From ¢ to uCRL: Combining Perfor mance and Functional Analysis

Anton Wijs
CWI, Department of Software Engineering,
P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

wijs@cwi.nl

Wan Fokkink

Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 10814, 1081 HV Amsterdam, The Netherlands
wanf@cs.vu.nl

Abstract

In this paper we first give short overviews of the mod-
elling languages timed x (xt) and uCRL. Then we present
a general translation scheme to translate x; specifications
to uCRL specifications. As x; targets performance anal-
ysis and pCRL targets functional analysis of systems, this
translation scheme provides a way to perform both kinds of
analysis on a given x system model. Finally, we give an
example of a . system and show how the translation works
on a concrete case study.

1 Introduction

Performance analysis is traditionally based on tech-
niques such as simulation, Markov chains and queueing net-
works. By contrast, main approaches for verifying func-
tional properties are model checking, where temporal for-
mulas are validated by means of an explicit state space
search, and theorem proving, which is largely based on ax-
iomatic reasoning at the symbolic level.

In two earlier papers, the specification language LO-
TOS [10] was used for performance analysis. LOTOS is a
process algebraic language with abstract data types, which
was originally designed for functional analysis. Hermanns
and Katoen [23] verified performance properties of a LO-
TOS specification of a telephone system; Garavel and Her-
manns [19] introduced a general approach to carry out per-
formance analysis within the framework of LOTOS. They
introduce timing information into a LOTOS specification,
expressing that certain events are delayable by some ran-
dom delay, captured by an exponential distribution. From
this extended LOTOS specification they generate an inter-
active Markov chain, which is basically a labelled transition

system containing both actions and positive reals as labels,
where the positive reals denote delays. They explain how
the CADP toolset [15], which is actually meant for func-
tional verification of LOTOS specifications, can be used to
also carry out performance analysis with respect to inter-
active Markov chains. Although the approach of Garavel
and Hermanns is promising, it is difficult if not impossible
to apply full-blown performance analysis techniques in a
functional verification formalism like LOTOS.

In this paper we propose another approach to bridge the
gap between performance and functional analysis. Similar
to Garavel and Hermanns, we exploit the fact that speci-
fication languages for performance and functional analysis
tend to have a lot in common, so that a translation from one
specification language to the other is quite feasible. How-
ever, we propose to keep the performance and the functional
analysis separate, in environments targeted to these analy-
ses. Thus we are in principle able to carry out full-blown
performance as well as functional analysis.

Our work is closest in spirit to TwoTowers [6], which isa
tool that combines performance and functional analysis. It
has a single input language, based on the stochastic process
algebra EMPA [5]. Performance analysis is based on simu-
lation and reward Markov chains, while functional analysis
is performed by the symbolic model checker nuSMV [14].

x [2] is a modelling language for the specification of
discrete-event, continuous or combined, so-called hybrid,
systems. It is based on the process algebra CSP [24], and
contains some predefined data types. It targets performance
analysis of timed systems by means of simulation tech-
nigques to estimate throughput and cycle time. A subset of
the language y;, restricted to specify only discrete-event sys-
tems, is called timed x, or x;. Currently there are no tools
available for using the language x (they are being devel-
oped), but predecessors of the language and their simula-

tors have been successfully applied to a large number of
industrial cases, such as an integrated circuit manufacturing
plant, a brewery and process industry plants, see e.g. [1].

#CRL [17] is a modelling language for the specification
of discrete-event systems. It is based on the process algebra
ACP [4], extended with abstract data types [27]. It targets
functional analysis of distributed systems and communica-
tion protocols, by means of simulation, model checking and
theorem proving. The verification environment of uCRL to-
gether with the model checker CADP, which can serve as a
back-end to 4CRL, have been used to analyse for instance
an in-flight data acquisition unit [18] and a distributed sys-
tem for lifting trucks [22]. Moreover, a homegrown theorem
prover has been developed for uCRL [16].

Recently, in [11] the x; specification of a turntable [12]
was translated to three different specification formalisms:
UpPAAL, SPIN and uCRL. While translating to uCRL, it
was concluded, that x; and pCRL are quite closely related,
and the development started of a general translation scheme
from . to uCRL. A general translation is feasible, because,
although the modelling languages x: and uCRL have dif-
ferent aims, there are some strong similarities. Most im-
portantly, their input languages are both based on process
algebra, and they are both action-based.

In this paper we present a general translation from
specifications to linear process equations [7], which are ba-
sically pCRL specifications without parallelism and com-
munication. The LPE format is important for the uCRL
toolset, because it is used for the internal representation of
processes. The translation is inspired by the translation of
the turntable in [11]. Note that we have to limit ourselves
to translating x; instead of the complete hybrid x, because
#CRL cannot cope with continuous events. Furthermore,
this paper is an extended abstract, meaning that this pa-
per only presents a selection of the most basic atomic ac-
tions and operators in x; and therefore does not provide the
complete translation scheme. The complete scheme can be
found in the full version of this paper [31]. The verification
of a turntable system in [11] illustrates how our translation
scheme can be used to combine performance and functional
analysis on a real-life case study.

This paper is set up as follows. The next two sections
provide a short introduction to x; and uCRL: The basics
of the languages are listed and a brief explanation is given.
Section 4 provides a way to translate ; processes to linear
process equations. Finally section 5 provides an example of
translating a x; model to a uCRL model. A larger example
can be found in [11].

