Pruning State Spaces with Extended Beam Search

M. Torabi Dashti and A. J. Wijs

CWI, Amsterdam
{dashti, wijs}@cwi.nl

Abstract. This paper focuses on using beam search, a heuristic sdgactitam,
for pruning state spaces while generating. The originahbsearch is adapted to
the state space generation setting and two new search tgaaisndevised. The
resulting framework encompasses some known algorithneh, asA*. We also
report on two case studies based on an implementation of bearoh inuCRL.

1 Introduction

State space explosion is still a major problem in the areaaehchecking. Over the
years a number of techniques have emerged to prune, whigatarg, parts of the state
space that are not relevant given the task at hand. Somesgf thehniques, such as par-
tial order reduction algorithms (e.g. see [8]), guaranked ho essential information is
lost after pruning. Alternatively, this paper focuses niaon heuristic pruning methods
which heavily reduce the generation time and memory consiomput generate only
an approximate (partial) state space. The idea is that asugglied heuristic function
guides the generation such that ideally only relevant pdtise state space are actually
explored. This is, in fact, at odds with the core idea of maielcking when studying
qualitative properties of systems, i.e. to exhaustiveysie the complete state space to
find any corner case bug. However, heuristic pruning teakesccan very well target
performance analysis problems as approximate answersasdysufficient.

In this paper, we investigate hdveam searclsan be integrated into the state space
generation setting. Beam search (BS) is a heuristic methrocbimbinatorial optimisa-
tion problems, which has extensively been studied in awifiatelligence and opera-
tions research, e.g. see [9, 12]. BS is similar to bread#ftggarch as it progresses level
by level through a highly structured search tree contairithgpossible solutions to a
problem, but it does not explore all the encountered nodesaéh level, all the nodes
are evaluated using a heuristic cost (or priority) functimt only a fixed number of
them is selected for further examination. This aggressiveipg heavily decreases the
generation time, but may in general miss essential partseo$e¢arch tree, since wrong
decisions may be made while pruning. Therefore, BS has sbefan mainly used in
searching trees with a high density of goal nodes. Scheglplinblems, for instance,
have been perfect targets for using BS as their goal is tangfiy schedule a certain
number of jobs and resources, while near-optimal scheduleigh densely populate
the tree, are in practice good enough.

The idea of using BS in state space generation is an atterwptrde integrating
functional analysis, to which state spaces are usuallyestdyjl, and quantitative anal-
ysis. Since model checkers, such aanNg UppAAL and UCRL, which generate these

state spaces, usually have highly expressive input laregy&S for state spaces can
be applied in a more general framework compared to its it use. Applying BS
to search state spaces tightly relates to directed modekatge(DMC) [3] and guided
model checking (for timed automata) [1], where heuristieswsed to guide the search
for finding counter-examples to a functional property (dlyua LTL) with a minimal
exploration of the state space. UsiAj [3] and genetic algorithms [5] to guide the
search are among notable works in this field. In contrast taDie generate a partial
state space in which an arbitrary property can be checkednatds (the result would
not be exact, hence being useful when near-optimal solsisaffice). However, there
are strong similarities as wells* can be seen as an instantiation of BS (&8et).
Contributions We motivate and thoroughly discuss adapting the BS teclesitu
deal with arbitrary structures of state spaces. Next, werekthe classic BS in two di-
rections. First, we proposkexibleBS, which, broadly speaking, does not stick to a fixed
number of states to be selected at each search level. Thiallyanitigates the problem
of determining this exact fixed number in advance. Secondntweduce the notion of
synchronisedS, which aims at separating the heuristic pruning phase fte under-
lying exploration strategy. Combinations of these vagarteate a spectrum of search
algorithms that, as will be described, encompasses sonmerksearch techniques, such
asA*. We have implemented these variants of BS infifZRL state space generation
toolset [2]. Experimental results for two scheduling caselies are reported.

Road map BS is described if§ 2. § 3 deals with the adaptation of existing BS vari-
ants to the state space generation setting. There we alpogg@ur extensions to BS.
Memory management and choosing heuristics are also dedulsre§ 4 reports on
two case studie$, 5 presents our related work afdé concludes the paper.

