From x; to puCRL: Combining Performance and
Functional Analysis

Anton Wijs! and Wan Fokkink?!:2

! CWI,Department of Software Engineering,
P.0O.Box 94079, 1090 GB Amsterdam, The Netherlands,
{wijs,wan}@cwi.nl
% Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,
wanf@cs.vu.nl

Abstract. In this paper we first give short overviews of the modelling
languages timed x (x:) and pCRL. Then we present a general trans-
lation scheme to translate x; specifications to uCRL specifications. As
Xt targets performance analysis and uCRL targets functional analysis of
systems, this translation scheme provides a way to perform both kinds
of analysis on a given x; system model. Finally, we give an example of a
Xt system and show how the translation works on a concrete case study.

1 Introduction

Performance analysis is traditionally based on techniques such as simulation,
Markov chains and queueing networks. By contrast, main approaches for verify-
ing functional properties are model checking, where temporal formulas are vali-
dated by means of an explicit state space search, and theorem proving, which is
largely based on axiomatic reasoning at the symbolic level.

Hermanns and Katoen [25] verified performance properties of a LOTOS spec-
ification of a telephone system; LOTOS [11] is a process algebraic language with
abstract data types, which is originally meant for functional analysis. Garavel
and Hermanns [21] introduced a general approach to carry out some performance
analysis within the framework of LOTOS. They introduce timing information
into a LOTOS specification, expressing that certain events are delayable by some
random delay, captured by an exponential distribution. From this extended LO-
TOS specification they generate an interactive Markov chain, which is basically
a labelled transition system containing both actions and positive reals as labels,
where the positive reals denote delays. They explain how the CADP toolset [16],
which is actually meant for functional verification of LOTOS specifications, can
be used to also carry out performance analysis with respect to interactive Markov
chains. Although the approach of Garavel and Hermanns is promising, it is dif-
ficult if not impossible to apply full-blown performance analysis techniques in a
functional verification formalism like LOTOS.

In this paper we propose another approach to bridge the gap between perfor-
mance and functional analysis. Similar to Garavel and Hermanns, we exploit the

fact that specification languages for performance and functional analysis tend to
have a lot in common, so that a translation from one specification language to
the other is quite feasible. However, we propose to keep the performance and the
functional analysis separate, in environments targeted to these analyses. Thus
we are in principle able to carry out full-blown performance as well as functional
analysis.

X [3] is a modelling language for the specification of discrete-event, contin-
uous or combined, so-called hybrid, systems. It is based on the process algebra
CSP [26], and contains some predefined data types. It targets performance anal-
ysis of timed systems by means of simulation techniques to estimate throughput
and cycle time. A subset of the language x, restricted to specify only discrete-
event systems, is called timed Y, or x;. Currently there are no tools available
for using the language x (they are being developed), but predecessors of the
language and their simulators have been successfully applied to a large number
of industrial cases, such as an integrated circuit manufacturing plant, a brewery
and process industry plants [2].

pCRL [19] is a modelling language for the specification of discrete-event sys-
tems. It is based on the process algebra ACP [5], extended with abstract data
types [29]. It targets functional analysis of distributed systems and communi-
cation protocols, by means of simulation, model checking and theorem proving.
The verification environment of yCRL together with the model checker CADP,
which can serve as a back-end to pCRL, have been used to analyse for instance an
in-flight data acquisition unit [20] and a distributed system for lifting trucks [24].
Moreover, a homegrown theorem prover has been developed for uCRL [18].

Recently, in [12] the x specification of a turntable [13] was translated to three
different specification formalisms: UPPAAL, SPIN and pCRL. While translating
to uCRL, it was concluded, that x; and uCRL are quite closely related, and
the development started of a general translation scheme from x; to uCRL. A
general translation is feasible, because, although the modelling languages x; and
uCRL have different aims, there are a number of similarities. Most importantly,
their input languages are both based on process algebra, and they are both
action-based.

In this paper we present a general translation from x; specifications to linear
process equations [8], which are basically uCRL specifications without parallelism
and communication. The LPE format is important for the uCRL toolset, because
it is used for the internal representation of processes. The translation is inspired
by the translation of the turntable in [12]. Note that we have to limit ourselves
to translating y; instead of the complete hybrid y, because pCRL cannot cope
with continuous events. The verification of a turntable system in [12] illustrates
how our translation scheme can be used to combine performance and functional
analysis.

Our work is closest in spirit to TwoTowers [7], which is a tool that combines
performance and functional analysis. It has a single input language, based on
the stochastic process algebra EMPA [6]. Performance analysis is based on sim-

ulation and reward Markov chains, while functional analysis is performed by the
symbolic model checker nuSMV [15].

Our paper is set up as follows. The next two sections provide a short in-
troduction to x; and wCRL: The basics of the languages are listed and a brief
explanation is given. Section 4 provides a way to translate x; processes to lin-
ear process equations. Finally section 5 provides an example of translating a g
model to a pCRL model.

As future work, we plan to first manually apply the translation to larger
examples, to gain further confidence in its applicability and improve it where
necessary. Then we will work out a correctness proof of the transformation, to
guarantee that it preserves a large class of interesting properties. We will also im-
plement the translation and use it to automatically translate x specifications of
real-life systems to uCRL. Moreover we will apply the verification environments
of x¢ (simulation) and uCRL (model checking and theorem proving) to such ex-
amples, thus obtaining the desired combination of performance and functional
analysis.

2 The language x;

The x language was designed as a hybrid modelling and simulation language.
Since we are interested only in discrete-event models and verification, we present
here just a part of the language, disregarding features that are used for simulation
and to model hybrid behaviour. This (discrete-event) subset of the language is
known as timed x or x;. For a complete reference of x, see [3].

Data types. The x; language is statically strongly typed. Every variable has a
type which defines the allowed operations on that variable. The basic data types
are boolean, natural, integer and real number. The language provides a mecha-
nism to build sets, lists, array tuples, record tuples, dictionaries, functions, and
distributions (for stochastic models). Channels also have a type that indicates
the type of data that is communicated via the channel.

Time model. Time in x; is dense, i.e. timing is measured on a continuous time
scale. The weak time determinism principle, or sometimes called the time fac-
torization property (time doesn’t make a choice), and urgent communication (a
process can delay only if it cannot do anything else) are implicit. Time additivity
(if a process can delay first ¢; and then immediately following ¢, time units, then
it can delay t1 + to time units from the start) is not present. Delaying is enforced
by the delay operator, but some atomic processes can also implicitly delay.

Communication model. Communication in y; is synchronous, meaning that a
send and a receive action on the same channel cannot happen individually but
only together, as one communication action.

Atomic processes. The atomic processes of x; are process constructors and they
cannot be split into smaller processes. They are:

1.