As future work, we plan to first manually apply the trans-
lation to larger examples, to gain further confidence in its
applicability and improve it where necessary. Then we
could work out a correctness proof of the transformation,
to guarantee that it preserves a large class of interesting

properties. We also intend to implement the translation and
use it to automatically translate . specifications of real-life
systems to uCRL. We could then apply the verification en-
vironments of x; (simulation) and ©CRL (model checking
and theorem proving) to such examples, thus obtaining the
desired combination of performance and functional analy-
sis.

2 Thelanguage x;

The x language was designed as a hybrid modelling
and simulation language. Since we are interested only in
discrete-event models and verification, we present here just
a part of the language, disregarding features that are used for
simulation and to model hybrid behaviour. This (discrete-
event) subset of the language is known as timed x or x;. For
a complete reference of y, see [2]. x: is described in [3].

Data types. The x; language is statically strongly typed.
Every variable has a type which defines the allowed oper-
ations on that variable. The basic data types are boolean,
natural, integer and real number. The language provides
a mechanism to build sets, lists, array tuples, record tu-
ples, dictionaries, functions, and distributions (for stochas-
tic models). Channels also have a type that indicates the
type of data that is communicated via the channel.

Time model. Time in x; is dense, i.e. timing is measured
on a continuous time scale. The weak time determinism
principle, or sometimes called the time factorisation prop-
erty (time doesn’t make a choice), and urgent communica-
tion (a process can delay only if it cannot do anything else)
are implicit. Time additivity (if a process can delay first ¢,
and then immediately following ¢» time units, then it can
delay t1 + t2 time units from the start) is not present. De-
laying is enforced by the delay process, but some atomic
processes can also implicitly delay.

Communication model. Communication in x; is syn-
chronous, meaning that a send and a receive action on the
same channel cannot happen individually but only together,
as one communication action.

Atomic processes. The atomic processes of ; are process
constructors and they cannot be split into smaller processes.
Now we will present the atomic processes. Due to space
limitations we restrict send and receive actions to one value.
In reality they can also work with no values or multiple val-
ues at the same time, but in practice it is less common. A
translation of these more general send and receive processes
can be found in the full version of this article [31].

1. The multi-assignment process (z, := ey). It assigns
the values (must be defined) of expressions ey, ..., e, to
the variables z1, ..., z,,, respectively. It does not have
the possibility to delay.

2. The skip process. It performs the internal action 7 and
cannot delay.

3. The send process (h!e). It sends the value of the ex-
pression e via channel h. The value of e must be de-
fined and of the right type. It is able to delay arbitrarily
long.

4. The receive process (h 7 z). It receives a value via the
channel h and assigns it to the variable which must
be of the right type. It is also able to delay arbitrarily
long.

5. The delay process (At). It delays a number of time
units equal to the value of the expression ¢. The value
of £ must be a positive real number.

Operators. Atomic processes can be combined by means
of operators. We present a selection of them together with
their (informal) semantics. The rest is omitted from this ex-
tended abstract. Some operators are omitted due to space
limitations and the fact that those operators are less com-
monly used. Those can be found in the full version of this
article [31]. Besides that we do not consider operators that
are only used for the definition of the semantics of ¥, since
those never appear in specifications. Two exceptions to this
are the encapsulation operator and the urgent communica-
tion operator. These operators are implicitly used in x, but
should be considered explicitly when translating a specifi-
cation to uCRL.

1. The guard operator (—). For action behaviour, a pro-
cess b — p behaves as p if the value of the boolean ex-
pression (guard) b is true. For delay behaviour, b — p
can delay according to p as long as the boolean ex-
pression b evaluates to true. While b evaluates to false,
b — p can perform any delay.

2. The sequential composition operator (;). A process
p; q behaves as p followed by q.

3. The alternative composition operator ([). A process
p [g represents a non-deterministic choice between p
and g if they can proceed.

4. The repetition operator (x). A process xp behaves as p
infinitely many times.

5. The parallel composition operator (||). A processp | ¢
executes p and ¢ concurrently in an interleaved fash-
ion, i.e. the actions of p and q are executed in arbitrary

order. If one of the processes can execute a send action
and the other one can execute a receive action on the
same channel then p || ¢ executes the communication
action on this channel.

6. The scope operator (|| |]|). A process |[s | p]| behaves
as p in a local state s. The state s is used to define local
variables and channels visible only to the process p. It
is recursively defined as the empty state or as dcl, s’
where s’ is a state and dcl is a variable declaration
(z : type[= wval]) or a channel declaration (h : ?type
for receiving, h : !type for sending, and h : —type for
both).

7. The encapsulation operator (0 4). A process 0 4(p) dis-
ables all actions of p that occur in the set A. Typically
this operator is used to enforce that send and receive
actions synchronise.

8. The urgent communication operator (v4). Send and
receive actions in a process v (p) via channels from
set H can only delay when no communication with a
corresponding receive or send action on the same chan-
nel is possible.

Process definitions. The language : provides the possi-
bility to define processes. We do not give a syntax definition
here but rather an example:

P(c:?nat, b:bool)=[z:nat | b—c?z]

The process P has two arguments, a channel ¢ that can
transport natural numbers and a boolean variable . It has
only one local variable, z. The process can now be instan-
tiated at the initialisation line as for example P(m,y > 7)
(using channel m and natural number y, both declared at
the initialisation line).

3 Thelanguage uCRL

Basically, uCRL is based on the process algebra
ACP [4], extended with equational abstract data types [27].
In order to intertwine processes with data, actions and recur-
sion variables can be parametrised with data types. More-
over, a conditional construct (if-then-else) can be used to
have data elements influence the course of a process, and
alternative quantification (also called choice quantification)
is added to sum over possibly infinite data domains.