2 Beam search

Beam search [9, 12] is a heuristic search algorithm for coiatioirial optimisation prob-
lems, which has extensively been applied to schedulinglenog for example in sys-
tems designed for job shop environments [12].

BS is similar to breadth-first search as it progresses leyével. At each level of
the searclree(in § 3 we extend BS to handle cycles), it uses a heuristic evaluéiinc-
tion to estimate the promise of encountered ndgegile thegoalis to find a path from
the root of the tree to a leaf node that possesses the minimlaiaion value among all
the leafs. In each level, only thmost promising nodes are selected for further exam-
ination and the other nodes are permanently discardedb&am widthparametep3 is
fixed to a value before searching starts. Because of thiseagige pruning the search
time is a linear function of8 and is thus heavily decreased. However, since wrong deci-
sions may be made while pruning, BS is neither completeisi®ot guaranteed to find
a solution when there is one, nor optimal, i.e. does not guaeafinding an optimal
solution. To limit the possibility of wrong decisiong, can be increased at the cost of
increasing the required computational effort and memory.

1n this section we use nodes and edges, as opposed to stdtésmsitions, to distinguish
between the traditional setting of BS and our adaptations.

Two types of evaluation functions have traditionally besadifor BS [12]priority
evaluation functions antbtal-costevaluation functions, which lead to tipeiority and
detailedBS variants, respectively. In priority BS at each node thawation function
calculates a priority for each successor node and selestsilmn those priorities. At the
root of the search tree, up {® most promising successors (i.e. those with the highest
priorities) are selected, while in each subsequent levglame successor with the high-
est priority is selected per examined node. In detailed B&ah node the evaluation
function calculates an estimate of the total-cost of the path that can be found con-
tinuing from the current node. At each level upfanost promising nodes (i.e. those
with the lowest total-cost values) are selected regardieso their parent nodes are.
Whenf — o, detailed and priority BS behave as exhaustive breadthsierch.

3 Adapting beam search for state space generation

Motivation In its traditional setting, BS is typically applied on highétructured
search trees, which contain all possible orderings of argivenber of jobs, e.g. see [7,
14]. Such a search tree starts withjobs to be scheduled, which means that the root
of the tree has outgoing transitions. Each node has exantlyk outgoing transitions,
wherek is the level in the tree where the node appears. State spawmesyer, sup-
posedly contain information on all possible behaviours afyatem. Therefore, they
may contain cycles, confluence of traces, and have more exnspluctures than the
well-structured search trees usually subjected to BS. matessitates modifying the
BS techniques to deal with arbitrary structures of statespaMoreover, the BS algo-
rithms search for a particular node (or schedule) in thectespace, while in (and after)
generating state spaces one might desire to study a prdpgyrond simple reachabil-
ity. We therefore extend BS to a state spgeaerationSSG) setting, as opposed to its
traditional setting that focuses only searching The notion of a particular “goal” (cf.
§ 2) is thus removed from the adapted BS (885 for possible optimisations when re-
stricting BS to verify reachability properties). This atpwith the necessary machinery
for handling cycles raise memory management issues in BSyth discuss if§ 3.5.
Below, DBS and PBS correspond, respectively, to the detailed priority beam
searches extended to deal with arbitrary state spdc8sl(and§ 3.2). The F and S
prefixes refer to the flexible and synchronised variaft3.8 ands 3.4). we start with
introducing labelled transition systems.
Labelled transition system (LTS)is a tuple(>, 5o, Act, Tr), whereZ is a set of states,
S0 € 2 is the initial stateActis a finite set of action labels arfdt C > x Actx 2. We
write s ¢ when(s,a,¢) € Tr. In this paper we consider LTSs with fini

3.1 Priority beam search for state space generation

Below we first present the PBS algorithm and then describenaoti/ate the changes
that we have made to the traditional priority BS.

PBS is shown in figure 1. The se®urrent, Nextand Expandeddenote, respec-
tively, the set of states of the current level, the next larel the set of states that have
been expanded. The user-supplied funcpaority : Act — Z provides the priority of

actions, as opposed to staté§Ve motivate this deviation by noting thibsin the BS
terminology correspond more naturally witlgtionsin LTSs.