The multi-assignment process (z, := e,). It assigns the values (must be
defined) of expressions ey, ..., e, to the variables z1, ..., z,, respectively. It
does not have the possibility to delay.

The skip process. It performs the internal action 7 and cannot delay.

The send process (h!le,). It sends the values of the expressions e, ..., €y,
for n > 1, via channel h. The values of e, ..., e, must be defined and of the
right type. For n = 0, h!le, denotes h!! and nothing is sent via the channel.
The send process (h!ey,) is the delayable equivalent of hlle,. It is able to
delay arbitrarily long.

The receive process (h??x,,). It receives values via the channel h and assigns
them to the variables z1, ..., £, which must be of the right type. For n =0,
h?? z,, denotes h?? and nothing is received via the channel.

The receive process (h?z,) is the delayable equivalent of h?? z,,. It is able
to delay arbitrarily long.

The delay process (At). It delays a number of time units equal to the value
of the expression t. The value of t must be a positive real number.

Operators. Atomic processes can be combined by means of the following opera-
tors. We present each one of them together with their (informal) semantics. We
do not consider operators that are only used for the definition of the semantics
of x4, since those never appear in specifications. Two exceptions to this are the
encapsulation operator and the urgent communication operator. These operators
are implicitly used in xi, but should be considered explicitly when translating a
specification to uCRL.

1.

The delay operator (A;). The process term A;(p) is forced to delay for the
amount of time units specified by the value of numerical expression ¢, after
which it can proceed as p.

The delay enabling operator ([]). For a process [p], time transitions of arbi-
trary duration are allowed for the behaviour of p.

The guard operator (—). For action behaviour, a process b — p behaves as p
if the value of the boolean expression (guard) b is true. For delay behaviour,
b — p can delay according to p as long as the boolean expression b evaluates
to true. While b evaluates to false, b — p can perform any delay.

The sequential composition operator (;). A process p; ¢ behaves as p fol-
lowed by the process q.

The alternative composition operator ([]). A process p [| g represents a non-
deterministic choice between p and ¢ if they can proceed.

The repetition operator (*). A process *p behaves as p infinitely many times.
The guarded repetition operator (#:). A process *b : p can be interpreted as
”while b do p”.

The parallel composition operator (||). A process p || ¢ executes p and ¢
concurrently in an interleaved fashion, i.e. the actions of p and ¢q are executed

in arbitrary order. If one of the processes can execute a send action and the
other one can execute a receive action on the same channel then p || ¢ executes
the communication action on this channel.

9. The scope operator ([|]|). A process |[s | p]| behaves as p in a local state
s. The state s is used to define local variables and channels visible only to
the process p. It is recursively defined as the empty state or as dcl, s’ where
s’ is a state and dc! is a variable declaration (z : type[= val]) or a channel
declaration (h : ?type for receiving, h : ltype for sending, and h : —type for
both).

10. The encapsulation operator (04). A process 0.4(p) disables all actions of p
that occur in the set A. Typically this operator is used to enforce that send
and receive actions synchronise.

11. The urgent communication operator (v). Send and receive actions in a pro-
cess vy (p) via channels from set # can only delay when no communication
with a corresponding receive or send action on the same channel is possible.

Process definitions. The language x; provides the possibility to define processes.
We do not give a syntax definition here but rather an example:

P(c:?nat, b:bool)=|z:nat | b— c?z]

The process P has two arguments, a channel ¢ that can transport natural num-
bers and a boolean variable b. It has only one local variable, z. The process can
now be instantiated at the initialisation line as for example P(m,y > 7) (using
channel m and natural number y, both declared at the initialisation line).

3 The language uCRL

Basically, uCRL is based on the process algebra ACP [5,1,17], extended with
equational abstract data types [29,4]. In order to intertwine processes with data,
actions and recursion variables can be parametrised with data types. Moreover,
a conditional construct (if-then-else) can be used to have data elements influ-
ence the course of a process, and alternative quantification (also called choice
quantification) is added to sum over possibly infinite data domains.

The language comes with a toolset [9] that can build a state space from
the specification and store it in the .aut format, one of the input formats of
the model checker CADP [16]. Next to that, in order to strive for precision in
proofs, an important research area is to use theorem provers such as PVS [32] to
help in finding and checking derivations in uCRL. A large number of distributed
systems have been verified in yCRL, often with the help of a proof checker or
theorem prover [23, 33].

We will give a short overview of the language necessary for understanding
this paper. For a complete reference, see [19].

Data types. Initially there are no data types known in a pCRL specification.
Therefore each specification should start by defining the necessary data types
and the functions that work on them. In fact, it is mandatory to define the
boolean type in each specification, since the conditional construct works with
boolean expressions. One can virtually define any data type. In an example at
the end of this paper we use a data type for the natural numbers, to name one.

Actions. In pCRL one can declare actions in the act section of a specification.
These actions may have zero, one or several data parameters. When parameters
are used the data types of these parameters need to be given. One can also allow
processes P and Q to communicate in the parallel process P || Q. To do this it is
possible to define which actions are able to synchronise with each other in the
comm section of a specification.

Finally the process deadlock (), which cannot terminate successfully, and
the internal action 7 are predefined.

Operators. There are eight operators in yCRL. We present each one of them
with an informal semantics.

1. The alternative composition operator (+). A process p+q proceeds (non-
deterministically) as p or q (if they can proceed).

2. The sum operator (3, X(d)), with X(d) a mapping from the data type D
to processes, behaves as X(d;) + X(dy) + ..., i.e., as the possibly infinite
choice between X(d) for any data term d taken from D. This operator is used
to describe a process that is reading some input over a data type [30].

3. The sequential composition operator (.). A process p.q proceeds as p fol-
lowed by q.

4. The process expression pq where p and q are processes, and b is a data
term of data type Bool, behaves as p if b is equal to T (true) and behaves as
q if b is equal to F (false). This operator is called the conditional operator,
and operates as a then_if_else construct.

5. The parallel operator (||). A process p | q executes p and q concurrently in
an interleaved fashion, i.e. the actions of p and q are executed in arbitrary
order. For all actions a and b which can communicate with each other: If
one process can execute a and the other one can execute b then p and q can
communicate (p | q executes the communication action).

6. The encapsulation operator (9). A process Jq(p) disables all actions of p
that occur in the set H C Act. Typically this operator is used to enforce that
certain actions synchronise.

7. The renaming operator (ps), with f: Act—Act, is suited for reusing a given
specification with different action names. The subscript £ signifies that the
action a must be renamed to f(a). The process ps (p) behaves as p with its
action names renamed according to f.

