
Pruning State Spaces with Extended Beam Search

M. Torabi Dashti and A. J. Wijs

CWI, Amsterdam
{dashti, wijs}@cwi.nl

Abstract. This paper focuses on using beam search, a heuristic search algorithm,
for pruning state spaces while generating. The original beam search is adapted to
the state space generation setting and two new search variants are devised. The
resulting framework encompasses some known algorithms, such asA∗. We also
report on two case studies based on an implementation of beamsearch inµCRL.

1 Introduction

State space explosion is still a major problem in the area of model checking. Over the
years a number of techniques have emerged to prune, while generating, parts of the state
space that are not relevant given the task at hand. Some of these techniques, such as par-
tial order reduction algorithms (e.g. see [8]), guarantee that no essential information is
lost after pruning. Alternatively, this paper focuses mainly on heuristic pruning methods
which heavily reduce the generation time and memory consumption but generate only
an approximate (partial) state space. The idea is that a user-supplied heuristic function
guides the generation such that ideally only relevant partsof the state space are actually
explored. This is, in fact, at odds with the core idea of modelchecking when studying
qualitative properties of systems, i.e. to exhaustively search the complete state space to
find any corner case bug. However, heuristic pruning techniques can very well target
performance analysis problems as approximate answers are usually sufficient.

In this paper, we investigate howbeam searchcan be integrated into the state space
generation setting. Beam search (BS) is a heuristic method for combinatorial optimisa-
tion problems, which has extensively been studied in artificial intelligence and opera-
tions research, e.g. see [9, 12]. BS is similar to breadth-first search as it progresses level
by level through a highly structured search tree containingall possible solutions to a
problem, but it does not explore all the encountered nodes. At each level, all the nodes
are evaluated using a heuristic cost (or priority) functionbut only a fixed number of
them is selected for further examination. This aggressive pruning heavily decreases the
generation time, but may in general miss essential parts of the search tree, since wrong
decisions may be made while pruning. Therefore, BS has so farbeen mainly used in
searching trees with a high density of goal nodes. Scheduling problems, for instance,
have been perfect targets for using BS as their goal is to optimally schedule a certain
number of jobs and resources, while near-optimal schedules, which densely populate
the tree, are in practice good enough.

The idea of using BS in state space generation is an attempt towards integrating
functional analysis, to which state spaces are usually subjected, and quantitative anal-
ysis. Since model checkers, such as SPIN, UPPAAL andµCRL, which generate these

state spaces, usually have highly expressive input languages, BS for state spaces can
be applied in a more general framework compared to its traditional use. Applying BS
to search state spaces tightly relates to directed model checking (DMC) [3] and guided
model checking (for timed automata) [1], where heuristics are used to guide the search
for finding counter-examples to a functional property (usually in LTL) with a minimal
exploration of the state space. UsingA∗ [3] and genetic algorithms [5] to guide the
search are among notable works in this field. In contrast to DMC, we generate a partial
state space in which an arbitrary property can be checked afterwards (the result would
not be exact, hence being useful when near-optimal solutions suffice). However, there
are strong similarities as well:A∗ can be seen as an instantiation of BS (see§ 3.4).
Contributions We motivate and thoroughly discuss adapting the BS techniques to
deal with arbitrary structures of state spaces. Next, we extend the classic BS in two di-
rections. First, we proposeflexibleBS, which, broadly speaking, does not stick to a fixed
number of states to be selected at each search level. This partially mitigates the problem
of determining this exact fixed number in advance. Second, weintroduce the notion of
synchronisedBS, which aims at separating the heuristic pruning phase from the under-
lying exploration strategy. Combinations of these variants create a spectrum of search
algorithms that, as will be described, encompasses some known search techniques, such
asA∗. We have implemented these variants of BS in theµCRL state space generation
toolset [2]. Experimental results for two scheduling case studies are reported.
Road map BS is described in§ 2. § 3 deals with the adaptation of existing BS vari-
ants to the state space generation setting. There we also propose our extensions to BS.
Memory management and choosing heuristics are also discussed there.§ 4 reports on
two case studies,§ 5 presents our related work and§ 6 concludes the paper.

2 Beam search

Beam search [9, 12] is a heuristic search algorithm for combinatorial optimisation prob-
lems, which has extensively been applied to scheduling problems, for example in sys-
tems designed for job shop environments [12].

