The Vasy project team is member of the Fmics (Formal Methods for Industrial Critical
Systems) working group of Ercim (see http://www.inrialpes.fr/vasy/fmics). From July
1999 to July 2001, H. Garavel chaired this working group. Since July 2002, he has been a
member of the Fmics Board, and is in charge of dissemination actions.

In addition to our partners in aforementioned contractual collaborations, we had scientific
relations in 2010 with several European universities and research centers, including:

• Imperial College (Jeff Kramer and Jeff Magee);

• Polytechnic University of Bucharest (Valentin Cristea);

• Saarland University (Jonathan Bogdoll, Pepijn Crouzen, Arnd Hartmanns, and Holger
Hermanns);

• University of Málaga (Carlos Canal, Javier Cubo, Francisco Durán, Jose Antonio Mart́ın,
Meriem Ouederni, and Ernesto Pimentel).

8.3 International Collaborations

H. Garavel is a member of Ifip (International Federation for Information Processing) Tech-
nical Committee 1 (Foundations of Computer Science) Working Group 1.8 on Concurrency
Theory chaired by Luca Aceto.

In 2010, we had scientific relations with the University of California at Santa Barbara, Usa
(Tevfik Bultan).

8.4 Visits and Exchanges

In 2010, we had the following scientific exchanges:

• Pepijn Crouzen (Saarland University, Saarbrücken, Germany) visited us on March 15–17,
2010, and gave a talk entitled “Architectural Dependability Evaluation with Arcade”.

• Meriem Ouederni (University of Málaga, Spain) visited us from January 4 to April 9,
2010, and during October 2010.

• The annual Vasy seminar was held in Corrençon-en-Vercors (France) on June 21–23,
2010.

32 Activity report INRIA 2010

• Philippe Dhaussy and Amine Raji (Ensieta, Brest, France) attended the Vasy annual
seminar and gave, on June 21, 2010, a talk entitled “Contribution à la mise en oeuvre
de techniques de validation formelle de logiciels embarqués”.

• Valentin Cristea (Polytechnic University of Bucharest, Romania) attended the Vasy
annual seminar and gave, on June 22, 2010, a talk entitled “Service-Oriented Dependable
Distributed Systems”.

• Holger Hermanns (University of Saarland and Inria) attended the Vasy annual seminar
and gave, on June 23, 2010, a talk entitled “When Markov Chains meet Probabilistic
Automata”.

• Arnd Hartmanns (University of Saarland) attended the Vasy annual seminar and gave,
on June 23, 2010, a talk entitled “Modelling and Model-Checking with Modest”.

• Jonathan Bogdoll (University of Saarland) attended the Vasy annual seminar and gave,
on June 23, 2010, a talk entitled “Discrete Event Simulation for Modest in Practice”.

• Pepijn Crouzen (University of Saarland) attended the Vasy annual seminar and gave,
on June 23, 2010, a talk entitled “Aggregation Ordering for Massively Compositional
Models”.

• Eric Madelaine and Raluca Halalai (Inria Sophia Antipolis) visited us on September
2–3, 2010.

9 Dissemination

9.1 Software Dissemination and Internet Visibility

The Vasy project team distributes two main software tools: the Cadp toolbox (see § 5.1) and
the Traian compiler (see § 5.2). In 2010, the main facts are the following:

• We prepared and distributed 9 successive beta-versions (from 2008-h to 2008-k and from
2009-a to 2009-e “Zurich”) of Cadp.

• The number of license contracts signed for Cadp increased from 411 to 429.

• We were requested to grant Cadp licenses for 502 different computers in the world.

• The Traian compiler was downloaded by 31 different sites.

The Vasy Web site (see http://www.inrialpes.fr/vasy) was updated with scientific con-
tents, announcements, publications, etc.

In September 2007, we opened the “Cadp Forum” (see http://www.inrialpes.fr/vasy/

cadp/forum.html) for discussions regarding the Cadp toolbox. By the end of December
2010, this forum had over 150 registered users and over 1070 messages had been exchanged.
Since June 2009, there has been a Wikipedia page for Cadp.

Project-Team VASY 33

9.2 Program Committees

In 2010, the members of Vasy took on the following responsibilities:

• H. Garavel was a program committee member for the Workshop on Tool Building in For-
mal Methods (held in conjunction with the 2nd International Abz Conference), Orford,
Quebec, Canada, February 22, 2010.

• F. Lang was a program committee member for Neptune’2010 (Nice Environment with
a Process and Tools Using Norms and Example), Toulouse, France, May 18–19, 2010.