8. The abstraction operator (7). A process 71 (p) ’hides’ (renames to 7) all
actions of p that occur in the set I C Act.

Process definitions. The heart of a yCRL specification is the proc section, where
the behaviour of the system is declared. This section consists of recursion equa-
tions of the following form, for n > 0:

proc X(xy:84, ..., XpiSp) =t

Here X is the process name, the x; are variables, not clashing with the name
of a function symbol of arity zero nor with a parameterless process or action
name, and the s; are data type names, expressing that the data parameters x;
are of type s;. Moreover, t is a process term possibly containing occurrences
of expressions Y(d;, ..., dp), where Y is a process name and the d; are data
terms that may contain occurrences of the variables x;, ..., Xu. In this rule,
X(x1, ..., %p) is declared to have the same (potential) behaviour as the process
expression t [19].

The initial state of the specification is declared in a separate initial declara-
tion init section, which is of the form

init X(dy, ..., dpn)

Here d;, ..., d, represent the initial values of the parameters x;, ..., X5. In
general, in pCRL specifications the init section is used to instantiate the data
parameters of a process declaration, meaning that the d; are data terms that
do not contain variables. The init section may be omitted, in which case the
initial behaviour of the system is left unspecified.

The time model. Delaying for a certain amount of time is impossible in CRL
at first glance. This is because uCRL does not work with time. A later extension
of uCRL to timed pCRL [22] introduced the notion of time. However, at present
creating a timed pCRL specification is not very practical since the uCRL toolset
can only parse timed pCRL code and cannot generate a state space from it.

There is another way however to simulate some notion of discrete time. In
this paper we use a method based on the one from [10]. In short it works like
this: first we define two actions: tick and tick2. The tick action represents
the end of a time slice and the beginning of a new one. In order to share this
notion of time all running processes need to synchronise their tick actions. If at
least one of these processes is busy and therefore unable to perform a tick the
tick action will not take place. This synchronisation aspect is essential if one
wants to use global timing. Note that, using this technique, we get discrete time
in uCRL, since we represent a time period as a number of time units.

In most cases when using time in a model the modeller would like to give
normal actions priority over tick actions. In order to realise this x has implicit
urgent communication, but in xCRL an operator for this does not exist. We can
however get similar results by using the tick2 action and post-processing the
system after linearisation (more on the latter in section 4.12).

The differences between tick2 and tick are the following:

— The action tick is used for translating delays, while tick2 is used to make
an action delayable (which means adding a tick2 self-loop as an alternative
to this action);

— A tick action can synchronise with any number of tick or tick2 actions,
but a tick2 action cannot synchronise with only tick2 actions (at least one
tick action is needed for going from one time unit to the next).

Now, several delayable processes can delay together if there is a tick action
enabled in at least one process.

In order to achieve this timing mechanism in yCRL we define a parallel
composition operator X| {tick2} |Y in the following way:

act tick tick’ tick2 tick2’

comm tick | tick2 = tick’
tick | tick = tick’
tick2 | tick2 = tick2’

X[{tick2} | Y = p(rick stick,tick2’ stick2} (Ofsick, vickz) (X [YD)

If we then put tick2 in the set H of the encapsulation operator used at the
initialisation line, we remove all tick2 actions remaining in the final system.

Using this method we can avoid problems in many cases. Say we have a
system consisting of two processes A and B. If process A is waiting for process
B to send a message, process B may not be able to send it yet (in other words,
cannot send it within the current time unit). Process B may have to delay for any
number of time units. This is possible using the new method, because process A
can delay (can perform a tick2 self-loop). Now, the moment process B is able
to send the message, communication will take place immediately, even though
both the send and the receive action are delayable, because two tick2 actions
are not able to synchronise.

Of course, problems may arise when introducing a third process C, which
wants to delay at the moment A and B can communicate; then the latter two
processes again have the possibility to perform either the communication or
the synchronised tick, not preferring one above the other. These problems can
be solved however by post-processing the linearised system. More on that in
subsection 4.12.

4 The translation scheme

4.1 Linear process equations

In this paper we use a slightly extended version of the linear process equation
(LPE) definition as stated in [8]. An LPE is a one-line process declaration that
consists of atomic actions, summations, sequential compositions and condition-
als. In particular, an LPE does not contain any parallel operators, encapsulations
or hidings. In essence an LPE is a vector of data parameters together with a list
of summands consisting of a condition, action and effect triple, describing when
an action may happen and what is its effect on the vector of data parameters.

This format resembles I/O automata [31], extended finite state machines [27],
Unity processes [14] and STGA [28]. An LPE is of the following form:

X(d:D) =)) ai(fi(d,e:)).X(gi(d,e:)) <hi(d,e5) > +
i€ ej €D;

D> @it (fi(d,e1)).v (gi? (d,e1)) b’ (d,e5) b6

i€I’ e;€D;°

where I, I’ are finite index sets, D, Di, D; ’, Do, and D,,» are data types, a;,a;’ €
ACtU{T}, aj ZDai, a;’ :Dai), f; :DXDi—)Dai, f;?:DxDy’ —)Dai), gi :DxD; —D,
gi’:DXD;> —=D,h; :DXD; = Bool and h;’> : D X D;> — Bool.

Here the different states of the process are represented by the data parameter
d:D. Type D may be a Cartesian product of n data types. Besides that the data
parameter e; (either of type D; or D;’) can influence the parameter of action a;
(or a;?), the condition h; (or h;’) and the resulting state g; (or g;’), thereby
giving LPEs a more general form. The data parameter e; is typically used to let
a read action range over a data domain.

The extension to the definition from [8] is the usage of v'. Using the original
definition, process X would terminate after executing an action a;’> after which
it would be impossible to state anything about the end state. Here however
v (gi’(d,e;)) should be read as “the process enters state g; > (d,e;) after which
it successfully terminates” (the process has reached an end state).

In general, when translating a x; process to an LPE the variables s; in the
scope operator of x; should be translated to parameters of the LPE (in other
words, should become part of the data parameter d:D). Channels in x; that a
process works with are mentioned as parameters in the y; specification of that
process, but these should not be included in the LPE.

In both x; and pCRL one can use data types. We could go into detail con-
cerning how an element of a data type in x; can be translated to an element of
a data type in gCRL, but we will not do so here. It suffices to say that this kind
of translation is rather trivial; for virtually any data type in x; one can define a
corresponding abstract data type in uCRL.

4.2 Initialisation

The parallel composition operator and the encapsulation operator are here placed

in one section, since both of them are used in a particular way within a xCRL

specification. More specific, in the uCRL toolset, these operators are only allowed

to be used in the initialisation line. What follows are guidelines to translate these

operators and which assumptions are made during the remainder of this chapter.
In general the initialisation line of a x specification looks like this:

(e : tye, han 2 —thm | p1 Q) [- [Pn())

Here zy, : tyg, A, : —th,y, is an abbreviation for x : tyy,..., Tk : tyg, b1 : —thy, ... by :
—thy,. This declares discrete variables x4, ...,z of types tyi, ..., tyx, respectively,
and channels A, ..., A, that communicate information of types thq, ..., thy,, re-
spectively. Furthermore p1(), ..., pn() are processes.