The language comes with a toolset [8] that can build a
state space from a specification and store it in the . aut
format, one of the input formats of the model checker
CADRP [15]. Next to that, in order to strive for precision in
proofs, an important research area is to use theorem provers
such as PVS [30] to help in finding and checking derivations
in uCRL. A large number of distributed systems have been

verified in uCRL, often with the help of a proof checker or
theorem prover [16, 21].

We will give a short overview of the language neces-
sary for understanding this paper. For a complete reference,
see [17].

Data types. Initially there are no data types known in a
uCRL specification. Therefore each specification should
start by defining the necessary data types and the functions
that work on them. In fact, it is mandatory to define the
boolean type in each specification, since the conditional
construct works with boolean expressions. One can virtu-
ally define any data type. In an example at the end of this
paper we use a data type for the natural numbers.

Actions. In uCRL one can declare actions in the act sec-
tion of a specification. These actions may have zero, one or
several data parameters. One can also allow processes P and
Q to communicate in the parallel process P || Q. To do this
it is possible to define which actions are able to synchronise
with each other in the comm section of a specification.
Finally the process deadlock (§), which cannot terminate
successfully, and the internal action 7 are predefined.

Operators. There are eight operators in uCRL. We omit
the renaming operator and the abstraction operator since we
do not use them in this paper. We present the other six with
an informal semantics.

1. The alternative composition operator (+). A process
p+q proceeds (non-deterministically) as p or q (if they
can proceed).

2. The sum operator (3_,., X(d)), with X(d) a map-
ping from the data type D to processes, behaves as
X(dy) +X(dp) *+..., i.e., as the possibly infinite choice
between X(d) for any data term d taken from D. This
operator is used to describe a process that is reading
some input over a data type [28].

3. The sequential composition operator (.). A process
p- g proceeds as p followed by q.

4. The process expression p < b > q Where p and q are
processes, and b is a data term of data type Bool, be-
haves as p if b is equal to T (true) and behaves as q
if b is equal to F (false). This operator is called the
conditional operator.

5. The parallel composition operator (||). A processp || q
executes p and q concurrently in an interleaved fash-
ion, i.e. the actions of p and q are executed in arbitrary
order. For all actions a and b which can communicate
with each other: If one process can execute a and the

other one can execute b then p and q can communicate
(p || q executes the communication action).

6. The encapsulation operator (9). A process dy(p) dis-
ables all actions of p that occur in the set H C Act.
Typically this operator is used to enforce that certain
actions synchronise.

Process definitions. The heart of a uCRL specification
is the proc section, where the behaviour of the system is
declared. This section consists of recursion equations of the
following form, forn > 0:

proc X(X1:S1,...,Xn:Sp) =t

Here X is the process name, the x; are variables, not clash-
ing with the name of a function symbol of arity zero nor
with a parameterless process or action name, and the s; are
data type names, expressing that the data parameters x; are
of type s;. Moreover, t is a process term possibly con-
taining occurrences of expressions Y(dy,...,dy) , Where Y
is a process name and the d; are data terms that may con-
tain occurrences of the variables x;, ..., x,. In this rule,
X(x4,-...,%n) IS declared to have the same (potential) be-
haviour as the process expression t [17].

The initial state of the specification is declared in a sep-
arate initial declaration init section, which is of the form

init X(di,...,dn)

Here d4, ..., d, represent the initial values of the parame-
ters x4, ..., x,. In uCRL specifications the init section is
used to instantiate the data parameters of a process declara-
tion, meaning that the d; are data terms that do not contain
variables. The init section may be omitted, in which case
the initial behaviour of the system is left unspecified.

The time model. Delaying for a certain amount of time is
impossible in xCRL at first glance. This is because uCRL
does not work with time. A later extension of xCRL to
timed pCRL [20] introduced the notion of time. How-
ever, at present creating a timed uCRL specification is not
very practical since the uCRL toolset can only parse timed
1CRL code and cannot generate a state space from it.
There is another way however to simulate some notion
of discrete time. In this paper we use a method based on
the one from [9]. In short it works like this: first we define
two actions: tick and tick2. The tick action represents
the end of a time slice and the beginning of a new one. In
order to share this notion of time all running processes need
to synchronise their tick actions. If at least one of these
processes is busy and therefore unable to perform a tick
the tick action will not take place. This synchronisation
aspect is essential if one wants to use global timing. Note

that, using this technique, we get discrete time in uCRL,
since we represent a time period as a number of time units.

In most cases when using time in a model the modeller
would like to give normal actions priority over tick ac-
tions. In order to realise this x has implicit urgent commu-
nication, but in uCRL an operator for this does not exist. We
can however get similar results by using the tick2 action
and post-processing the system after linearisation (more on
the latter in section 4.9).

The differences between tick2 and tick are:

« The action tick is used for translating delays, while
tick2 is used to make an action delayable (which
means adding a tick2 self-loop as an alternative to
this action);

¢ A tick action can synchronise with any number of
tick or tick?2 actions, but a tick2 action cannot syn-
chronise with only tick2 actions (at least one tick
action is needed for going from one time unit to the
next).

Now, several delayable processes can delay together if there
is a tick action enabled in at least one process.