• G. Salaün was chair of the program committee and editor of the proceedings for Wcsi’10
(International Workshop on Component and Service Interoperability), Málaga, Spain,
June 29, 2010.

• F. Lang was a program committee member for Ecsa’2010 (4th European Conference on
Software Architecture), Copenhagen, Denmark, August 23–26, 2010.

• G. Salaün was chair of the program committee and editor of the proceedings for Fo-
clasa’10 (9th International Workshop on the Foundations of Coordination Languages
and Software Architectures), Paris, France, September 4, 2010,

• G. Salaün was chair of the program committee and editor of the proceedings for Tav-
Web’10 (Fourth International Workshop on Testing, Analysis and Verification of Web
Software), Antwerp, Belgium, September 21, 2010.

• G. Salaün was a program committee member for Waself’10 (Third Workshop on Au-
tomatic and SELF-adaptive Systems), Valencia, Spain, September 7, 2010.

• H. Garavel and R. Mateescu were program committee members for Fmics’2010 (15th
International Workshop on Formal Methods for Industrial Critical Systems), Antwerp,
Belgium, September 20–21, 2010.

• R. Mateescu was a program committee member for Pdmc’2010 (9th International Work-
shop on Parallel and Distributed Methods in verifiCation), Twente, The Netherlands,
September 30–October 1st, 2010.

• H. Garavel was a program committee member for iFM’2010 (8th International Confer-
ence on Integrated Formal Methods), Nancy, France, October 11–14, 2010.

• G. Salaün was a program committee member for Avytat’10 (First International Work-
shop on Adaptation in serVice EcosYsTems and ArchiTectures), Crete, Greece, October
25–29, 2010.

• G. Salaün was a program committee member for WsFm’10 (7th International Workshop
on Web Services and Formal Methods), Hoboken, New Jersey, USA, September 16–17,
2010.

• R. Mateescu was a program committee member for Ecows’2010 (8th International Con-
ference on Web Services), Ayia Napa, Cyprus, December 1–3, 2010.

34 Activity report INRIA 2010

9.3 Lectures and Invited Conferences

In 2010, we we gave talks in several international conferences and workshops (see bibliography
below). Additionally:

• R. Mateescu participated in the 8th Ec-Moan meeting held in Amsterdam (The Nether-
lands) on January 17–18, 2010. He gave a talk entitled “Sequential and Distributed
On-the-Fly Property-Dependent Reductions of Automata” on January 17, 2010.

• H. Garavel, F. Lang, R. Mateescu, and W. Serwe participated in the 14th Multival
quarterly meeting held at Inria Grenoble (France) on April 8, 2010. F. Lang gave a
talk entitled “Fast minimization using Bcg Min 2.0”. W. Serwe gave a talk entitled
“What is new in Lnt2Lotos and Lpp version 5.0?”.

• R. Mateescu gave a talk entitled “On-the-Fly Model Checking with Evaluator 3” at
the University of Lisbon (Portugal) on May 17, 2010.

• F. Lang gave demonstrations of Cadp at the “Journées Inria/Industrie” held in
Toulouse (France) on May 17, 2010.

• F. Lang participated in the Neptune conference held in Toulouse (France) on May
18–19, 2010.

• H. Garavel and G. Salaün attended the Sardes seminar (Allevard, France) on June 9–
10, 2010. G. Salaün gave a talk entitled “Specifying and Verifying the Synergy Apply
Protocol with Lotos NT and Cadp”. H. Garavel gave a talk entitled “An Overview of
Cadp 2009”.

• R. Mateescu participated in the 15th Multival plenary meeting held at Cea/Leti
(Grenoble, France) on June 25, 2010, where he gave a talk entitled “A Study of Shared-
Memory Mutual Exclusion Protocols using Cadp”.

• H. Garavel gave a talk entitled “Modélisation et vérification de systèmes parallèles com-
plexes” to students from Ens Cachan visiting the Lig laboratory on November 3, 2010.

• H. Garavel participated in the panel discussion at Fossa (Free Open Source Software
for Academia) (Grenoble, France) on November 8, 2010.

• F. Lang participated in a video-conference held on November 9, 2010, to discuss the
opportunity of a project on the management of requirements along the software lifecycle.
He gave a talk entitled “Modélisation et vérification des exigences avec Cadp”.

• H. Garavel, F. Lang, and V. Powazny attended the 16th Multival plenary meeting held
at STMicroelectronics (Grenoble, France) on December 16, 2010. H. Garavel gave
a talk entitled “Améliorations apportées à CADP en 2010”, F. Lang gave a talk entitled
“Smart Reduction”, and V. Powazny gave a talk entitled “Améliorations apportées à
LOTOS NT depuis juin 2010”.