BS is similar to breadth-first search as it progresses level by level. At each level of
the searchtree(in § 3 we extend BS to handle cycles), it uses a heuristic evaluation func-
tion to estimate the promise of encountered nodes1, while thegoal is to find a path from
the root of the tree to a leaf node that possesses the minimal evaluation value among all
the leafs. In each level, only theβ most promising nodes are selected for further exam-
ination and the other nodes are permanently discarded. Thebeam widthparameterβ is
fixed to a value before searching starts. Because of this aggressive pruning the search
time is a linear function ofβ and is thus heavily decreased. However, since wrong deci-
sions may be made while pruning, BS is neither complete, i.e.is not guaranteed to find
a solution when there is one, nor optimal, i.e. does not guarantee finding an optimal
solution. To limit the possibility of wrong decisions,β can be increased at the cost of
increasing the required computational effort and memory.

1 In this section we use nodes and edges, as opposed to states and transitions, to distinguish
between the traditional setting of BS and our adaptations.

Two types of evaluation functions have traditionally been used for BS [12]:priority
evaluation functions andtotal-costevaluation functions, which lead to thepriority and
detailedBS variants, respectively. In priority BS at each node the evaluation function
calculates a priority for each successor node and selects based on those priorities. At the
root of the search tree, up toβ most promising successors (i.e. those with the highest
priorities) are selected, while in each subsequent level only one successor with the high-
est priority is selected per examined node. In detailed BS ateach node the evaluation
function calculates an estimate of the total-cost of the best path that can be found con-
tinuing from the current node. At each level up toβ most promising nodes (i.e. those
with the lowest total-cost values) are selected regardlessof who their parent nodes are.
Whenβ → ∞, detailed and priority BS behave as exhaustive breadth-first search.

3 Adapting beam search for state space generation

Motivation In its traditional setting, BS is typically applied on highly structured
search trees, which contain all possible orderings of a given number of jobs, e.g. see [7,
14]. Such a search tree starts withn jobs to be scheduled, which means that the root
of the tree hasn outgoing transitions. Each node has exactlyn−k outgoing transitions,
wherek is the level in the tree where the node appears. State spaces,however, sup-
posedly contain information on all possible behaviours of asystem. Therefore, they
may contain cycles, confluence of traces, and have more complex structures than the
well-structured search trees usually subjected to BS. Thisnecessitates modifying the
BS techniques to deal with arbitrary structures of state spaces. Moreover, the BS algo-
rithms search for a particular node (or schedule) in the search space, while in (and after)
generating state spaces one might desire to study a propertybeyond simple reachabil-
ity. We therefore extend BS to a state spacegeneration(SSG) setting, as opposed to its
traditional setting that focuses only onsearching. The notion of a particular “goal” (cf.
§ 2) is thus removed from the adapted BS (see§ 3.5 for possible optimisations when re-
stricting BS to verify reachability properties). This along with the necessary machinery
for handling cycles raise memory management issues in BS, that we discuss in§ 3.5.

Below, DBS and PBS correspond, respectively, to the detailed and priority beam
searches extended to deal with arbitrary state spaces (§ 3.1 and§ 3.2). The F and S
prefixes refer to the flexible and synchronised variants (§ 3.3 and§ 3.4). we start with
introducing labelled transition systems.
Labelled transition system (LTS) is a tuple(Σ ,s0,Act,Tr), whereΣ is a set of states,
s0 ∈ Σ is the initial state,Act is a finite set of action labels andTr ⊆ Σ ×Act×Σ . We
write s a

−−→s′ when(s,a,s′) ∈ Tr. In this paper we consider LTSs with finiteΣ .

3.1 Priority beam search for state space generation

Below we first present the PBS algorithm and then describe andmotivate the changes
that we have made to the traditional priority BS.

PBS is shown in figure 1. The setsCurrent, Next andExpandeddenote, respec-
tively, the set of states of the current level, the next leveland the set of states that have
been expanded. The user-supplied functionpriority : Act→ Z provides the priority of

actions, as opposed to states.2 We motivate this deviation by noting thatjobsin the BS
terminology correspond more naturally withactionsin LTSs.