4 Thetransation scheme

4.1 Linear process equations

In this paper we use a slightly extended version of the
linear process equation (LPE) definition as stated in [7]. An
LPE is a one-line process declaration that consists of atomic
actions, summations, sequential compositions and condi-
tionals. In particular, an LPE does not contain any parallel
operators, encapsulations or hidings. In essence an LPE is a
vector of data parameters together with a list of summands
consisting of a condition, action and effect triple, describ-
ing when an action may happen and what its effect is on
the vector. This format resembles I/O automata [29], ex-
tended finite state machines [25], Unity processes [13] and
STGA [26]. An LPE is of the following form:

X(d:D) =
D> D ai(fi(d,es)) X(gi(d,es)) <hi(d,e5) >& +
i€l e; €D;
DD a (£ (d,e5)) V(g (dye5)) <ahy’ (dyes) b6
i€I’ e; €D;’

where I, I' are finite index sets, D, D;, D;’ , Do, and D,,’
are data types, a;,a;’ € Act U {7}, a; : D5, @i’ : Dy,
fiZDXDi—)Dai,fi’ ZDXDi, —)Dai' ,giIDXDi—)D,
gi, :DXDi’ — D, h; :DXDi—)Boolandhi’ IDXDi’ —
Bool.

Here the different states of the process are represented by
the data parameter d : D. Type D may be a Cartesian product
of n data types. Besides that the data parameter e; (either
of type D; or Dy’) can influence the parameter of action a;
(or a;"), the condition h; (or h;’) and the resulting state

gs (or g’), thereby giving LPEs a more general form. The
data parameter e; is typically used to let a read action range
over a data domain.

The extension to the definition from [7] is the usage of
v'. Using the original definition, process X would termi-
nate after executing an action a;’ after which it would be
impossible to state anything about the end state. Here how-
ever v'(g:' (d,e;)) should be read as “the process enters
state g;' (d, e;) after which it successfully terminates” (the
process has reached an end state).

In general, when translating a x; process to an LPE the
variables s; in the scope operator of x; should be translated
to parameters of the LPE (should become part of the data
parameter 4 : D). Channels in x; that a process works with
are mentioned as parameters in the x; specification of that
process, but these should not be included in the LPE.

In both x; and xCRL one can use data types. We could
go into detail concerning how an element of a data type in
Xt can be translated to an element of a data type in uCRL,
but we will not do so here. It suffices to say that this kind of
translation is rather trivial; for virtually any data type in x;
one can define a corresponding abstract data type in uCRL.

4.2 |Initialisation

The parallel composition operator and the encapsulation
operator are here placed in one section, since both of them
are used in a particular way within a uCRL specification.
More specific, in the uCRL toolset, these operators are only
allowed to be used in the initialisation line. What follows
are guidelines to translate these operators and which as-

sumptions are made during the remainder of this chapter.
In general the initialisation line of a x; specification
looks like this:

(2k 2ty hem = —thm | p1() | -~ - [Pn())

Here zy : tyg, hm : —th,, iS an abbreviation for z; :
Y1y eey Tk S tYR, Ryt — A1, ooy Ry ¢ —thyy,. This declares dis-
crete variables z1, ..., i of types ty, ..., tyx, respectively,
and channels A1, ..., h,, that communicate information of
types thq, ..., thy,, respectively. Furthermore p1(), ..., pn()
are processes.

In this extended abstract we will not discuss how to
translate the variables that are declared at the initialisation
line; they are global variables and cannot be translated in
a straightforward fashion. These variables are discussed in
more detail in the full version of this article [31].

However, each channel which is declared at the initialisa-
tion line should be translated to a send action, a correspond-
ing receive action, and a corresponding communication ac-
tion, defined in the act section of the uCRL specification.
Then a rule should be added to the comm section, allowing

the send action and the receive action to communicate.
~ The usage of the parallel composition operator at initial-
isation can be translated in a straightforward fashion. In the

initialisation line we see the parallel composition operator
being used to specify which processes make up the system
(in other words, which processes run in parallel from the
Is_tlilrt)h_The initialisation line of a 4CRL specification looks
ike this:

init Gu(p1() || --- [l Pa())
Here we can see that the parallel composition operator is
used in the same way.

In x; the parallel composition operator can also be used
inside processes. In such a case the result is really a pro-
cess consisting of subprocesses running in parallel. Since
this usage of the parallel composition operator is not al-
lowed in uCRL, we want to avoid these constructions in x:.
Soon, however, there will be a new pCRL lineariser avail-
able, which does allow nested parallelism. Then this will no
longer be a restriction.

The encapsulation operator of x; (8.4) is implicitly used
at initialisation. It can be translated by using the encapsu-
lation operator of uCRL (9y), making the set H equal to the
set A.

For the remainder of this chapter we assume that a x;
specification ready for translation has the previously dis-
played initialisation line with processes p1(), .., pn() not
containing the parallel composition operator, the encapsula-
tion operator and the urgent communication operator (more
on the latter in section 4.9).

4.3 Atomic processes

The multi-assignment process. In pCRL assignments
take place by using recursion or calling a new process
in which the new value of the changed variable is given
as a parameter. Therefore, process x,,:=e,, can be trans-
latedtoX(d:D) = 7. v (d[®/ x,,.-.,>= /%]), in which
v(d[®/4,,...,>14]) means that you end up in a state
where ey, ..., e, have been substituted for x4, ..., x, re-
spectively, while the other variables in the state remain un-
changed.

The skip process. The process skip performs the internal
action 7. This can be translated into an LPE by using the
action. The translation then becomesX(d:D) = 7. v(d).

The send process. In uCRL channels are not available as
a type, like they are in x¢. Instead one can define actions
and synchronise these with each other. Traditionally, send-
ing a command like e.g. test can be done by using an action
stest (the s stands for send). This command can be re-
ceived by another process with the action rtest, where the
r means receive. The actions stest and rtest must be
defined in the specification, together with a communication
rule, saying that a send over the test "channel’ together with
a receive over this "channel’ leads to a communication (an
action called ctest). It is important that when describing

the initial situation one encapsulates the send and receive
actions in order to force communication between the two.