Project-Team VASY 35

9.4 Teaching Activities

The Vasy project team is a host team for the computer science master entitled
“Mathématiques, Informatique, spécialité : Systèmes et Logiciels”, common to Grenoble Inp
and Université Joseph Fourier.

In 2010:

• H. Garavel, F. Lang, and W. Serwe gave, jointly with Pascal Raymond (Cnrs,
Verimag), a course on “Méthodes formelles de développement” to the computer science
engineering students of Cnam (Conservatoire National des Arts et Métiers) Grenoble
(27 hours).

• F. Lang and W. Serwe gave a course on “Modélisation et Vérification des Systèmes
Concurrents et Temps-Réel” to the 3rd year students of Ensimag (18 hours).

• G. Salaün gave lectures on “Algorithmics and Object-Oriented Programming” to the 2nd
year students and on “Specification and Validation of Distributed Processes” to the 3rd
year students of Ensimag (64 hours).

• G. Salaün gave a master class on “Specification, Verification, and Adaptation of Web
Services” in Málaga, Spain, in April 2010 (10 hours).

• R. Mateescu co-supervised the PhD thesis of Pedro Tiago Monteiro (University of Lisbon,
Portugal), defended on May 17, 2010.

• R. Mateescu and G. Chehaibar (Bull) co-supervised the PhD thesis of Meriem Zidouni
(University Joseph Fourier, Grenoble), defended on May 25, 2010.

• H. Garavel and W. Serwe supervised the PhD thesis of Nicolas Coste (University of
Grenoble), defended on June 24, 2010.

• G. Salaün was a jury member for Javier Cubo’s PhD thesis, defended at the University
of Málaga, Spain, in December 2010.

9.5 Miscellaneous Activities

Within the Minalogic pôle de compétitivité mondial, H. Garavel is a member of the opera-
tional committee of the EmSoC cluster (Embedded System on Chip).

H. Garavel is a member of the scientific council of the Gis (Groupement d’Intérêt Scientifique)
consortium 3sgs on supervision, safety, and security of large systems.

F. Lang is a member of the “commission du développement technologique”, which is in charge
of selecting R&D projects for Inria Grenoble Rhône-Alpes.

F. Lang participated in a working group in charge of proposing a new distribution of offices
among the research and administrative teams located in the Inria building of Montbonnot.
The task of this working group ended in September 2010, after several teams moved.

R. Mateescu is the correspondent of the “Département des Partenariats Européens” for Inria
Grenoble Rhône-Alpes.

36 Activity report INRIA 2010

H. Garavel participated in the selection committee for a Mâıtre de Conférences position at
Université Paul Sabatier (Toulouse).

G. Salaün was elected to the Ensimag Council (Conseil de l’Ecole).

10 Bibliography

Reference Publications by the Team

[1] H. Garavel, H. Hermanns, “On Combining Functional Verification and Performance Eval-
uation using CADP”, in : Proceedings of the 11th International Symposium of Formal Methods
Europe FME’2002 (Copenhagen, Denmark), L.-H. Eriksson, P. A. Lindsay (editors), Lecture Notes
in Computer Science, 2391, Springer Verlag, p. 410–429, July 2002. Full version available as Inria
Research Report 4492, http://hal.inria.fr/inria-00072096.

[2] H. Garavel, F. Lang, R. Mateescu, W. Serwe, “CADP 2006: A Toolbox for the Con-
struction and Analysis of Distributed Processes”, in : Proceedings of the 19th International Con-
ference on Computer Aided Verification CAV’2007 (Berlin, Germany), W. Damm, H. Hermanns
(editors), Lecture Notes in Computer Science, 4590, Springer Verlag, p. 158–163, July 2007,
http://hal.inria.fr/inria-00189021.

[3] H. Garavel, F. Lang, R. Mateescu, “Compiler Construction using LOTOS NT”, in : Proceed-
ings of the 11th International Conference on Compiler Construction CC 2002 (Grenoble, France),
N. Horspool (editor), Lecture Notes in Computer Science, 2304, Springer Verlag, p. 9–13, April
2002.

[4] H. Garavel, F. Lang, “SVL: a Scripting Language for Compositional Verification”, in : Pro-
ceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems FORTE’2001 (Cheju Island, Korea), M. Kim, B. Chin, S. Kang, D. Lee
(editors), IFIP, Kluwer Academic Publishers, p. 377–392, August 2001. Full version available as
Inria Research Report RR-4223, http://hal.inria.fr/inria-00072396.

