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Abstract. In this paper, we mainly focus on solving scheduling problems with
model checking, where a finite number of entities needs to be processed as effi-
ciently as possible, for instance by a machine. To solve these problems, we model
them in untimed process algebra, where time is modelled using a special tick ac-
tion. We propose a set of distributed state space explorations to find schedules for
the modelled problems, building on the traditional notion of beam search. The
basic approach is called distributed (detailed) beam search, which prunes parts
of the state space while searching using an evaluation function in order to find
near-optimal schedules in very large state spaces. Variations on this approach are
presented, such as distributed flexible, distributed g-synchronised, and distributed
priority beam search, which can also practically be used in combinations.
Keywords: directed model checking, distributed model checking, scheduling,
beam search.

1 Introduction

Traditionally, model checking concerns modelling systems and checking properties,
which either hold or not, in other words, the checks can be answered with either “yes” or
“no”. In more recent years, however, the awareness has grown that often other kinds of
checks, which cannot be answered in such a manner, are as important. For these checks,
one is usually interested in some measurements, such as the throughput or efficiency
of a particular system. Markov Chains, for instance, have shown to be useful when one
needs to do performance analysis of a system [9]. Although not common yet, sometimes
scheduling problems are also addressed using model checking techniques [2, 28, 37,
41], since the tools are usually equipped with highly expressive languages, making it
possible to specify complex industrial scheduling questions. Comparing the two kinds
of property checks, one could label traditional model checking as qualitative model
checking and the latter one as quantitative model checking [22].

Furthermore, as state explosion is a big problem in model checking, research is
being done to efficiently explore state spaces to find deadlocks fast, particularly us-
ing Artificial Intelligence (AI) heuristic techniques, such as A∗ [15] and genetic algo-
rithms [19]. This approach is referred to as directed model checking [15]. Although
mostly used for qualitative model checking, techniques like beam search [5] can be
applied for quantitative model checking, in particular to solve scheduling problems.

In an earlier paper [41], we made a first attempt at solving scheduling problems,
where a finite number of products needs to be processed as efficiently as possible by a



machine, by modelling them using untimed process algebra and generating state spaces
from the models using a specialised toolset. Within such a state space a minimal-time
trace represents an optimal schedule for the problem at hand.

We experienced the limits of our first attempt quite soon; state spaces tend to be
very big, sometimes in the order of hundreds of gigabytes. Although we developed an
on-the-fly search algorithm, which enables us to find optimal solutions while generat-
ing, we were still confronted with technological limits. Because of this we moved to
a distributed setting with our minimal-time search algorithm. In [41], results of apply-
ing this distributed algorithm on finding schedules for a clinical chemical analyser can
be found. The algorithm enabled us to deal with bigger problems, but still we had the
impression that the technique could be improved if we were able to avoid the (many)
non-promising traces and guide the search through the state space towards near-optimal
schedules using a heuristic method. When looking at available pruning techniques in the
literature, we found beam search [5]. Beam search is a heuristic method for combina-
torial optimisation problems, which has extensively been studied in AI and operations
research [27, 35]. Later this technique has been applied to scheduling problems, for ex-
ample in systems designed for complex job shop 1 environments [12, 17, 31, 38, 41].
Since then new variants of beam search have been introduced, such as filtered beam
search [30] and recovery beam search [12].

Using beam search proved to be very fruitful, as we were able to find near-optimal
schedules for all the considered batches of tests of the clinical chemical analyser [41].
It sometimes took a lot of time, though, mostly due to the extra computation needed to
evaluate states. This could be improved if we moved the beam search techniques to a
distributed setting. In this paper we propose several distributed beam search variants,
focussing on detailed beam search, since due to its global view when pruning, it is not
obvious how a distributed algorithm should function.
Contributions We show how a technique for solving scheduling problems can be
adapted to a distributed setting. The technique, beam search, is a heuristic which prunes
parts of a state space while searching, in order to find near-optimal solutions. We extend
the distributed technique to deal with arbitrary state spaces and make it more effective.
Structure of the paper First we will present some preliminaries. Next we describe
the kind of scheduling problems we are dealing with. After that we explain the most
common forms of beam search, followed by descriptions of the distributed versions
we propose. We show how some of these versions perform in practice, looking at, as
we call it, the Zebra Finch problem, which is a combination of several river crossing
problems [14]. Finally, we discuss related work and conclude the paper.

2 Preliminaries

We use the following formalism to represent state spaces.

1 The job shop problem is the most classic scheduling problem in the literature. In its most basic
form, we have a finite set M of resources, and a number of jobs J1,. . .,Jn which compete in
using the resources in a specific order and for a finite number of time units. The problem is to
allocate the resources such that the jobs are finished in minimal time.
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Definition 1 (Labelled transition system). A Labelled Transition System (LTS) is a
tuple (Σ ,s0,Act,Tr), where Σ is a finite set of states, which is usually not known a
priori, but generated on-the-fly, s0 ∈ Σ is the initial state, Act is a given finite set of
action labels and Tr ⊆ Σ ×Act×Σ is the transition relation. A transition (s,a,s′) ∈ Tr,
denoted s a−−→ s′, indicates that the system can move from state s to s′ by performing
action a.