Fig. 1. Priority BS
Current := {s0}
Expanded:= /0; Buffer:= /0
level:= 0; limit := α
while Current\Expanded6= /0 do

Next:= /0
for all s∈ Current\Expandeddo

for all s a
−−→s′ ∈ en(s) do

if priority(a) > priomin(Buffer) then
if |Buffer| = limit then

Buffer:= Buffer\
{getpriomin(Buffer)}

Buffer:= Buffer∪ {s a−−→s′}
Next:= Next∪ nxt(s,Buffer)
Buffer:= /0

Expanded:= Expanded∪ Current
Current := Next
level:= level+1
if level= l then limit := 1

The setBuffer temporarily keeps
seemingly promising transitions. The
function priomin : P(Tr) → Z re-
turns the lowest priority of the ac-
tions of a given set of transitions,
with priomin(/0) = −∞. The func-
tion getpriomin : P(Tr) → Tr, given
a set of transitions, returns one of
the transitions having an action with
the lowest priority. Expanding the set
Current\Expandedin thewhile loop
ensures that no state is revisited in
case cycles or confluent traces exist
in the search space. The algorithm
terminates when it has explored all
the states in its beam.

In priority BS, originally, up toβ
children of the root are selected. The
resulting beam of widthβ is then
maintained by expanding only one
child per node in subsequent levels.
In state spaces, however, the root has typically much less outgoing transitions than the
average branching factor of the state space. Fixing the beamwidth at such an early stage
is therefore not reasonable.

To mitigate this problem, instead ofβ , the algorithm of figure 1 is provided with the
pair (α, l), whereα, l ∈N andα l = β . The idea is that the algorithm uses thepriority
function to prune non-promising states from the very first level, but in two phases:
before reaching nearlyβ states in a single level, it considers the most promisingα
transitions for further expansion, but after that, it expands only one child per state.

3.2 Detailed beam search for state space generation

In detailed BS a total-cost evaluation functionf : Σ →N is used to guide the search.
This function is decomposed intof (s) = g(s)+ h(s). Theg(s) function represents the
cost taken to reachs from the initial states0, which is defined asg(s) = g(s′)+cost(a) if
s′ a−−→s. The user-supplied functioncost: Act→N assigns weights to actions that can,
e.g., denote the time needed to perform different jobs in a scheduling problem. These
weights are fixed before search starts. Since the range ofcostis non-negative numbers,
we haves→∗ s′ =⇒ g(s′)≥ g(s). The user-supplied functionh(s) estimates the cost it
would take to efficiently reach a goal state (or complete the schedule) continuing froms.

2 In general,priority can also depend on states:priority : Σ → Act→Z. In this paper, we only
consider fixed priorities, which resemblesdispatchscheduling in AI terminology [12].

Thus, for a goal states, h(s) = 0. The f function is calledmonotonicif s→∗ s′ implies
f (s) ≤ f (s′).

The original idea of detailed BS does not need to change much to fit into the SSG
setting except for when handling cycles. When exploring a cyclic LTS, to guarantee the
termination of the algorithm, it is necessary to store the set of explored states to avoid
exploring a state more than once (cf. theExpandedset in figure 1). However, if a state
is reached via a path with a lower cost, the state has to be re-examined. This is because
the total-cost of each state depends on the cost to reach thatstate from the root, cf.§ 3.4.

3.3 Flexible beam search

A major issue that still remains unaddressed in the BS adaptations of § 3.1 and 3.2 is
the tie-breakingproblem: How should equally competent candidates, e.g. having the
samef values, be pruned? These selections are beyond the influenceof the evaluation
function and can undesirably make the algorithm non-deterministic. Hence, we propose
two variants of BS that we callflexible detailedandflexible prioritybeam searches, in
which the beam width can change during state space generation.

In flexible detailed BS, at each level, up toβ most promising states are selected
plus any other state which is as competent as the worst memberof theseβ states. This
achieves closure on the worst (i.e. highest) total-cost value being selected. Similarly, in
flexible priority BS, at each state, all the transitions withthe same priority as the most
promising transition of that particular state are selected. Note that in FPBS, in contrast
to FDBS, if the beam width is stretched, it cannot be readjusted to the intendedβ .