The setBuffertemporarily keeps
seemingly promising transitions. The
function prioy,, : Z(Tr) — Z re-
turns the lowest priority of the ac-
tions of a given set of transitions
with prio,,,(0) = —c. The func-

Fig. 1. Priority BS
Current:= {sp}
Expanded= 0; Buffer:=0
level:= 0; limit := a
whileCurrent\ Expanded# 0 do

tion getpriqy, : Z(Tr) — Tr, given Next:— 0

a set of transitions, returns one of for all se Current\ Expandedto

the transitions having an action with for all s—2+5 € en(s) do

the lowest priority. Expanding the se if priority (a) > prioyn(Buffer) then
Current\ Expandedn thewhileloop if |Bufferf = limit then

ensures that no state is revisited in Buffer:= Buffer\

case cycles or confluent traces exigt {getpriayn(Buffer) }

Buffer:= Bufferu {s—2-¢'}
Next:= NextJ nxt(s, Buffer)
Buffer:=0
Expanded= Expanded) Current

in the search space. The algorithn
terminates when it has explored all
the states in its beam.

In priority BS, originally, up to83 Current:— Next
children of the root are selected. Th level:= level+ 1
resulting beam of width3 is then if level= I then limit := 1
maintained by expanding only one
child per node in subsequent levels.

In state spaces, however, the root has typically much lefgpomg transitions than the
average branching factor of the state space. Fixing the badth at such an early stage
is therefore not reasonable.

To mitigate this problem, instead Bf the algorithm of figure 1 is provided with the
pair (a,1), wherea,| € N anda' = B. The idea is that the algorithm uses fority
function to prune non-promising states from the very firstelebut in two phases:
before reaching nearl states in a single level, it considers the most promising
transitions for further expansion, but after that, it exggonly one child per state.

=)

1%

3.2 Detailed beam search for state space generation

In detailed BS a total-cost evaluation functibn > — IN is used to guide the search.
This function is decomposed int(s) = g(s) + h(s). Theg(s) function represents the
cost taken to reachfrom the initial statesy, which is defined ag(s) = g(s') + costa) if

s -2, s The user-supplied functiarost: Act— IN assigns weights to actions that can,
e.g., denote the time needed to perform different jobs inh@dgling problem. These
weights are fixed before search starts. Since the rangesifs non-negative numbers,
we haves —* § = ¢(s) > g(s). The user-supplied functidm(s) estimates the cost it
would take to efficiently reach a goal state (or complete tinedule) continuing frora.

2 In general priority can also depend on statgsiority : =~ — Act— Z. In this paper, we only
consider fixed priorities, which resembldispatchscheduling in Al terminology [12].

Thus, for a goal statsg, h(s) = 0. Thef function is callednonotonidf s —* ' implies
f(s) < f(9).

The original idea of detailed BS does not need to change nwfihibto the SSG
setting except for when handling cycles. When exploringdicy. TS, to guarantee the
termination of the algorithm, it is necessary to store thteo$explored states to avoid
exploring a state more than once (cf. tBepandedset in figure 1). However, if a state
is reached via a path with a lower cost, the state has to bearieed. This is because
the total-cost of each state depends on the cost to reacstéitafrom the root, cf; 3.4.

3.3 Flexible beam search

A major issue that still remains unaddressed in the BS atlaptaof§ 3.1 and 3.2 is
the tie-breakingproblem: How should equally competent candidates, e.gnpahe
samef values, be pruned? These selections are beyond the infloétioe evaluation
function and can undesirably make the algorithm non-detéstic. Hence, we propose
two variants of BS that we callexible detailedandflexible prioritybeam searches, in
which the beam width can change during state space generatio

In flexible detailed BS, at each level, up fomost promising states are selected
plus any other state which is as competent as the worst mevhbieesef states. This
achieves closure on the worst (i.e. highest) total-costesbking selected. Similarly, in
flexible priority BS, at each state, all the transitions witile same priority as the most
promising transition of that particular state are selecate that in FPBS, in contrast
to FDBS, if the beam width is stretched, it cannot be readplith the intendefl.

3.4 Synchronised beam search

As is described if§ 2, the classic BS algorithms were tailored for the bread#t-dixplo-
ration strategy. Below, we explain a way to do BS on top of fiest [10] exploration
algorithms. Broadly speaking, we separate the exploraticategy from the pruning
phase, so that the exploration is guided with a (possiblgdifit®) heuristic function.
This is particularly useful when checking reachability pecties on-the-fly.