[5] H. Garavel, F. Lang, “NTIF: A General Symbolic Model for Communicating Sequential
Processes with Data”, in : Proceedings of the 22nd IFIP WG 6.1 International Conference on
Formal Techniques for Networked and Distributed Systems FORTE’2002 (Houston, Texas, USA),
D. Peled, M. Vardi (editors), Lecture Notes in Computer Science, 2529, Springer Verlag, p. 276–
291, November 2002. Full version available as Inria Research Report RR-4666, http://hal.

inria.fr/inria-00071919.

[6] H. Garavel, R. Mateescu, I. Smarandache, “Parallel State Space Construction for Model-
Checking”, in : Proceedings of the 8th International SPIN Workshop on Model Checking of Soft-
ware SPIN’2001 (Toronto, Canada), M. B. Dwyer (editor), Lecture Notes in Computer Science,
2057, Springer Verlag, p. 217–234, Berlin, May 2001. Revised version available as INRIA Research
Report RR-4341 (December 2001).

[7] H. Garavel, J. Sifakis, “Compilation and Verification of LOTOS Specifications”, in : Pro-
ceedings of the 10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), L. Logrippo, R. L. Probert, H. Ural (editors), IFIP, North-Holland, p. 379–394,
June 1990.

[8] H. Garavel, M. Sighireanu, “Towards a Second Generation of Formal Description Techniques
– Rationale for the Design of E-LOTOS”, in : Proceedings of the 3rd International Workshop on
Formal Methods for Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), J. F.
Groote, B. Luttik, J. van Wamel (editors), CWI, p. 187–230, Amsterdam, May 1998. Invited talk.

Project-Team VASY 37

[9] H. Garavel, D. Thivolle, “Verification of GALS Systems by Combining Synchronous Lan-
guages and Process Calculi”, in : Proceedings of the 16th International SPIN Workshop on
Model Checking of Software SPIN’2009 (Grenoble, France), C. Pasareanu (editor), Lecture Notes
in Computer Science, 5578, Springer Verlag, p. 241–260, June 2009, http://hal.inria.fr/

inria-00388819.

[10] H. Garavel, “Compilation of LOTOS Abstract Data Types”, in : Proceedings of the 2nd Inter-
national Conference on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada),
S. T. Vuong (editor), North-Holland, p. 147–162, December 1989.

[11] H. Garavel, “OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation,
and Testing”, in : Proceedings of the First International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’98 (Lisbon, Portugal), B. Steffen (editor),
Lecture Notes in Computer Science, 1384, Springer Verlag, p. 68–84, Berlin, March 1998. Full
version available as Inria Research Report RR-3352, http://hal.inria.fr/inria-00073337.

[12] H. Garavel, “Défense et illustration des algèbres de processus”, in : Actes de l’Ecole d’été Temps
Réel ETR 2003 (Toulouse, France), Z. Mammeri (editor), Institut de Recherche en Informatique
de Toulouse, September 2003.

[13] H. Garavel, “Reflections on the Future of Concurrency Theory in General and Process Calculi in
Particular”, in : Proceedings of the LIX Colloquium on Emerging Trends in Concurrency Theory
(Ecole Polytechnique de Paris, France), November 13–15, 2006, C. Palamidessi, F. D. Valencia
(editors), Electronic Notes in Theoretical Computer Science, 209, Elsevier Science Publishers,
p. 149–164, April 2008. Also available as INRIA Research Report RR-6368, http://hal.inria.
fr/inria-00191141.

[14] R. Mateescu, D. Thivolle, “A Model Checking Language for Concurrent Value-Passing Sys-
tems”, in : Proceedings of the 15th International Symposium on Formal Methods FM’08 (Turku,
Finland), J. Cuellar, T. Maibaum, K. Sere (editors), Lecture Notes in Computer Science, 5014,
Springer Verlag, p. 148–164, May 2008, http://hal.inria.fr/inria-00315312/fr/.

[15] D. Thivolle, H. Garavel, X. Clerc, “Présentation du langage SAM d’Airbus”, research
report, INRIA/VASY, 16 pages, 2008, https://gforge.enseeiht.fr/docman/view.php/33/

2745/SAM.pdf.

Doctoral Dissertations and “Habilitation” Theses

[16] N. Coste, Vers la prédiction de performance de modèles compositionnels dans les architectures
GALS, PhD Thesis, University of Grenoble, June 2010, http://hal.inria.fr/tel-00538425.

[17] M. Zidouni, Modélisation et analyse des performances de la bibliothèque MPI en tenant compte
de l’architecture matérielle, PhD Thesis, University of Grenoble, May 2010, http://hal.inria.
fr/tel-00526164.