3.4 Synchronised beam search

As is described in§ 2, the classic BS algorithms were tailored for the breadth-first explo-
ration strategy. Below, we explain a way to do BS on top of best-first [10] exploration
algorithms. Broadly speaking, we separate the explorationstrategy from the pruning
phase, so that the exploration is guided with a (possibly different3) heuristic function.
This is particularly useful when checking reachability properties on-the-fly.

Below, we inductively describeG -synchronised xBS, whereG : Σ →N is the func-
tion that guides the exploration andx ∈ {D,P,FD,FP} (denoting the BS variants de-
scribed previously). Let̂Si denote the set of states to be explored at roundi. 4 We parti-
tion this set into equivalence classesc0, · · · , cn, wheren∈N, such that̂Si = c0∪·· ·∪cn

and∀s∈ Ŝi. s∈ c j ⇐⇒ G (s) = j. The pruning algorithmxBS is subsequently applied
only onck whereck 6= /0 ∧ ∀ j < k. c j = /0. According to the pruning algorithm (which
can possibly employ an evaluation function different fromG), some of the successors
of ck are selected, constituting the setŜ. The next round starts witĥSi+1 = Ŝ∪ Ŝi \ ck.
Since synchronised beam search separates the exploration algorithm from the pruning
algorithm, it can be perfectly combined with the other variants of BS introduced earlier.

3 Using different functions for guiding exploration and pruning in principle allows dealing with
multi-priced optimisation problems, cf. [1].

4 “Round” i corresponds to a logical (i.e. not necessarily horizontal)level in the state space,
which is processed in theith iteration of SSG algorithm.

Using any constant function asG in SDBS would clearly result in BS with breadth-first
exploration strategy.

Fig. 2. Synchronised detailed BS

s0.g := 0; Current:= {〈s0,s0.g〉}
Expanded:= /0
while Current 6= /0 do

Next:= /0; i := −1; found:= F

while found= F do
i := i +1
ci := {〈s,s.g〉 ∈ Current| G (s) = i}
if ci 6= /0 then

Current:= Current\ ci

found:= T

while |ci | > β do
ci := ci \ {get fmax(ci)}

for all s∈ ci do
for all s a

−−→s′ ∈ en(s) do
s′.g := s.g+cost(a)
Next:= Next∪ {〈s′,s′.g〉}

Expanded:= unify(Expanded∪ ci)
Current:= update(unify(Next∪

Current),Expanded)

Figure 2 showsG -SDBS in de-
tail. The sets Current, Next and
Expandedcontain pairs of states and
correspondingg values, i.e.〈s,s.g〉.
The functionget fmax : P(Σ) → Σ ,
given a set of states, returns one
of the states that has the high-
est f value. Here unify(X) and
update(X,Y) are defined as follows:
unify(X) = {〈s,g〉 ∈ X| ∀〈s,g′〉 ∈
X. g ≤ g′} and update(X,Y) =
{〈s,g〉 ∈ X| ¬∃〈s,g′〉 ∈Y. g′ ≤ g}. In
this algorithm, a state will be revis-
ited only if it is reached via a path
with a lower cost than theg cost as-
signed to it (see also§ 3.2).

To mention a practically interest-
ing candidate forG , we temporar-
ily deviate from our general setting.
Consider the problem of finding a
path of minimal cost that leads to a
particular state in the search space.
Recall that the total-cost function in
DBS can be decomposed intof (s) = g(s)+ h(s), whereg(s) is the cost of the trace
leading from the root tos. If G (s) = g(s) in G -synchronised DBS, once the goal state is
found, searching can safely terminate. This is because at a goal states, f (s) = g(s) and
since the algorithm always follows paths with minimalg (remember thatg is mono-
tonic), states is reached before another states′ iff g(s) ≤ g(s′). We observe that in
g-SDBS no state is re-explored, because states with minimalg are taken first and thus
a state can be reached again only via paths with higher costs (cf. § 3.2). Bothg-SDBS
andg-SPBS have been used in our experiments of§ 4, where minimal-time traces to a
particular state are searched for.

As another variant of synchronised search, we note that given amonotonictotal-cost
function f (s) = g(s)+ h(s) (cf. § 3.2), f -SFDBS with arbitraryβ > 0, corresponds to
the well-knownA∗ search algorithm (e.g. see [10]).5 Due to space constraints, we refer
to [13] for a proof of this relation.