The variables declared at the initialisation line are global variables. These
cannot be translated in a straightforward fashion, since pCRL does not have
them. It is possible however to achieve the same results by having all processes
working with these variables maintain their own local copies of these variables
and using broadcasts whenever an assignment takes place. More on this in sec-
tion 4.13.

Each channel which is declared at the initialisation line should be translated
to a send action, a corresponding receive action, and a corresponding commu-
nication action, defined in the act section of the yCRL specification. Then a
rule should be added to the comm section, allowing the send and receive action
to communicate.

The usage of the parallel composition operator at initialisation can be trans-
lated in a straightforward fashion. In the initialisation line we see the parallel
composition operator being used to specify which processes make up the system
(in other words, which processes run in parallel from the start). The initialisation
line of a uCRL specification looks like this:

init G(p, O | ... [p,O)

Here we can see that the parallel composition operator is used in the same way.

In x; the parallel composition operator can also be used inside processes. In
such a case the result is really a process consisting of subprocesses running in
parallel. Since this usage of the parallel composition operator is not allowed in
pCRL, we want to avoid these constructions in x;. Soon, however, there will be
a new puCRL lineariser available, which does allow nested parallelism. Then this
will no longer be a restriction.

The encapsulation operator of x; (04) is implicitly used at initialisation. It
can be translated by using the encapsulation operator of uCRL (0y), making the
set H equal to the set A.

For the remainder of this chapter we assume that a x; specification ready
for translation has the previously displayed initialisation line with processes
p1(), ..., pn() not containing the parallel composition operator, the encapsu-
lation operator and the urgent communication operator (more on the latter in
section 4.12).

4.3 Atomic processes

The multi-assignment process. In pCRL assignments take place by using recur-
sion or calling a new process in which the new value of the changed variable is
given as a parameter. Therefore, process x,:=e, can be translated to X(d:D) =
7.V (A[% /4, ...,°*/x,1), in which v (d[®/y,,...,>*/x,]1) means that you end up
in a state where eq,...,e, have been substituted for xi,...,x, respectively, while
the other variables in the state remain unchanged.

The skip process. The process skip performs the internal action 7. This can be

translated into an LPE by using the 7 action. The translation then becomes
X(d:D) = 7.v (d).

10

Table 1. Translation of send processes

[x| pCRL |
h'e, |X(d:D) = sh(ey,...,en).v (d) + tick2.X(d)
h!lle, X(d:D) = sh(ey,...,en).v (d)

h! X(d:D) = sh.v' (d) + tick2.X(d)

Al X(d:D) = sh.v'(d)

The send process. In pCRL channels are not available as a type, like they are
in xi. Instead one can define actions and synchronise these with each other.
Traditionally, sending a command like e.g. test can be done by using an action
stest (the s stands for send). This command can be received by another process
with the action rtest, where the r means receive. The actions stest and rtest
must be defined in the specification, together with a communication rule, saying
that a send over the test ’channel’ together with a receive over this ’channel’
leads to a communication (an action called ctest). It is important that when
describing the initial situation one encapsulates the send and receive actions in
order to force communication between the two.

Taking into account that a send process h!e, should be delayable, this has
to be translated to X(d : D) = sh(ey,...,ey).v (d) + tick2.X(d) with sh being
the action of sending something over the channel h.

All variants of the x; send process can be found in table 1. Each of them is
accompanied by a pCRL translation. The translations should be evident, given
that all variants of the basic send process h!e, can only differ in delay-ability
and/or the sending of data.

In x¢; communications have priority over the passage of time. This behaviour
is enforced by using the urgent communication operator implicitly. Having trans-
lated a x specification it is therefore necessary to process the translation in the
way specified in section 4.12.

The receive process. As mentioned in the previous paragraph pCRL does not
work with channels, but one can define send and receive actions and force them
to communicate. Receive actions traditionally begin with the letter r, which
would mean in this case that the receive action would be defined as rh.

The process h ? x,, translates to

X(d:D) = Z Z (h(ys,. .o, ¥0) vV (@0 /- /1)) + tick2.X(d)

y1:Ty1 Yn:Tyn

with Ty; being the type of both x; and y;, respectively, for all i (1 < i <mn).
All variants of the x; receive process can be found in table 2. Each of them is
accompanied by a pyCRL translation. The translations should be evident, given
that all variants of the basic receive process h ? e can only differ in delayability
and/or the receiving of data.
Concerning communications having priority over the passage of time, a sim-
ilar remark to the one in the previous paragraph holds for the receive process.

11

Table 2. Translation of receive processes

‘ Xt ‘ pCRL |
h?e, |X(d:D) = Zy 'Eyn:Tyn (th(ys,-- -, ¥a) vV (@0 /xyy -, /221))
+ tick2.X(d)
h??e,|X(d:D) = Zymh -~Zh:m (th(yi, ..., y) vV (@ /5,7 /21))
h? X(d:D) = rh.v'(d) + tick2.X(d)
h?? X(d:D) = rh.v (d)

1:Tyr

The delay process. The translation of the delay process At is highly dependent
on the time model used in pCRL. Therefore the reader should be aware of this
time model as described in the time model paragraph of section 3. Note that
while x; uses continuous time, this time model only considers discrete time.
Therefore, only the “discrete time part” of x; can be translated.

If we restrict the possible values of ¢ in At to the natural numbers then we can
translate the delay to the following LPE, where t and to are both translations
of t:

X(t : Nat,to : Nat,d : D) = tick.X(t — 1,t0,d) <t > 0D 4d +
T7.v (to,t0,d) <t = 0> 4§

We cannot set the initial value of t and to in process X. We have to do that in
the initialisation line. We introduce a set V', which contains all initial values of
process parameters. When writing the initialisation line, we obtain the parameter
values from this set. For now we set the initial value of both t and t, in V to the
value of t. Counter t, is used to be able to reset counter t to its initial value. It
is important that this is done after executing process X to allow the possibility
to repeat execution of X by means of the repetition operator (see section 4.9).
Finally note that both t and t, are underlined in the parameter list. This has
been done to indicate that these parameters are specially marked. For the use
of this see section 4.9.