Taking into account that a send process h!e should
be delayable, this has to be translated to X(d : D) =
sh(e).v(d) + tick2.X(d) with sh being the action of
sending something over the channel h.

The receive process. As mentioned in the previous para-
graph uCRL does not work with channels, but one can de-
fine send and receive actions and force them to communi-
cate. Receive actions traditionally begin with the letter r,
which would mean in this case that the receive action would
be defined as rh.

The process h 7 z translates to

X(d:D) =Y (rh(y).v(d[¥/4])) + tick2.X(d)
y:Ty

with Ty being the type of both x and y.

The delay process. The translation of the delay process
At is highly dependent on the time model used in uCRL.
Therefore the reader should be aware of this time model as
described in the time model paragraph of section 3. Note
that while x; uses continuous time, this time model only
considers discrete time. Therefore, only the “discrete time
part” of x can be translated.

If we restrict the possible values of ¢ in At to the natural
numbers then we can translate the delay to the following
LPE, where t and t, are both translations of ¢:

X(t:Nat,to:Nat,d:D) = tick.X(t—1,t9,d) <t >0>4§ +
7.v'(tg,t0,d) <t =0D§

We cannot set the initial value of t and t, in process X. We
have to do that in the initialisation line. We introduce a set
V', which contains all initial values of process parameters.
When writing the initialisation line, we obtain the parame-
ter values from this set. For now we set the initial value of
both t and t, in V' to the value of ¢. Counter t, is used to
be able to reset counter t to its initial value. It is important
that this is done after executing process X to allow the pos-
sibility to repeat execution of X by means of the repetition
operator (see section 4.7). Finally note that both t and t,
are underlined in the parameter list. This has been done to
indicate that these parameters are specially marked. For the
use of this see section 4.7.

4.4 Guard operator

When discussing the translation of x; operators in the
upcoming sections, two LPEs P and Q will be used. These

processes have the following form:

P(d:D) =
Z Z aj(fp;(d,es)) .P(gp;(d,es)) <hp (d,e5) >J +
i€l e;ED;

ST a (£ (dyes)) v (gr (dyes))
i€l e; €D;’
<hp, ' (d,e;) >&

Q(d :D) =
3737 aj(fg(d',e5)) gy (& ,e5)) <hg (d ,e5) b6 +
JEJT e5ED;

ST a5 (£ (d,e5) v (gg (4 ,e5))
JET ej€D;’

<hg ' (d' ,e;) >0
We avoid name clashes of variables in d and @’ when it is
necessary to combine the two LPEs.
In the upcoming sections we use a function 7T
x — pCRL which gets a x; process as input and returns
an LPE as output. This function provides a translation by
induction on the structure of a ; process.

Consider a process b — p with b being a boolean ex-
pression. Say LPE P = T(p) and b is a translation of the
guard b. Finally we say that the finite index set I = I, U Iy,
with I, N I, = @, I, being a set of indexes of all actions
in P which are not tick or tick2 actions (i.e. normal’
actions) and I, being a set of indexes of all actions in P
which are either tick or tick2 actions. For I' we do not
have to do a similar thing since I, will always be empty.
A process never terminates after executing a tick or tick2
action; after a tick action there is always eventually a
normal action (see the translation of the delay process) and
tick?2 actions only occur in self-loops.
Now T (b — p) is defined as follows:
X(n:Nat,d:D) =
D > ailfe (des)) X(1,gr (des))
i€In €5 €EDs
<hp, (d,e:) A(n=1VDb) b4 +
D > ailfr (d,es)) X(n,ge (1))
i€Iy e; €Ds
<hp, (d,e;) A(n=1Vb)>d +
D D ailfr (de) V(0gr (dye))
i€I' e; €D;’
<hp,’ (d,ei) A(n=1Vb)p>J +
tick2.X(n,d) <n=0A—-b>J

Basically the following things have been done to com-
bine the boolean expression b and the LPE P:

1. A counter n has been introduced. It has type Nat but
in practise n € {0, 1}. This counter is initially 0 (we
set this in the set V) and is used here to regulate that
only initially the value of b is important.

2. Notice the difference between the first and the second
line: Instead of being set to 1 the counter n is un-

changed. This is very important when n = 0, since
this means that the value of the boolean expression b
remains important in the next time unit.

3. Inthe third line n is reset to 0. Why this is done can be
read in section 4.7 on the repetition operator.

4. In the fourth line it is expressed that if b does not hold
and no 'normal’ action has been executed yet (n = 0)
this process can delay one time unit without changing
the current state.

5. Inall lines the guard has been expanded with equations
concerning n and b to express that one may only start
executing 'normal’ actions if b holds.

45 Sequential composition operator

Assume we have the x; process p; g with the LPE P =
ITI(IP) and the LPE Q = 7(q). Now we define T(p; q) as
ollows:

X(n:Nat,d:D,d’ :D') =

Z Z ai(fPi (dvei))'x(()’g}’i (daei)ad’)
i€Ie; €D;

<1hpi(d,ei) An=0p>J +
D7D ai(fe ' (dyes)) X(1,gp " (dyes),d)
i€I’ e; €Dy’

<]hp|'(d,ei) An=0p>4§ +
DD ai(fg (d,e5)) X(1,d,8q (d ,e5))
JET e5€D;5

thj(d’,ej) An=1p§ +
D D a(fy’ (d,e5) V(0d,gy (& ,e5))
JET ej€Dy’

<th’(d’,eJ~) An=1p>¢

A counter n has been introduced to regulate the order of ex-
ecution. Initially this counter has value 0, thereby enabling
the execution of the actions originally from the LPE P. At
those points where P terminates successfully, n is set to 1,
disabling the execution of actions from P and enabling the
execution of actions from Q.