Below, we inductively describ@-synchronisedBS, where? : > — IN is the func-
tion that guides the exploration axde {D,P,FD, FP} (denoting the BS variants de-
scribed previously). Le§ denote the set of states to be explored at rdufidiVe parti-
tion this set into equivalence classgs - - , ¢y, Wheren € IN, such tha§ = CoU---UcCn
andvse §.se Cj <= ¥(s) = j. The pruning algorithrxBS is subsequently applied
only onc, wherec, # 0 A Vj < k. ¢j = 0. According to the pruning algorithm (which
can possibly employ an evaluation function different fr@fy) some of the successors
of ¢ are selected, constituting the tThe next round starts wit§.1 = SU§ \ Ck.
Since synchronised beam search separates the explorkgarittam from the pruning
algorithm, it can be perfectly combined with the other vatiof BS introduced earlier.

3 Using different functions for guiding exploration and pinmin principle allows dealing with
multi-priced optimisation problems, cf. [1].

4“Round” i corresponds to a logical (i.e. not necessarily horizoriealg! in the state space,
which is processed in th& iteration of SSG algorithm.

Using any constant function &in SDBS would clearly result in BS with breadth-first
exploration strategy.

Figure 2 shows/-SDBS in de-
tail. The setsCurrent Next and Fig. 2. Synchronised detailed BS
Expanded:qntam pairs qf states ang %.9:= 0; Current:= {(s0,%.9)}
corresponding values, i.e.(s,s.g). Expanded= 0
The functionget fhax: Z(2) — Z, while Currents 0 do
given a set of states, returns one Next— 0 i:=—1: found:=F
of the states that has the high-
est f value. Here unify(X) and
updatéX,Y) are defined as follows:

while found= F do
i=i+1
G :={(s,s.0) € Currenf ¥(s) =i}

unify(X) = {(s,g) € X| V(s g) € if ¢i # 0 then

X. g < ¢} and updatéX,Y) = Current:= Current\ ¢
{(sg) €X|-3I(sg)eY.g <g}.In found:= T

this algorithm, a state will be revis-

; o) while|ci| > 3 do
ited only if it is reached via a path G =G\ {getfnax(C)}

with a lower cost than thg cost as-

signed to it (see als$3.2). for all s-2-¢ € ens) do
To mention a practically interest- §.9:=sg+cos(a)

ing candidate for, we temporar- Next:= NextJ {(s,5.g)}

ily deviate from our general setting. Expanded= unify(Expanded ¢
Consider the problem of finding a Current:= updatéunify(Next
path of minimal cost that leads to a Current), Expandedl

particular state in the search space.
Recall that the total-cost function ir
DBS can be decomposed infds) = g(s) + h(s), whereg(s) is the cost of the trace
leading from the root ta. If 4 (s) = g(s) in ¥-synchronised DBS, once the goal state is
found, searching can safely terminate. This is because @lsstates, f(s) = g(s) and
since the algorithm always follows paths with mininga{remember thagyy is mono-
tonic), states is reached before another stateiff g(s) < g(s'). We observe that in
g-SDBS no state is re-explored, because states with mirgrass taken first and thus
a state can be reached again only via paths with higher atfs&3.2). Bothg-SDBS
andg-SPBS have been used in our experiment$ 4f where minimal-time traces to a
particular state are searched for.

As another variant of synchronised search, we note thahgim@onotonidotal-cost
function f(s) = g(s) + h(s) (cf. § 3.2), f-SFDBS with arbitrany3 > 0, corresponds to
the well-knownA* search algorithm (e.g. see [10})Due to space constraints, we refer
to [13] for a proof of this relation.

for all se ¢ do

3.5 Discussions

Memory management is a challenging issue in SSG. Although BS reduces memory
usage due to cutting away parts of the state space, stilbeegbktates need to be ac-
cessed to guarantee the termination of SSG in case of cyt8e.LThis can be partially

5 The monotonicity assumption dhis necessary for optimality o%* [10].

counter-measured by taking into account specific charatitay of the problem at hand
and the properties that are to be checked:

1. When aiming at a reachability property (such as reachgluifia goal state, checking
invariants and hunting deadlock states), once a statdysatjigthe desired property is
reached the search can terminate and the witness trace gapdiéed. This however
cannot be extended to arbitrary properties.