4.4 Delay operator

When discussing the translation of y; operators in the upcoming sections, two
LPEs P and Q will be used. These processes have the following form:

P(d:D) =) > ai(fr, (d,es)).P(gs, (d,e:)) <hs, (d,€) D5 +

i€I es€D;

> > ai(£s,7(d,0:)).v (ge, (d,€5)) <hs, > (d,05) B 6

i€I’ @3 €ED;’
Q@ :D) =D Y ay(fq,(d’,e5)).Q(gq (d’,€5)) dhg (d,e5) > & +
JEJ ej€D;
DD ay(fe,7(d,e)).v (g, ? (2, €5)) <hg, > (A7, €5) B 6
j€EJI’ ej€D;”

12

We avoid name clashes of variables in d and 4’ when it is necessary to combine
the two LPEs.

In the upcoming sections we use a function 7: x — uCRL which gets a x;
process as input and returns an LPE as output. This function provides a trans-
lation by induction on the structure of a x; process.

Consider a process A;(p) with the LPE P = 7 (p). Then T(A;(p)) is defined
as follows, where t and t, are both translations of ¢:

X(t:Nat, to:Nat, d:D) =
tick.X(t —1,t9,d) 9t >0p>4J +
Z Z a; (fp, (d,e:)).X(t,to,gp; (d,e:)) <hp, (d,es) At =0D6 +
i€l es€D;
D> ai(fr,?(d,0:)).v (to, to, gv, ’ (d,€:)) dhp, * (d,€:) At =000
i€I% o5 €D;
Basically the following things have been done to combine the delay and the
LPE P:

1. The counters t and t, have been introduced. They are used in the same way
as they are in the delay process. The parameters t and to have been under-
lined to indicate that they are specially marked. More on this in section 4.9.

2. The guards of the lines that originate from LPE P have been extended with
the boolean expression t=0.

4.5 Delay enabling operator

Assume we have a process [p] with the LPE P = T(p). Then 7 ([p]) is defined as
follows, where t and t, are both translations of t:

X(n:Nat, d:D) =
Z Z a; (fp, (d,e:)).X(1,gp, (d,e3)) <hp, (d,e;) >§ +
i€I es€D;
D7D ailfr7(d,6:)).v (0,gp,° (d, 1)) by, 7 (d,05) D5 +
i€I’ e;€D;°
tick2.X(d) <n=00>§

A counter n has been introduced. It has type Nat but in practise n € {0,
1}. This counter is set to 0 before executing X (this is set in the set V) and is
used here to initially allow the LPE to delay. As soon as an action originally
from the LPE P has been executed, and after this execution an end state has not
been reached, counter n is set to 1, resulting in the added tick2 action being
disabled.

4.6 Guard operator

Consider a process b — p with b being a boolean expression. Say LPE P = T (p)
and b is a translation of the guard b. Finally we say that the finite index set

13

I=1I,UTI, with I, NI, = @, I, being a set of indexes of all actions in P
which are not tick or tick2 actions (i.e. 'normal’ actions) and I being a set of
indexes of all actions in P which are either tick or tick2 actions. For I’ we do
not have to do a similar thing since I’ will always be empty. A process never
terminates after executing a tick or tick2 action; after a tick action there is
always eventually a normal action (see the translations of the delay process and
the delay operator) and tick2 actions only occur in self-loops.

Now T (b — p) is defined as follows:

X(n:Nat, d:D) =
D) ailfr(d,e:)) X(1,gr,(d, e:)) <hp, (d,e) A(m=1VD) b5 +

i€In es€D;

D> aifr, (4,61)) X(n,gp, (d, €5)) <hp, (d, @) A(=1Vb) >4 +

i€y €3 €D;

D D aile(d,0:)).v (0@, (d, 1)) by, * (d,e) A(a=1VD) b +
i€I’ e;€D;°

tick2.X(n,d) <n=0A-bp>J

Basically the following things have been done to combine the boolean expres-
sion b and the LPE P:

1. A counter n has been introduced. It has type Nat but in practise n € {0,
1}. This counter is initially 0 (we set this in the set V') and is used here to
regulate that only initially the value of b is important.

2. Notice the difference between the first and the second line: Instead of being
set to 1 the counter n is unchanged. This is very important when n=0, since
this means that the value of the boolean expression b remains important in
the next time unit.

3. In the third line n is reset to 0. Why this is done can be read in section 4.9
on the repetition operator.

4. In the fourth line it is expressed that if b does not hold and no 'normal’
action has been executed yet (n=0) this process can delay one time unit
without changing the current state.

5. In all lines the guard has been expanded with equations concerning n and b
to express that one may only start executing 'normal’ actions if b holds.

14

4.7 Sequential composition operator

Assume we have the xi process p; ¢ with the LPE P = 7 (p) and the LPE Q =
T (q). Now we define T (p; q) as follows:

X(n:Nat, d:D, d’:D’) =

D) ai(fe, (d,0:)).X(0, ge, (d, €1),d”) ahp, (d,€5) An =005 +

i€l e; €ED;

D> @i’ (d,e:)).X(1, 8,7 (d,05),d7) by, * (d,) An =005 +
i€I’ e;€D;’

D> ay(fe(d,05)).X(1,d,8q,(d?,€;)) 9y (d?,e5) An=1>5 +
JEJ e €Dy

D> ay(fe?(d,e5)).v(0,d,gq; (47, 5)) <hg;*(d’,€) An =106

JjE€J’ ej€Dy’

A counter n has been introduced to regulate the order of execution. Initially
this counter has value 0, thereby enabling the execution of the actions originally
from the LPE P. At those points where P terminates successfully, n is set to 1,
disabling the execution of actions from P and enabling the execution of actions
from Q.

4.8 Alternative composition operator

In this section we give a translation of the x; process p || ¢, which chooses
non-deterministically between the processes p and g. At first glance providing a
translation for this does not seem to be more difficult than providing one for the
sequential composition. This, however, turns out to be untrue, due to the time
mechanism of xy; if both alternatives p and g can delay, then they delay together.
If only one alternative can delay and furthermore no actions can be executed at
all then there is a deadlock. Finally, time does not make a choice, meaning that
if the process delays before a choice for one of the alternatives has been made
the process still has to make this choice after that delay.