3.5 Discussions

Memory management is a challenging issue in SSG. Although BS reduces memory
usage due to cutting away parts of the state space, still explored states need to be ac-
cessed to guarantee the termination of SSG in case of cyclic LTSs. This can be partially

5 The monotonicity assumption onf is necessary for optimality ofA∗ [10].

counter-measured by taking into account specific characteristics of the problem at hand
and the properties that are to be checked:
1. When aiming at a reachability property (such as reachability of a goal state, checking
invariants and hunting deadlock states), once a state satisfying the desired property is
reached the search can terminate and the witness trace can bereported. This however
cannot be extended to arbitrary properties.
2. If there are no cycles in the state space, there is in principle no need to check whether
a state has already been visited (in order to guarantee termination). Therefore, only the
states from the current level need to be kept and the rest can be removed from memory6,
i.e. flushed to high latency media such as disks.
Heuristic functions and selecting the beam width Effectiveness of BS hinges on
selecting good heuristic functions. Heuristic functions heavily depend on the problem
being solved. As our focus here is on exploration strategiesthat utilise heuristics, we do
not discuss techniques to design the heuristic functions themselves. Developing heuris-
tics constitutes a whole separate body of research and, here, we refer to a few of them.
Among others, [3, 6, 12] complement the work we present in this paper, as they ex-
plain how to design heuristic functions when, e.g., analysing Java programs or provide
approximate distance to deadlocks, etc.

Selecting the beam widthβ is another challenge in using BS. The beam width in-
tuitively calibrates the time and memory usage of the algorithm on one hand and the
accuracy of the results on the other hand. Therefore, in practice the time and memory
limits of a particular experiment determineβ . To reduce the sensitivity of the results
to the exact value ofβ , flexible BS variants can be used. This, however, comes at the
price of losing a tight grip on the memory consumption (see also§ 3.3). For a general
discussion on selectingβ and its relation to the quality of answer see [12].

4 Experimental results

In this section we report our experimental results.7

Cannibals and missionaries (C&M) problemis a classic river crossing puzzle and pro-
duces state spaces with interesting structures: they contain cycles, deadlocks and con-
fluent traces. Assume thatC missionaries andC cannibals stand on the left bank of a
river that they wish to cross. The goal is to find a schedule forferrying all the cannibals
and all the missionaries across using a boat that can take up to B people at a time. The
condition is that the cannibals never outnumber the missionaries, on a shore or in the
boat. Moving the boat costs 1 time unit per passenger, and we wish to find a minimal
cost path towards the goal. We use aµCRL implementation of BS and a SPIN im-
plementation of the depth-first branch-and-bound algorithm to solve this problem. The

6 In this case, some states may be revisited due to confluent traces, hence undesirably increasing
the search time.

7 The experiments have been performed on a single machine witha 64 bit Athlon 2.2 GHz CPU
and 1 GB RAM, running SUSE Linux 9.2. Seehttp://www.cwi.nl/~wijs/TIPSy for a
complete report along with specs.

results are shown in table 1. SinceµCRL and SPIN count states in different ways, the
numbers of states of the experiments using different tools are not comparable.

In µCRL, we first appliedg-SFDBS with constanth (i.e. no estimation) with any
β > 0, denoted minimal cost search MCS in table 1. MCS is an exhaustive search
method, where the states are ordered based on the cost neededto reach them from
the initial state. This search is used to find the minimum number of time units needed
to solve the problem (shown in theResultcolumn). As a comparison, we have also
performed experiments with SPIN. In those cases, we followed the algorithm of [11],
a prominent technique to use heuristics within SPIN. The idea is that the LTL formula
that is checked is modified during verification to reflect the best solution found so far.
This can effectively implement a branch-and-bound mechanism in SPIN, denoted DFS
BnB Prop in table 1. This algorithm avoids exhaustive search, yet it is complete.