2. If there are no cycles in the state space, there is in priaciplneed to check whether
a state has already been visited (in order to guaranteertatioin). Therefore, only the
states from the current level need to be kept and the resteeenoved from memof;
i.e. flushed to high latency media such as disks.

Heuristic functions and selecting the beam width ~ Effectiveness of BS hinges on
selecting good heuristic functions. Heuristic functioeavily depend on the problem
being solved. As our focus here is on exploration stratethiasutilise heuristics, we do
not discuss techniques to design the heuristic functicermsielves. Developing heuris-
tics constitutes a whole separate body of research and, \wenefer to a few of them.
Among others, [3,6,12] complement the work we present ia gaper, as they ex-
plain how to design heuristic functions when, e.g., analysiava programs or provide
approximate distance to deadlocks, etc.

Selecting the beam widtB is another challenge in using BS. The beam width in-
tuitively calibrates the time and memory usage of the atborion one hand and the
accuracy of the results on the other hand. Therefore, intipgathe time and memory
limits of a particular experiment determirfi2 To reduce the sensitivity of the results
to the exact value o8, flexible BS variants can be used. This, however, comes at the
price of losing a tight grip on the memory consumption (see &l3.3). For a general
discussion on selecting and its relation to the quality of answer see [12].

4 Experimental results
In this section we report our experimental resufts.

Cannibals and missionaries (C&M) probler a classic river crossing puzzle and pro-
duces state spaces with interesting structures: they icotjales, deadlocks and con-
fluent traces. Assume th@tmissionaries an@ cannibals stand on the left bank of a
river that they wish to cross. The goal is to find a schedulédoying all the cannibals
and all the missionaries across using a boat that can takeBipe¢ople at a time. The
condition is that the cannibals never outnumber the missien, on a shore or in the
boat. Moving the boat costs 1 time unit per passenger, andiglete find a minimal
cost path towards the goal. We usqu&RL implementation of BS and aP8\ im-
plementation of the depth-first branch-and-bound algorith solve this problem. The

6 In this case, some states may be revisited due to conflueestraence undesirably increasing
the search time.

7 The experiments have been performed on a single machineitbit Athlon 2.2 GHz CPU
and 1 GB RAM, running 8SE Linux 9.2. Seehttp://www.cwi.nl/ wijs/TIPSy for a
complete report along with specs.

results are shown in table 1. Sinp€RL and $IN count states in different ways, the
numbers of states of the experiments using different to@l®at comparable.

In uCRL, we first appliedy-SFDBS with constari (i.e. no estimation) with any
B > 0, denoted minimal cost search MCS in table 1. MCS is an exivausearch
method, where the states are ordered based on the cost neecEath them from
the initial state. This search is used to find the minimum neindd time units needed
to solve the problem (shown in thHResultcolumn). As a comparison, we have also
performed experiments withFN. In those cases, we followed the algorithm of [11],
a prominent technique to use heuristics withiiig The idea is that the LTL formula
that is checked is modified during verification to reflect tlestbsolution found so far.
This can effectively implement a branch-and-bound medmain SN, denoted DFS
BnB Prop in table 1. This algorithm avoids exhaustive searehit is complete.

Besides that we usegtSFDBS withh(s) = C(s) + M(s) + ((C(s) # M(s)) x (2 x
C)) as the heuristic part of DBS, whe@s) andM(s) are the numbers of cannibals and
missionaries on the left bank in staterespectively, andC(s) # M(s)) is a Boolean
expression returning 1 i€(s) # M(s), and 0 otherwise. In table 1, the column un-
derg-SFDBS shows the minimum number of time units needed to dblkgroblem
approximated by this search. The results show an examplehat van be achieved
when near-optimal solutions are acceptable. @&FDBS algorithm should ideally be
compared with other heuristic state space generation,teath as HSF-&N [4]. We
however leave this as future work.