4.6 Alternative composition operator

In this section we give a translation of the x; process
p [| ¢, which chooses non-deterministically between the pro-
cesses p and q. At first glance providing a translation for
this does not seem to be more difficult than providing one
for the sequential composition. This, however, turns out to
be untrue, due to the time mechanism of x; if both alterna-
tives p and ¢ can delay, then they delay together. If only one
alternative can delay and furthermore no actions can be ex-
ecuted at all then there is a deadlock. Finally, time does not
make a choice, meaning that if the process delays before a

choice for one of the alternatives has been made the process
still has to make this choice after that delay.

Say we have the ; process p [| g with the LPE P = T (p)
and the LPE Q = 7(g). Furthermore we say that the finite
index set I = I, U I, (similar to section 4.4). Finally we
say that Iy = T4y U Iy, With Iy NIy = O, Ity being a
set of indexes of all occurrences of the tick action in P and
I,, being a set of indexes of all occurrences of the tick2
action in P. In a similar way we define J = J, U J, and
Ji = Ju1 U Jea. Now we define 7(p || g) as follows:

X(n:Nat,d:D,d’ :D') =

Z Z ai(fPi(daei))'x(17gPi(d7ei)ad’)
i€In 01 €Dy

<hp, (d,ei) A(n=0Van=1)bp§ +
> > ai(fr (d,es)) X(n,gp (d,e3),d")
i€Iy e €D;

<1hp,(d,ei) An=1p§ +
> ai(fr’ (d,e5)) V(0,85 (d,e5),d)
i€I' e; €D’

<hp,’ (d,ei) A(R=0Van=1)bpd +
D7 aj(fg (d,ey)) X(2,d,gq (d 5e5))
jEJa 5 €Dy

<hg (@ ,e5) A(n=0Vn=2) >4 +
DD a(fe (' ,e5)) X(n,d,gg (d',e;))
jEJT; e €Dy

dhql(d’ ,ej) An=2p§ +
D D aj(fq ' (d,e5))-v(0,d,8q " (d e5))
JET ej€D;’

<ahg’ (4 ,e5) A(n=0Vn=2)>d +
33037 D tickX(n,ge (d,e1) 89 (4 e5))
1€T41 jEJ2 @5 €ED; ;€D

<hp (d,ei) Ahg (d ,ej) An=0>68 +
Z Z Z Z tiCk'X(nygFﬂ(daei)agQJ(d’7ej))
i€It2 jEJr1 1 €D; @5ED;

thi(d,ei) /\hqj(dY ,ej) An=0p§ +
D735 D vickX(n,gr (d,e1) 84 (4 5e5))
i€I41 jEJu1 €1 €ED; e €D

<bp, (d,e) Ahg (d ,e) An=0D>6 +
3303 Y tick2X(n,q,a)
i€l jEJr2 €1 €D €5€ED;

<bp; (d,e) Ahg (d ,e) An=0p>§

Basically the following things have been done to com-
bine the LPEs P and Q:

1. A counter n has been introduced. It has type Nat but
in practisen € {0, 1,2}.

2. In the first line we find the ’normal’ actions that origi-
nally are not at the end of process P (P does not termi-
nate after performing one of these actions). Since n ini-
tially equals 0, some of these actions can be performed
in the beginning of executing X (where hp, (d, e;)
holds).

3. In the second line we find all occurrences of tick and
tick2 in LPE P. It is very important to note that the
usage of n in the guard (only considering n = 1) leads
to guards which are always false in cases where tick
and tick2 actions are enabled in the beginning of ex-
ecuting P. This is because initially n does not equal 1,
but 0 and after that, when n does equal 1, hp,(d, e;)
does not hold. This results in tick and tick2 occur-
rences at the beginning of P (in terms of execution or-
der) being effectively removed from process X.

4. In the third line we find the normal’ actions as we did
in the first line, only after executing these actions P
originally terminates. As we see here, X terminates as
well.

5. Inthe fourth, fifth and sixth line we find situations sim-
ilar to the first, second and third line respectively, only
now they concern actions from process Q.

6. In line seven we combine all occurrences of tick in
process P with all occurrences of tick2 in process
Q. Together these form tick occurrences in X, where
the new state is defined by using the two functions gp,
and gq, and the guard is the conjunction of the guards
of the occurrences being combined together with the
expression n = 0. This last expression n = 0 effec-
tively makes all guards equal to F, except in those cases
where both the tick and the tick2 occurrence are
at the beginning (execution-wise) of P and Q, respec-
tively. The reason for this is similar to the one given
for the second line.

7. In the same way as is done in the previous line, the
remaining lines combine tick2 occurrences in P with
tick occurrences in Q, tick occurrences in P and Q
and tick2 occurrences in P and @, respectively.

So, in line two and five the tick and tick2 occurrences
from the beginning of P and q are practically removed, only
to appear in a combined form in lines seven to ten. This
reflects what happens in the x; process p [¢, where p and
q delay together if they can both delay and no delay will
happen if one of them cannot.