Say we have the x; process p [¢ with the LPE P = T (p) and the LPE Q
= T(q). Furthermore we say that the finite index set I = I, U I, (similar to
section 4.6). Finally we say that I, = Iy U Igp, with Iy NIy = @, Iy being a
set of indexes of all occurrences of the tick action in P and Iy, being a set of
indexes of all occurrences of the tick2 action in P. In a similar way we define

15

J=JaUJ; and J; = Jy1 U Ji2. Now we define T (p || q) as follows:

X(n:Nat, d:D, d’:D’) =
D7) ai(fe,(d,e1)) X(1,gp,(d,€:),d°) ahe, (d,e) A(m=0Vn=1)p5 +

i€Ip e; €D;

3> ai(fe, (d,e:)).X(n,gp, (d,e5),d’) 9hp, (d,e5) An =108 +

i€l e €ED;

D> ailfr’(d,e:)).v (0,85, (d,1),d) <hp,’ (d,€) A(m=0Vn=1)p5 +
i€I’ e; €D;°

D) aj(£q,(d’,5)) X(2,d, 89, (d’, 65)) <hoy (@,) A (@=0Vn=2)16 +

J€EJn ejED;

Z Z a;j(fq,(d’,e;)).X(n,d,gq;(d’,e;)) <hg;(d’,ej) An=2p>6 +

jEJ¢ eED;
D> ay(fe’(d2,e5)).v (0,d, g9, (a7, e5))
JEI’ ej€D;°

dhg,’(d’,e) A(@=0Va=2)bd +
DD D D vickX(m g (d,es), g, (A’ ep)
i€I1 jEJe2 @5 €D; o5 ED;

<hp, (d,e:) Ahg,(d’,e5) An=00>4 +
D020 2. D vickX(n,gr (), gy (d7,05)
i€Iyp jEJ41 @i €ED; e ED;

<hp, (d, ;) Ahg; (d’,e5) An=0p4 +
3 XYY kXm0, 4%, 0)
i€I1 jEJ¢1 @1 €ED; @5 ED;

<hp, (d,e) Ahy;(d’,e) An=0pJ +
D730)) tick2.X(n,d,d’) abp, (d,e) Ahg(d’,e) An=00>6

i€I2 jEJr2 @1 €EDs €5ED;

Basically the following things have been done to combine the LPEs P and Q:

1. A counter n has been introduced. It has type Nat but in practise n € {0,
1, 2}.

2. In the first line we find the 'normal’ actions that originally are not at the end
of process P (P does not terminate after performing one of these actions).
Since n initially equals 0, some of these actions can be performed in the
beginning of executing X (where hp, (d,e;) holds).

3. In the second line we find all occurrences of tick and tick2 in LPE P. It
is very important to note that the usage of n in the guard (only considering
n=1) leads to guards which are always false in cases where tick and tick2
actions are enabled in the beginning of executing P. This is because initially
n does not equal 1, but 0 and after that, when n does equal 1, hp, (d) does
not hold. This results in tick and tick2 occurrences at the beginning of P
(in terms of execution order) being effectively removed from process X.

16

4. In the third line we find the 'normal’ actions as we did in the first line,
only after executing these actions P originally terminates. As we see here, X
terminates as well.

5. In the fourth, fifth and sixth line we find situations similar to the first, second
and third line respectively, only now they concern actions from process Q.

6. In line seven we combine all occurrences of tick in process P with all oc-
currences of tick2 in process Q. Together these form tick occurrences in X,
where the new state is defined by using the two functions gp, and gy, and the
guard is the conjunction of the guards of the occurrences being combined to-
gether with the expression n=0. This last expression n=0 effectively makes all
guards equal to F, except in those cases where both the tick and the tick2
occurrence are at the beginning (execution-wise) of P and Q, respectively.
The reason for this is similar to the one given for the second line.

7. In the same way as is done in the previous line, the remaining lines combine
tick2 occurrences in P with tick occurrences in Q, tick occurrences in P
and Q and tick2 occurrences in P and Q respectively.

So in line two and five the tick and tick2 occurrences from the beginning of P
and Q are practically removed, only to appear in a combined form in lines seven,
eight and nine. This reflects what happens in the x; process p || ¢, where p and
q delay together if they can both delay and no delay will happen if one of them
cannot.

4.9 Repetition operator

When executing the x:; process *p, the process p gets executed in sequence
infinitely often. This construction needs to be translated using recursion.

Say we have a xt process *p where the LPE P = T (p). Now we define 7 (xp)
as follows:

X(d:D) =
D0 aifr(d,e:)).X(ge, (d,e5)) dhp, (d,65) 5 +
i€I e; €D;
D> @il ?(d,e:)) . X(ge, * (d,5)) <hp,* (d,05) b6
i€I’ e;€D;’

In the LPE the check-mark (v') has been replaced by X, resulting in executing
X from the beginning again every time X has executed the final action in the
LPE. When repeating the execution the LPE automatically begins with the first
action, which is assured by the translation of p (note that in all translations
of the operators, counters get their initial value back at termination). However,
note that the new state, when the process starts repeating, is underlined. This
is done to indicate that all marked parameters t in d (see sections 4.3 and 4.4)
are assigned the values of their accompanying parameters to. The reason for this
is that should process P contain an alternative composition, it is not always the
case that all timers are reset to their initial values upon termination.

17

4.10 Guarded repetition operator

Say we have the x; process b : p with the LPE P = 7 (p) and b is a translation
of the guard b. Now we define T (xb : p) as follows:

X(n:Nat, d:D) =
7.X(1,d) <n=0ADD>J +
>) ai(fs,(d,e:)) X(n,gs, (d,€:)) <hp, (d,€) An =108 +

i€T e;€D;

> > ai(fs,7(d,e1)).X(0,gp, 7 (d,05)) <hp, > (d,€5) An =106 +
i€I’ e; €D’

7.v/'(n,d) dn=0 A—b>J +

tick2.X(n,d) <n=0A-bb> 4

Basically the following things have been done to get the process X:

1. A counter n has been introduced.

2. In the first line the process can do a 7 action if the boolean expression b

equals T. After this the LPE P can be executed.

. In the second line P(gp, (d)) is replaced by X(1, gp, (d)).

. In the third line v'(gp, > (d)) is replaced by X(0, gp,’ (d)).

5. The fourth line allows the process to finish execution. Once the guard is
false when trying to begin executing the actions of the original P again, the
process should finish with a 7 step.

6. The fifth line makes sure that the process is delayable when trying to start
executing the actions of P and the boolean expression b equals F.

= W

4.11 Scope operator

The process algebra pCRL does not have a scope operator, but the functionality
of this can be found implicitly in the algebra. Note that in yx; the state s is
used to define local programming variables or local channels. So in a way, a
state is a tuple consisting of variables and channels. In yCRL the programming
variables of a process can be found in its parameter d (initial values can be
found in the initialisation line) while the channels are defined as send and receive
actions globally. In other words, s is captured in uCRL by recursion parameters
and global action and communication definitions. Therefore, there is no direct
translation of the scope operator needed.

As the ¢ local channels are translated to puCRL global actions, some extra
work is needed to make these actions seem local. In x; send and receive actions
on local channels are automatically hidden from the outside world. This is the
only abstraction which is done in x;. To get the same result in uCRL we have
to add all send and receive actions, which are translations of send and receive
actions over local channels in xi, to the set I of the abstraction operator used
at the initialisation line.