Table 1. Experimental results C&M. Times are in min:sec. 0.0.t.: olutime (set to 12 hours);
0.0.m.: out of memory (set to 900 MB)

Problem [Resul HCRL MCS UCRL g-SFDBS SPIN DFS SPIN DFS BnB Prop|
(C,B) T # States | Time | T | B | # States| Time # States | Time | # States| Time
(3,2) 18 147 |00:03.80 18 [3| 142 |00:03.73] 28,535 |00:00.32 26,062 [00:00.29

(20,4) | 104 2,537 |00:05.3%2 106 (10| 2,191 |00:05.38| 445,801 |00:02.66 408,053 [00:02.34
(50,20) | 116 90,355 [00:20.18 120 |15| 17,361 | 00:11.45(12,647,00002:05.2412,060,30001:49.59
(100,10) | 292 49,141 |00:19.65 296 |10| 16,274 | 00:14.46|14,709,60(002:49.3213,849,30(002:23.34
(100,30) | 222 || 366,608 |01:05.79 228 |15 61,380 | 00:32.06| o0.0.m. | 0.0.m.| o0.0.m. | 0.0.m.
(300,30) | 680 || 1,008,43604:10.72 684 |15 205,556| 02:30.11| o0.0.m. 0.0.m. 0.0.m. 0.0.m.
(500,50) | 1,076|| 4,365,536/21:40.521,080 20| 685,293| 10:33.28/ o0.0.m. | 0.0.m.| o0.0.m. | 0.0.m.
(500,100)| 1,036|{17,248,97977:16.361,04(020{1,170,242 16:47.10| o0.0.m. | 0.0.m.| 0.0.m. | 0.0.m.
(1000,250) o.0.t. 0.0.t. o.0.t. [2,03220(5,317,561240:22.11 o0.0.m. 0.0.m. 0.0.m. 0.0.m.

Clinical Chemical Analyser (CCAs a case study taken from industry [15]: itis used to
analyse batches of test receipts on patient samples (lptasina, etc) that are uniquely
described by a triple which indicates the number of sampiesch fluid (see table 2).
We have extensively described the CCA case in [16].

Table 2 reports the results of applying MC$SDBS, g-SPBS andy-SFPBS to
solve the problem of scheduling the CCA. The result colunoviges the total-cost

(i.e. required time units) of the solution found. We remdr&ttall these searches are
tuned to find the optimal answer (for those cases where it wawk to us). In case of
g-SFPBS, the value dfo, 1) is fixed to(1,1). The benefit of flexible variants of BS is
thus clear here: A stable beam width is mostly sufficient. E\sv, as a draw-back we
observe that FPBS exhibits early state space explosiopamd to PBS?

We observe thafl is not directly related to the number of fluids in a test case.
We believe this can be due to the ordering of states whilech@ay, since a stablg
suffices when using the flexible SFPBS. We conclude this d&on with noting that
CCA provides a case study which can better be tackled usiogtgrBS, compared to
detailed BS variants.

Table 2. Experimental results CCA. 0.0.t.: out of time (set to 30 Ispur

Case|Resul MCS g-SDBS g-SPBS g-SFPBS
B | Time B |#States| Time (aﬁl)|#States* Time #States| Time

(3,1,1) 36 3,375 00:10.35| 25 1,461 |00:03.43 1,1 48 (00:03.03 821 00:03.70
(1,31) 39 13,194 | 00:30.48| 41 2,234 (00:03.93 1,1 | 179 |00:03.08 1,133 | 00:04.06
(6,2,2) 51 |[|341,704,32p1524:56.00 81 7,408 (00:07.7¢ 2,9 | 479 |00:03.06 45,402 |02:33.65
2,7 73 0.0.t. o.o.t. |75,0006,708,70%84:38.41 1,1 90 [00:02.99 122,449 | 04:02.94
(7,4,4) 75 0.0.t. o.0.t. 35,0003,801,60741:01.8Q 3,25|155,37908:14.66§20,666,509872:55.7]

5 Reated work

BS is extended to a complete search in [18], by using a newstlateture, called a beam
stack. Thereby, it is possible to achieve a range of seardt@a depth-first search
(B = 1) to breadth-first searcl(—). Considering our extensions for arbitrary state
spaces, it would be interesting to try to combine these two@gches.