4.7 Repetition operator

When executing the x process xp, the process p gets ex-
ecuted in sequence infinitely often. This construction needs

to be translated using recursion.
Say we have a x; process #p where the LPE P = 7 (p).
Now we define 7 (xp) as follows:

X(d:D) =
D> > ai(fr (d,es)) X(ge (d,es)) <hp (d,e5) b5 +

i€l e;€D;

Z Z ai(fPi’(daei))'x(gPi’(dwei)) <]hl’i’(dwei) >4

i€T' e; €Dy’

In the LPE the check-mark (v') has been replaced by X, re-
sulting in executing X from the beginning again every time
X has executed the final action in the LPE. When repeating
the execution the LPE automatically begins with the first
action, which is assured by the translation of p (in all trans-
lations of the operators, counters get their initial value back
at termination). However, note that the new state, when the
process starts repeating, is underlined. This is done to indi-
cate that all marked parameters t in d (see section 4.3) are
assigned the values of their accompanying parameters t,.
The reason for this is that should process P contain an alter-
native composition, it is not always the case that all timers
are reset to their initial values upon termination.

4.8 Scope operator

The process algebra uCRL does not have a scope op-
erator, but the functionality of this can be found implicitly
in the algebra. Note that in x; the state s is used to de-
fine local programming variables or local channels. So in
a way, a state is a tuple consisting of variables and chan-
nels. In uCRL the programming variables of a process can
be found in its parameter d (initial values can be found in
the initialisation line) while the channels are defined as send
and receive actions globally. In other words, s is captured in
1CRL by recursion parameters and global action and com-
munication definitions. Therefore, there is no direct transla-
tion of the scope operator needed. As the x; local channels
are translated to xCRL global actions, some extra work is
needed to make these actions seem local. More on this in
the full article [31].

4.9 Urgent communication operator

In uCRL there is no urgent communication operator. We
can however still get similar results using ©CRL, which will
be explained next.

In order to translate the urgent communication operator
we first need to linearise the translation. This means that
translating urgent communication can only be done once all
other translations are ready. This reflects nicely the fact that
in xt, urgent communication is added to a system once it is
completed.

Say we have a x process vy (p) where the LPE P = T (p)
and H contains all channels used by p. Now we define
T (v (p)) as follows:

X(d:D) =
D D ai(fi(dies)) X(gi(des)) <h(d,eq) B§ +
i€Ipe; €D;
> > ai(fi(d,es)) X(gi(d,es))
i€Iy e3€D;
<hi(d,es) A= \/ hj(d,es) >o
J€In

Note that the finite index set I = I, U I, as used before.

5 An example: the system PQ

Concluding we look at an example x: specification in or-
der to illustrate how translation works on a concrete case
study. For a bigger example and a demonstration how to
verilyy properties of a uCRL model, look at [11]. The ex-
ample we use here is a system consisting of the processes P
and Q. The x; specification of the system is the following:

P(a :!bool) = Q(a : ?bool) =
[%:nat =2 [&:bool
| *(2>1— A3.0; alfalse; i:=i+1 | *(A2.0; a?d)]

li>2— altrue; i:=¢—1)]

(a: —bool | P(a) || Q(a))

Next we translate these two processes to LPEs. After that
we would linearise that using the uCRL toolset and then
introduce urgent communication. We do not do that here
however, due to space limitations. This is done in the full
version of this article [31]. Here, the example is only used to
show how a ; system can be translated process by process.

We start by noting that the only data types used are the
ones for the natural numbers and the booleans. For uCRL
this means we will use the data types Nat and Bool. Since
these are standard we do not display their definitions here.

Now we detect the channels used and define appropriate
actions for them in uCRL. In the x specification we see the
channel a. For this we define the actions sa, ra and ca, all
three having a boolean value as parameter. Here sa stands
for sending a value, ra is used for receiving a value and ca
represents the communication between the two. We define
that sa can communicate with ra, forming action ca.

Concerning process P, we know how to translate the in-
dividual actions. Using a single counter, for readability pur-
oses, we can place the actions in the right structure (fol-
owing the translation scheme we would end up with a list
of counters, but here we use only one counter, which can
range over the set of natural numbers). Furthermore we see
two guards placed in an alternative composition. Finally
this construction is subject to the repetition operator. Trans-
lating all this (and simplifying it by removing those actions
which will never be executed due to their guards never be-
ing true) we get:

proc P(n:Nat,t : Nat,to : Nat,i: Nat) =
tick.P(n,t —1,%0,i) 94t >0ADn=0A1i>1p§ +
7.P(1,t0,t0,i) <t =0An=0A1i>1p§ +
sa(F).P(2,t,t0,i) <n=1>4d +
tick2.P(n,t,t0,i) <n=1p>4§ +
T.P(0,t0,t0,i +1) <n=2>4 +
sa(T) .P(3,t,t0,i) An=0Ai>2p§ +
7.P(0,t0,t0,i —1) <n=3p§ +
tick2.P(n,t,t0,i) <i <1An=0p>4

Finally we translate process Q. This is a very small process
which is translated to the following LPE:
proc Q(n: Nat,t : Nat, to : Nat,b : Bool) =
tick.Q(n,t — 1,t0,b) <t >0An=0>§ +
7.P(1,t0,t0,b) <t =0An=0p§ +
> ra(bo).Q(0, %0, to,bo) <n=1p5 +
bp:Bool
tick2.Q(n,t,to,b) <n=1p>§

The initialisation line makes the translation complete:
init 8{sa,ra,tick2}(P(0, 37 37 2) | {tiCk2} | Q(07 27 27 F))

Here, | {tick2} | is a special operator which functions as
the normal parallel composition operator, but also forces a
correct usage of time progression (tick and tick2 actions
have to synchronise with each other). Notice that we encap-
sulate tick2 eventually, which results in the fact that the
synchronisation of a number of tick2 actions (without any
tick action) will not lead to an action in the system.

Now that this translation is finished, we could linearise
and post-process it to introduce urgent communication.