18

4.12 TUrgent communication operator

In puCRL there is no urgent communication operator. This means that it is not
possible to give action transitions priority over delay transitions, which is what
the urgent communication operator of x; does. We can however still get similar
results using pCRL, which will be explained next.

In order to translate the urgent communication operator we first need to
linearise the translation. This means that translating urgent communication can
only be done once all other translations are ready. This reflects nicely the fact
that in 3, urgent communication is added to a system once it is completed.

Say we have a x; process vy (p) where the LPE P = 7 (p) and # contains all
channels used by p. Now we define T (vy(p)) as follows:

X(d:D) =
D) ai(£:i(d,e:)) X(gi(d, e1)) <hi(d,e) b5 +
i€l e €D;

D> ai(fi(d,e)) X(gi(d,e1)) ahi(d,e) A= \/ By(d,es) 6

i€l e; €Ds JEIL

Note that the finite index set I = I, U I, as used before. In X there are no tick2
actions, since these are never observable from outside the system. Variable e;
does not really play a role in the second line, since the tick action does not use
it. Finally, I’ is empty, since the linearised version of a system does not contain
check-marks.

4.13 Global variables

In x; processes can use global variables; if one process changes the value of such
a variable, the other processes may be affected by this. In uCRL there are no
global variables, but it is possible to get similar results.

Say two i processes A and B share a variable named z. We translate process
A to A and process B to B. Both processes maintain a local copy of variable x
(the translation of z). The processes can read the value of their local copy at
all times, but if one of them changes the value of its copy the other one should
be aware of this (and change the value of its own copy of x likewise). To make
this possible in fCRL, a new action assignx is introduced, which is called by
a process if it changes the value of x. As a parameter the new value should be
given. This action communicates with another action updatex, which can be
executed by the other process at all times. This last thing is very important,
since an assignment should proceed as soon at it is invoked. Once the other
process can communicate via updatex it receives the new value for x and assigns
this to its local copy.

In case there are more processes sharing the same variable, once an assignx
action has communicated with an updatex action this updatex communicates
immediately with the updatex action of another process, such that in the end
all processes are aware of the assignment. More specific this is the definition of
the actions (in this case z is a natural number):

19

act assignx, assignx’, updatex, updatex’ : Nat
comm assignx | updatex = assignx’
updatex | updatex = updatex’

In order to achieve the desired behaviour described above we introduce a new
parallel operator X| SVTPC |Y (SVTPC stands for Shared Variables supporting
Timed Parallel Composition). This operator handles both the synchronising be-
tween tick and tick2 actions (like X| {tick2} |Y) and the synchronising nec-
essary for using shared variables. The definition is as follows: X | SVIPC | Y =
ps (Bu (X || Y)), where £ = {tick’—tick, tick2’—tick2, assignx’—
assignx, updatex’—updatex} and H = {tick, assignx, updatex}.

5 An example: the system PQ

Concluding we look at an example x; specification in order to illustrate how
translation works on a concrete case study. The example we use is a system
consisting of the processes P and . The x; specification of the system is the
following:

P(a :!bool) = Q(a : ?bool) =
[i:nat =2 [&: bool
| *(¢ >1— A3.0; alfalse; i:=i+1 | *(A2.0; a?0)]

li>2— altrue; i:=i—1)]
(a: —bool | P(a) || Q(a))

Next we translate these two processes to LPEs. After that we will linearise the
translation using the pCRL toolset and then introduce urgent communication.

We start by noting that the only data types used are the ones for the natural
numbers and the booleans. For yCRL this means we will use the data types Nat
and Bool. Since these are standard we do not display their definitions here.

Now we detect the channels used and define appropriate actions for them in
uCRL. In the x; specification we see the channel a. For this we define the actions
sa, ra and ca, all three having a boolean value as parameter. Here sa stands
for sending a value over channel a, while ra is used for receiving a value and ca
represents communication over the channel. We define that sa can communicate
with ra, forming action ca.

Concerning process P, we know how to translate the individual actions. Using
a single counter, for readability purposes, we can place the actions in the right
structure (following the translation scheme we would end up with a list of coun-
ters, but here we use only one counter, which can range over the set of natural
numbers). Furthermore we see two guards placed in an alternative composition.
Finally this construction is subject to the repetition operator. Translating all
this (and simplifying it by removing those actions which will never be executed

20

due to their guards never being true) we get:

proc P(n:Nat, t:Nat, to:Nat, i:Nat) =
tick.P(n,t-1,t0,i) 9t >0AD=0A1i>1D>§ +
7.P(1,t0,t0,i) <t =0ADn=0Ai>1D>§ +
sa(F).P(2,t,t0,i)dn=1p>§ +
tick2.P(n,t,t0,i)<n=1p6 +
7.P(0,t0,t0,i*1) <n=2p¢ +
sa(T) .P(3,t,t0,i)dn=0Ai>2p§ +
7.P(0,t0,t0,i-1) <n=3p4¢ +
tick2.P(n,t,t0,i) i <1An=0p4

Finally we translate process . This is a very small process which is translated
to the following LPE:

proc Q(n:Nat,t:Nat,to:Nat,b:Bool) =
tick.Q(n,t-1,t5,b) <t > 0An=00p>§ +
7.P(1,t0,t0,b) At =0AD=0D>§ +
> ra(bo).Q(0,t0,t0,b0) an =108 +

bp :Bool
tick2.Q(n,t,to,b) <n=1>§

The translation is completed when we write the initialisation line:
init psa, ra, vicko} (P0,3,3,2) | {tick2}| Q(0,2,2,F))

Here, | {tick2} | is a special operator as defined in section 3. Notice that we
encapsulate tick2 eventually, which results in the fact that the synchronisation
of a number of tick2 actions (without any tick action) will not lead to an
action in the system.