Besides that we usedg-SFDBS withh(s) = C(s)+ M(s)+ (〈C(s) 6= M(s)〉× (2×
C)) as the heuristic part of DBS, whereC(s) andM(s) are the numbers of cannibals and
missionaries on the left bank in states, respectively, and〈C(s) 6= M(s)〉 is a Boolean
expression returning 1 ifC(s) 6= M(s), and 0 otherwise. In table 1, theT column un-
derg-SFDBS shows the minimum number of time units needed to solvethe problem
approximated by this search. The results show an example of what can be achieved
when near-optimal solutions are acceptable. Ourg-SFDBS algorithm should ideally be
compared with other heuristic state space generation tools, such as HSF-SPIN [4]. We
however leave this as future work.

Table 1. Experimental results C&M. Times are in min:sec. o.o.t.: outof time (set to 12 hours);
o.o.m.: out of memory (set to 900 MB)

Problem Result µCRL MCS µCRL g-SFDBS SPIN DFS SPIN DFS BnB Prop.

(C,B) T # States Time T β # States Time # States Time # States Time

(3,2) 18 147 00:03.80 18 3 142 00:03.73 28,535 00:00.32 26,062 00:00.29

(20,4) 104 2,537 00:05.32 106 10 2,191 00:05.38 445,801 00:02.66 408,053 00:02.34

(50,20) 116 90,355 00:20.15 120 15 17,361 00:11.45 12,647,00002:05.2512,060,30001:49.59

(100,10) 292 49,141 00:19.65 296 10 16,274 00:14.46 14,709,60002:49.3213,849,30002:23.34

(100,30) 222 366,608 01:05.79 228 15 61,380 00:32.06 o.o.m. o.o.m. o.o.m. o.o.m.

(300,30) 680 1,008,436 04:10.72 684 15 205,556 02:30.11 o.o.m. o.o.m. o.o.m. o.o.m.

(500,50) 1,076 4,365,536 21:40.521,080 20 685,293 10:33.28 o.o.m. o.o.m. o.o.m. o.o.m.

(500,100) 1,036 17,248,97977:16.361,040 20 1,170,242 16:47.10 o.o.m. o.o.m. o.o.m. o.o.m.

(1000,250) o.o.t. o.o.t. o.o.t. 2,032 20 5,317,561240:22.11 o.o.m. o.o.m. o.o.m. o.o.m.

Clinical Chemical Analyser (CCA)is a case study taken from industry [15]: it is used to
analyse batches of test receipts on patient samples (blood,plasma, etc) that are uniquely
described by a triple which indicates the number of samples of each fluid (see table 2).
We have extensively described the CCA case in [16].

Table 2 reports the results of applying MCS,g-SDBS,g-SPBS andg-SFPBS to
solve the problem of scheduling the CCA. The result column provides the total-cost

(i.e. required time units) of the solution found. We remark that all these searches are
tuned to find the optimal answer (for those cases where it was known to us). In case of
g-SFPBS, the value of(α, l) is fixed to(1,1). The benefit of flexible variants of BS is
thus clear here: A stable beam width is mostly sufficient. However, as a draw-back we
observe that FPBS exhibits early state space explosion, compared to PBS.8

We observe thatβ is not directly related to the number of fluids in a test case.
We believe this can be due to the ordering of states while searching, since a stableβ
suffices when using the flexible SFPBS. We conclude this discussion with noting that
CCA provides a case study which can better be tackled using priority BS, compared to
detailed BS variants.

Table 2. Experimental results CCA. o.o.t.: out of time (set to 30 hours)

Case Result MCS g-SDBS g-SPBS g-SFPBS

β Time β #States Time (α , l) #States Time #States Time

(3,1,1) 36 3,375 00:10.35 25 1,461 00:03.43 1,1 48 00:03.03 821 00:03.70

(1,3,1) 39 13,194 00:30.48 41 2,234 00:03.93 1,1 179 00:03.08 1,133 00:04.06

(6,2,2) 51 341,704,3221524:56.00 81 7,408 00:07.76 2,9 479 00:03.06 45,402 02:33.65

(1,2,7) 73 o.o.t. o.o.t. 75,0006,708,70584:38.41 1,1 90 00:02.99 122,449 04:02.94

(7,4,4) 75 o.o.t. o.o.t. 35,0003,801,60741:01.80 3,25 155,37908:14.6620,666,509872:55.71

5 Related work

BS is extended to a complete search in [18], by using a new datastructure, called a beam
stack. Thereby, it is possible to achieve a range of searches, from depth-first search
(β = 1) to breadth-first search (β → ∞). Considering our extensions for arbitrary state
spaces, it would be interesting to try to combine these two approaches.