References

[1] D. v. Beek, A. v. d. Ham, and J. Rooda. Modelling and
Control of Process Industry Batch Production Systems. In
Proc. IFAC' 02, 2002.

D. v. Beek, K. Man, M. Reniers, J. Rooda, and R. Schiffel-
ers. Syntax and Consistent Equation Semantics of Hybrid
Chi. CS-Report 04-37, Eindhoven University of Technol-
ogy, 2004.

D. v. Beek, K. Man, M. Reniers, J. Rooda, and R. Schiffel-
ers. Syntax and Semantics of Timed Chi. CS-Report 05-09,
Eindhoven University of Technology, 2005.

J. Bergstra and J. Klop. Process algebra for synchronous
communication. Information and Control, 60(1-3):109-137,
1984.

J. Bergstra and J. Klop. A tutorial on EMPA: A theory of
concurrent processes with nondeterminism, priorities, prob-
abilities and time. Theoretical Computer Science, 202:1-54,
1998.

M. Bernardo, W. Cleaveland, S. Sims, and W. Stew-
art. TwoTowers: A Tool Integrating Functional and
Performance Analysis of Concurrent Systems. In Proc.
FORTE/PSTV ' 98, pp. 457-467. Kluwer, 1998.

M. Bezem and J. Groote. Invariants in Process Algebra with
Data. In Proc. CONCUR '94, vol. 836 of LNCS pp. 401-
416, 1994.

S. Blom, W. Fokkink, J. Groote, I. v. Langevelde, B. Lisser,
and J. v. d. Pol. uCRL: A Toolset for Analysing Algebraic
Specifications. In Proc. CAV 2001, vol. 2102 of LNCS pp.
250-254, 2001.

S. Blom, N. loustinova, and N. Sidorova. Timed verification
with uCRL. In Proc. PS 2003, vol. 2890 of LNCS pp. 178-
192, 2003.

T. Bolognesi and E. Brinksma. Introduction to the 1SO
specification language LOTOS. Comput. Netw. ISDN Syst.,
14(1):25-59, 1987.

(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

[10]

10

[11] E. Bortnik, N. Trcka, A. Wijs, S. Luttik, J. v. d. Mortel-
Fronczak, J. Baeten, W. Fokkink, and J. Rooda. Analyzing
a x Model of a Turntable System using SpiN, CADP and
UpPAAL. Journal of Logic Programming, To appear, 2005.
V. Bos and J. Kleijn. Automatic verification of a manufac-
turing system. Robotics and Computer Integrated Manufac-
turing, 17:185-198, 2001.
K. Chandy and J. Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, 1989.
A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV
2: An OpenSource Tool for Symbolic Model Checking. In
Proc. CAV 2002, vol. 2404 of LNCS pp. 359-364, 2002.
J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Ma-
teescu, and M. Sighireanu. CADP - a protocol validation and
verification toolbox. In Proc. CAV' 96, vol. 1102 of LNCS
pp. 437-440, 1996.
W. Fokkink, J. Groote, J. Pang, B. Badban, and J. v. d. Pol.
Verifying a Sliding Window Protocol in xCRL. In Proc.
AMAST 2004, vol. 3116 of LNCS pp. 148-163, 2004.
[17] W. Fokkink, J. Groote, and M. Reniers. Modelling Dis-
tributed Systems. Unpublished manuscript, 2002.
[18] W. Fokkink, N. loustinova, E. Kesseler, J. v. d. Pol,
Y. Usenko, and Y. Yushtein. Refinement and verification ap-
plied to an in-flight data acquisition unit. In Proc. CONCUR
2002, vol. 2421 of LNCS pp. 1-23, 2002.
H. Garavel and H. Hermanns. On Combining Functional
Verification and Performance Evaluation Using CADP. In
Proc. FME 2002, vol. 2391 of LNCS, pp. 410-429, 2002.
J. Groote. The Syntax and Semantics of timed uCRL. Tech-
nical Report SEN-R9709, CWI, 1997.
J. Groote, F. Monin, and J. v. d. Pol. Checking verifications
of protocols and distributed systems by computer. In Proc.
CONCUR' 98, vol. 1466 of LNCS, pp. 629-655, 1998.
J. Groote, J. Pang, and A. Wouters. Analysis of a distributed
system for lifting trucks. Journal of Logic and Algebraic
Programming, 55(1-2):21-56, 2003.
H. Hermanns and J.-P. Katoen. Performance Evaluation :=
(Process Algebra + Model Checking) x Markov Chains. In
Proc. CONCUR 2001, vol. 2154 of LNCS pp. 59-81, 2001.
C. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.
ITU-T. Recommendation Z.100: Specifi cation and Descrip-
tion Language (SDL). ITU-T, Geneva, June 1994,
[26] H. Lin. Symbolic transition graph with assignment. In
V. Sassone, editor, Proc. CONCUR' 96, number 1119 in
LNCS, pp. 50-65. Springer-Verlag, 1996.
J. Loeckx, H.-D. Ehrich, and M. Wolf. Specifi cation of Ab-
stract Data Types. Wiley-Teubner, Chichester, Stuttgart,
1996.
S. Luttik. Choice Quantifi cation in Process Algebra. PhD
thesis, University of Amsterdam, 2002.

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

(28]

[29] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.
[30] S. Owre, J. Rushby, and N. Shankar. PVS: a Prototype Ver-

ification System. In Proc. CADE’ 92, vol. 607 of LNCS pp.
748-752, 1992.

A. Wijs and W. Fokkink. From x: to uCRL: Combining Per-
formance and Functional Analysis. Technical Report SEN-
R0420, CWI, Amsterdam, 2004.

[31]