Notable works on scheduling using formal method tools ateafid [11]. In [1],
Behrmann et al. have extended timed automata with lineaitg@ transitions and lo-
cations, resulting in BPAAL CORA tool. They deal with reachability analysis using the
standard branch-and-bound algorithm. A number of basidoeafion techniques can
be used for branching, and bounding is done based on hearisti[11], the depth-first
branch-and-bound technique is used for schedulingrim SSee alsg 4.

In [17], we report on a distributed implementation of the Biants proposed in
this paper, where a number of machines together perforne thegrch algorithms.

6 Conclusions

In this paper, we extended and made available an existinglséechnique to be used
for quantitative analysis within a setting used for systerification.

8 In FPBS once the beam width is stretched, it cannot be refadjus its initial value, seg 3.3.

Our experiments showed the usefulness and flexibility odeéhextensions. We ob-

served that BS can be tuned to encompass some other (hgusistirch algorithms,
thus providing a flexible state space generation framework.

Futurework Comparing our implementation with other heuristic statecgpgener-
ation tools, such as HSF-SPIN, is certainly a next step fienilork. Also, BS can in
principle deal with infinite state spaces given that the is¢iarfunction does not cut
away all finite paths. This application of BS has yet to be stigated.

Acknowledgements/e are grateful to Jaco van de Pol and Michael Weber for theightful

co

mments on the paper, and to Bert Lisser for implementimts gl BS variants.

References

12.

13.

14.

15.
16.

17.

18.

. G. Behrmann, K. Larsen, and J. Rasmussen. Optimal s¢hgduding priced timed au-
tomata.SIGMETRICS Perform. Eval. Re82(4):34-40, 2005.

. S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lissad J. van de PoluCRL:
A toolset for analysing algebraic specifications. GAV’01, volume 2102 ofLNCS pages
250-254, 2001.

. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directedieitjstate model checking in the
validation of communication protocolSTTT 5(2):247-267, 2004.

. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directedieitpnodel checking with HSF-
SPIN. InSPIN '0], pages 57-79. Springer, 2001.

. P. Godefroid and S. Khurshid. Exploring very large stagces using genetic algorithms. In
TACAS’02 volume 2280 oL NCS pages 266—280. Springer, 2002.

. A. Groce and W. Visser. Heuristics for model checking Jaegrams.STTT 6(4):260-276,

2004.

. S. Oechsner and O. Rose. Scheduling cluster tools ustegefil beam search and recipe

comparison. IrProc. 2005 Winter Simulation Conferengages 2203-2210. IEEE, 2005.

. D. Peled. Ten years of partial order reduction.CIAV '98 volume 1427 ofLNCS pages

17-28. Springer, 1998.

. M. Pinedo.Scheduling: Theory, algorithms, and systefgentice-Hall, 1995.
10.
11.

S. Russell and P. Norvidrtificial intelligence: A modern approactPrentice-Hall, 1995.

T. Ruys. Optimal scheduling using Branch-and-Bounth 8®IN 4.0. INSPIN'03 volume
2648 ofLNCS pages 1-17, 2003.

P. Si Ow and E. Morton. Filtered beam search in schedulitily J. Production Res26:35—
62, 1988.

M. Torabi Dashti and A.J. Wijs. Pruning state spaces witiended beam search. Technical
Report SEN-R0610, CWI, 2006tp.cwi.nl/CWIreports/SEN/SEN-R0610.pdf.

J. Valente and R. Alves. Filtered and recovering beantBedgorithms for the early/tardy
scheduling problem with no idle tim&€omput. Ind. Eng48(2):363-375, 2005.

S. WeberDesign of Real-Time supervisory control systefisD thesis, TU/e, 2003.

A. Wijs, J. van de Pol, and E. Bortnik. Solving schedulprgblems by untimed model
checking. InProc. FMICS’'05 pages 54—61. ACM Press, 2005.

A.J. Wijs and B. Lisser. Distributed extended beam $efmcquantitative model checking.
In MoChArt'06 volume 4428 of.NAI, pages 165-182, 2007.

R. Zhou and E. Hansen. Beam-stack search: Integratuidgrbaking with beam search. In
Proc. ICAPS’05 pages 90-98. AAAI, 2005.