Notable works on scheduling using formal method tools are [1] and [11]. In [1],
Behrmann et al. have extended timed automata with linearly priced transitions and lo-
cations, resulting in UPPAAL CORA tool. They deal with reachability analysis using the
standard branch-and-bound algorithm. A number of basic exploration techniques can
be used for branching, and bounding is done based on heuristics. In [11], the depth-first
branch-and-bound technique is used for scheduling in SPIN. See also§ 4.

In [17], we report on a distributed implementation of the BS variants proposed in
this paper, where a number of machines together perform these search algorithms.

6 Conclusions

In this paper, we extended and made available an existing search technique to be used
for quantitative analysis within a setting used for system verification.

8 In FPBS once the beam width is stretched, it cannot be readjusted to its initial value, see§ 3.3.

Our experiments showed the usefulness and flexibility of these extensions. We ob-
served that BS can be tuned to encompass some other (heuristic) search algorithms,
thus providing a flexible state space generation framework.
Future work Comparing our implementation with other heuristic state space gener-
ation tools, such as HSF-SPIN, is certainly a next step for this work. Also, BS can in
principle deal with infinite state spaces given that the heuristic function does not cut
away all finite paths. This application of BS has yet to be investigated.

AcknowledgementsWe are grateful to Jaco van de Pol and Michael Weber for their insightful
comments on the paper, and to Bert Lisser for implementing parts of BS variants.

References

1. G. Behrmann, K. Larsen, and J. Rasmussen. Optimal scheduling using priced timed au-
tomata.SIGMETRICS Perform. Eval. Rev., 32(4):34–40, 2005.

2. S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lisser, and J. van de Pol.µCRL:
A toolset for analysing algebraic specifications. InCAV’01, volume 2102 ofLNCS, pages
250–254, 2001.

3. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking in the
validation of communication protocols.STTT, 5(2):247–267, 2004.

4. S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed explicit model checking with HSF-
SPIN. InSPIN ’01, pages 57–79. Springer, 2001.

5. P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic algorithms. In
TACAS’02, volume 2280 ofLNCS, pages 266–280. Springer, 2002.

6. A. Groce and W. Visser. Heuristics for model checking Javaprograms.STTT, 6(4):260–276,
2004.

7. S. Oechsner and O. Rose. Scheduling cluster tools using filtered beam search and recipe
comparison. InProc. 2005 Winter Simulation Conference, pages 2203–2210. IEEE, 2005.

8. D. Peled. Ten years of partial order reduction. InCAV ’98, volume 1427 ofLNCS, pages
17–28. Springer, 1998.

9. M. Pinedo.Scheduling: Theory, algorithms, and systems. Prentice-Hall, 1995.
10. S. Russell and P. Norvig.Artificial intelligence: A modern approach. Prentice-Hall, 1995.
11. T. Ruys. Optimal scheduling using Branch-and-Bound with SPIN 4.0. InSPIN’03, volume

2648 ofLNCS, pages 1–17, 2003.
12. P. Si Ow and E. Morton. Filtered beam search in scheduling. Intl. J. Production Res., 26:35–

62, 1988.
13. M. Torabi Dashti and A.J. Wijs. Pruning state spaces withextended beam search. Technical

Report SEN-R0610, CWI, 2006.ftp.cwi.nl/CWIreports/SEN/SEN-R0610.pdf.
14. J. Valente and R. Alves. Filtered and recovering beam search algorithms for the early/tardy

scheduling problem with no idle time.Comput. Ind. Eng., 48(2):363–375, 2005.
15. S. Weber.Design of Real-Time supervisory control systems. PhD thesis, TU/e, 2003.
16. A. Wijs, J. van de Pol, and E. Bortnik. Solving schedulingproblems by untimed model

checking. InProc. FMICS’05, pages 54–61. ACM Press, 2005.
17. A.J. Wijs and B. Lisser. Distributed extended beam search for quantitative model checking.

In MoChArt’06, volume 4428 ofLNAI, pages 165–182, 2007.
18. R. Zhou and E. Hansen. Beam-stack search: Integrating backtracking with beam search. In

Proc. ICAPS’05, pages 90–98. AAAI, 2005.