Journal Articles and Book Chapters

[18] F. Lang, G. Salaün, R. Hérilier, J. Kramer, J. Magee, “Translating FSP into LOTOS
and Networks of Automata”, Formal Aspects of Computing 22, 6, November 2010, p. 681–711,
http://hal.inria.fr/hal-00533808.

38 Activity report INRIA 2010

Publications in Conferences and Workshops

[19] J. Cámara, J. A. Mart́ın, G. Salaün, C. Canal, E. Pimentel, “A Case Study in Model-
Based Adaptation of Web Services”, in : Proceedings of the 4th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2010 (Heraclion,
Crete), Part II, T. Margaria, B. Steffen (editors), Lecture Notes in Computer Science, 6416,
Springer Verlag, p. 112–126, October 2010, http://hal.inria.fr/inria-00538968.

[20] J. Cámara, J. A. Mart́ın, G. Salaün, C. Canal, E. Pimentel, “Semi-Automatic Specifica-
tion of Behavioural Service Adaptation Contracts”, in : Proceedings of the 7th International Work-
shop on Formal Engineering approaches to Software Components and Architectures, FESCA’2010
(Paphos, Cyprus), Electronic Notes in Theoretical Computer Science, 264, 1, p. 19–34, March
2010, http://hal.inria.fr/inria-00539116.

[21] N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, W. Serwe, “Ten
Years of Performance Evaluation for Concurrent Systems Using CADP”, in : Proceedings
of the 4th International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation, ISoLA 2010 (Heraclion, Crete), Part II, T. Margaria, B. Steffen (edi-
tors), Lecture Notes in Computer Science, 6416, Springer Verlag, p. 128–142, October 2010,
http://hal.inria.fr/inria-00532914.

[22] J. Cubo, E. Pimentel, G. Salaün, C. Canal, “Handling Data-Based Concurrency in
Context-Aware Service Protocols”, in : Proceedings of the 9th International Workshop on the
Foundations of Coordination Languages and Software Architectures, FOCLASA’2010 (Paris,
France), M. Mousavi, G. Salaün (editors), Electronic Proceedings in Theoretical Computer Science,
30, p. 62–77, September 2010, http://hal.inria.fr/inria-00539024.

[23] R. Mateescu, G. Salaün, “Translating Pi-Calculus into LOTOS NT”, in : Proceedings of the
8th International Conference on Integrated Formal Methods IFM’2010 (Nancy, France), D. Mery,
S. Merz (editors), Lecture Notes in Computer Science, 6396, Springer Verlag, p. 229–244, October
2010, http://hal.inria.fr/inria-00524586.

[24] R. Mateescu, W. Serwe, “A Study of Shared-Memory Mutual Exclusion Protocols using
CADP”, in : Proceedings of the 15th International Workshop on Formal Methods for Industrial
Critical Systems FMICS’2010 (Antwerp, Belgium), S. Kowalewski, M. Roveri (editors), Lecture
Notes in Computer Science, 6371, Springer Verlag, p. 180–197, September 2010, http://hal.

inria.fr/inria-00532897.

[25] M. Ouederni, G. Salaün, E. Pimentel, “Quantifying Service Compatibility: A Step Be-
yond the Boolean Approaches”, in : Proceedings of the 8th International Conference on Service-
Oriented Computing ICSOC’2010 (San Francisco, USA), P. P. Maglio, M. Weske, J. Yang,
M. Fantinato (editors), Lecture Notes in Computer Science, 6470, Springer Verlag, p. 619–626,
December 2010, http://hal.inria.fr/inria-00538963.

[26] M. Ouederni, G. Salaün, “Tau Be or not Tau Be? — A Perspective on Service Compatibility
and Substitutability”, in : Proceedings of the International Workshop on Component and Service
Interoperability, WCSI’2010 (Málaga, Spain), J. Cámara, C. Canal, G. Salaün (editors), Electronic
Proceedings in Theoretical Computer Science, 37, p. 57–70, June 2010, http://hal.inria.fr/

inria-00539099.

[27] G. Salaün, “Analysis and Verification of Service Interaction Protocols — A Brief Survey”,
in : Proceedings of the 4th International Workshop on Testing, Analysis and Verification of Web
Software, TAV-WEB’2010 (Antwerp, Belgium), G. Salaün, X. Fu, S. Hallé (editors), Electronic
Proceedings in Theoretical Computer Science, 35, p. 75–86, September 2010, http://hal.inria.
fr/inria-00539017.