Now that this translation is finished, we move on to linearise and post-process
it to introduce urgent communication. After linearisation we have the following,
where the original parameters n, t and t, of LPE Q have been renamed to n’,
t’ and ty’ in LPE X to avoid name clashes:

proc X(n:Nat, t:Nat, to:Nat, i:Nat, n’:Nat, t’:Nat, to’:Nat, b:Bool) =
tick.X(n,t-1,t0,i,n’,t’-1,to’,b) 9t >0AD=0Ai>1At>>0An> =04 +
tick.X(n,t-1,t0,i,0’,t’,t0’,b) 4t >0AD=0Ai>1An’=1p>4§ +
tick.X(n,t,to,i,n’,t’-1,t0’,b)
AW(E<1An=0)Vn=1)At’>>0An’=0>4 +
ca(T).X(3,t,t0,1,0,t0’ ,t0’,T)An=0Ai>2An’ =1p6 +
ca(F) .X(2,t,t0,1,0,t0’,t0’,F)dn=1An’ =1p§ +
7.X(n,t,t0,i,1,t0”,t0’,b) <t =0AN’ =0D>§ +
7.X(0,t0,t0,i-1,n°,t°,t0’,b) <n=3>4§ +
7.X(0,t0,t0,i+1,n’,t’,t0’,b) an =2>4 +
7.X(1,t0,%t0,i,n%,t7,t0’,b) At =0ADn=0Ai>1>§

21

Post-processing LPE X leads to extended guards of the three lines beginning
with tick. More specific, the guards of these lines are extended with an extra
conjunct, which is the negation of a disjunction of the guards of all the other
lines (lines 4 to 9). In lines 1 and 3 this does not lead to new behaviour; when
the original guards of lines 1 and 3 are true, the extra conjunct is always true
as well, because then not one guard from lines 4 to 9 holds. In line 2 however,
this is different; when the original guard of line 2 holds, the guard of line 4 may
hold as well. For readability purposes, we will not show the fully post-processed
LPE X here. We only add an extra conjunct to line 2, for reasons stated above.
Now we conclude by providing the final LPE X, which is a translation of the
system P(Q), with urgent communication:

proc X(n:Nat, t:Nat, to:Nat, i:Nat, n’:Nat, t’:Nat, to’:Nat, b:Bool) =
tick.X(n,t-1,t0,1i,n’,t’-1,t0’,b) <t >0ADN=0A1i>1At> >0An’ =0>4 +
tick.X(n,t-1,t0,i,n’,t’,t0’,b)
C>0An=0Ai>1An’ =1A"(@a=0Ai>2An’=1)p>6 +
tick.X(n,t,to,i,n’,t’-1,%0’,b)
AWE<K1AD=0Vn=1)At’>0An’=0p§ +
ca(T) .X(3,t,t0,1,0,t0” ,t0’,T)In=0Ai>2An’ =1p¢ +
ca(F).X(2,t,t0,1,0,t0’,t0’,F)dn=1An’ =1p4§ +
7.X(n,t,t0,1i,1,t07,t07,b) <t> =0AN’ =0p§ +
.X(0,t0,t0,i-1,n?,t?,t0’,b) dn=3p>§ +

-
7.X(0,t0,t0,i+1,n’,t’,t0’,b) <n=2>4 +
7.X(1,t0,t0,i,n”,t7,t0’,b) <t =0AD=0A1i>1>§

References

1. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18. Cambridge University Press, 1990.

2. D.A. van Beek, A. van der Ham, and J.E. Rooda. Modelling and Control of Process
Industry Batch Production Systems. In Proc. IFAC’02, 2002.

3. D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syn-
tax and Consistent Equation Semantics of Hybrid Chi. Technical Report 04-37,
Eindhoven University of Technology, 2004.

4. J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM Press Frontier
Series. ACM/Addison Wesley, 1989.

5. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1-3):109-137, 1984.

6. J.A. Bergstra and J.W. Klop. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202:1-54, 1998.

7. M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A Tool
Integrating Functional and Performance Analysis of Concurrent Systems. In Proc.
FORTE/PSTYV ’98, pages 457-467. Kluwer, 1998.

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Bezem and J.F. Groote. Invariants in Process Algebra with Data. In Proc.
CONCUR ’94, volume 836 of LNCS, pages 401-416, 1994.

S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C.
van de Pol. uCRL: A Toolset for Analysing Algebraic Specifications. In Proc. CAV
2001, volume 2102 of LNCS, pages 250-254, 2001.

S.C.C. Blom, N. Ioustinova, and N. Sidorova. Timed verification with yCRL. In
Proc. PSI 2008, volume 2890 of LNCS, pages 178-192, 2003.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst., 14(1):25-59, 1987.

E. Bortnik, N. Trcka, A.J. Wijs, S.P. Luttik, J.M. van de Mortel-Fronczak, J.C.M.
Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing a x Model of a Turntable System
using SPIN, CADP and UppPAAL. Technical Report 04-23, Eindhoven University of
Technology, 2004. http://www.cwi.nl/~wijs/TIPSy.

V. Bos and J.J.T. Kleijn. Automatic verification of a manufacturing system.
Robotics and Computer Integrated Manufacturing, 17:185-198, 2001.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1989.

A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. CAV 2002, volume 2404 of LNCS, pages 359364, 2002.
J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP - a protocol validation and verification toolbox. In Proc. CAV’96,
volume 1102 of LNCS, pages 437-440, 1996.

W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, 2000.

W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol. Verifying a
Sliding Window Protocol in gCRL. In Proc. AMAST 2004, volume 3116 of LNCS,
pages 148-163, 2004.

W.J. Fokkink, J.F. Groote, and M. Reniers. Modelling Distributed Systems. Un-
published manuscript, 2002.

W.J. Fokkink, N.Y. Ioustinova, E. Kesseler, J.C. van de Pol, Y.S. Usenko, and
Y.A. Yushtein. Refinement and verification applied to an in-flight data acquisition
unit. In Proc. CONCUR 2002, volume 2421 of LNCS, pages 1-23, 2002.

H. Garavel and H. Hermanns. On Combining Functional Verification and Perfor-
mance Evaluation Using CADP. In Proc. FME 2002, volume 2391 of LNCS, pages
410-429, 2002.

J.F. Groote. The Syntax and Semantics of timed yCRL. Technical Report SEN-
R9709, CWI, 1997.

J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols and
distributed systems by computer. In Proc. CONCUR’98, volume 1466 of LNCS,
pages 629-655, 1998.

J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for
lifting trucks. Journal of Logic and Algebraic Programming, 55(1-2):21-56, 2003.
H. Hermanns and J.-P. Katoen. Performance Evaluation := (Process Algebra +
Model Checking) x Markov Chains. In Proc. CONCUR 2001, volume 2154 of
LNCS, pages 59-81, 2001.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

ITU-T. Recommendation Z.100: Specification and Description Language (SDL).
ITU-T, Geneva, June 1994.

H. Lin. Symbolic transition graph with assignment. In V. Sassone, editor, Proc.
CONCUR’96, number 1119 in LNCS, pages 50—65. Springer-Verlag, 1996.

23

29

30.

31.
32.

33.

. J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley-
Teubner, Chichester, Stuttgart, 1996.

S.P. Luttik. Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam, 2002.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

S. Owre, J.M. Rushby, and N. Shankar. PVS: a Prototype Verification System. In
Proc. CADE’92, volume 607 of LNCS, pages 748-752, 1992.

J.C. van de Pol. A prover for the uCRL toolset with applications. Technical Report
SEN-R0106, CWI, Amsterdam, 2001.

24