For T ⊆ Tr, we define nx(s,T ) = {s′ ∈ Σ | ∃a ∈ Act. s a−−→ s′ ∈ T}. We define a state
s to be an endstate iff nx(s,Tr) = /0.

Breadth-first State Space Generation State space generation algorithms are pro-
vided with a specification as input and produce the state space which is described by
that specification. A breadth-first state space generation (BFS) algorithm, as presented
in Algorithm 1, starts from the initial state of the specification and names it s0. State s0
is placed in the set S0. Sets S1, S2,. . . are generated iteratively.

In Algorithm 1, expand : Σ → P(Tr) is the function that provides the interface
between the state space generation algorithm and the underlying specification. For a
state s, expand(s) is the set of transitions which root in s. Set Si with i ∈N denotes the
set of states in the i + 1th level of the state space. The set Closed is used to perform
delayed duplicate detection [34] when expanding states; if a state has already been
expanded before, we do not need to expand it again. This is checked at the end of
generating a new set, hence it is delayed.

Algorithm 1 Breadth-first state space generation
procedure bfs(s0)

i := 0
Si := {s0}
Closed := /0
while Si \Closed 6= /0 do

Si+1 := /0
for all s in Si \Closed do

Si+1 := Si+1∪ nx(s,expand(s))
Closed := Closed∪ Si
i := i+1

return Finished

Distributed State Space Generation Moving to a distributed setting, we no longer
deal with one machine, but one manager and n clients C1,. . .,Cn, where n ∈N. For this
paper, it suffices to say, that in distributed BFS state space generation, every client per-
forms a BFS on the states it gets. After generating the set Si+1, given a set Si, how the
states in Si+1 should be distributed over the n clients is determined by a hash function
Checksum : Σ → N. For more information on distributed state space generation, the
reader is referred to, for instance, [11].
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The language µCRL The process algebra µCRL [21], an extension of ACP [4] with
abstract data types, is a language for specifying distributed systems and protocols in
an algebraic style. A µCRL specification describes an LTS, in which states represent
process terms and edges are labelled with actions. This process algebra is used as input
to a state space generation toolset [7], which is accompanied by symbolic reduction
techniques. The toolset has also been extended for a distributed setting [6].

Based on the work from [8, 40], we use a special tick action, which models time
progression. This is comparable to relative discrete time [1]: A tick action indicates that
the system moves to the next time slice.

Definition 2 (minimal-time trace [41]). Given an LTS and a transition label a, we say
that there is a trace with execution time t (t ∈N) to a transition with label a iff there is a
trace in the LTS starting from the starting state s0 and reaching a transition with label
a, such that the number of tick transitions occurring in this trace equals t. We define a
trace from s0 to a transition with label a to be minimal-time iff there is no other trace
in the LTS from s0 to a with less tick transitions.

Using this definition, we can formulate a scheduling problem as a reachability prob-
lem: finding an optimal schedule to perform a batch of tasks successfully can also be
seen as finding a minimal-time trace to a transition indicating successful termination in
a state space containing all possible schedules as traces. That we can also in this manner
deal with scheduling problems involving parallel execution of tasks, will be explained
in the following section.

3 Modelling Scheduling Problems using µCRL

Scheduling problems, in this paper, are typically about processing a certain number of
entities (for instance, products or jobs, in the case of jobshop scheduling). The pro-
cessing is usually done by a machine, or combination of machines, which can perform
tasks t1,. . .,tm ∈ Ta, where Ta is a set of task labels2, provided, that the accompanying
sets of constraints C1,. . .,Cm are met3. Furthermore, each task ti has an execution time
d(ti) associated with it, given by the function4 d :Ta→N. In these problems, a certain
goal should be reached, usually having completely processed a finite batch of entities.
The question asked in scheduling is not mainly if this goal can be reached, but how
efficiently this can be done.

As we perform scheduling using model checking tools, we are able to deal with
complex industrial systems, the models of which tend to lead to very big, arbitrarily
structured state spaces. We model tasks as transitions, meaning that performing task
ti in an execution appears as s j

ti−−→ s j+1 in the LTS, where s j and s j+1 are two states
in the trace corresponding to the execution. In state spaces, where the traces represent
schedules, we can observe the following.

2 Later on, in our approach, action labels from Act represent task labels from Ta.
3 To keep things general, we do not fix these constraints to a specific notation here. Suffice it so

say that they can deal with time and data.
4 Since execution times are here represented using natural numbers, we use discrete time.
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A function progress: Σ →N can be constructed, which can access the state variables
of a state s, using the underlying µCRL specification of the LTS (similar to expand(s)
in section 2) and quantifies the progress made to reaching some predetermined goal, for
instance having completely processed a given batch of entities. In general, say we have
c0,cend ∈N, ∀s ∈ Σ .c0 ≤ progress(s)≤ cend and progress(s0) = c0, in other words, c0
is the initial (no) progress and cend represents having reached the goal. We do not claim
any monotonicity of this function, as in general one can imagine tasks which provide
negative progress, which, for instance, is the case in our example in section 7.

Building on Definition 1, we can now distinguish two kinds of endstates.

Definition 3 (termination and deadlock). A state s is a termination state iff it is an
endstate and progress(s) = cend . A state s is a deadlock state iff it is an endstate and
progress(s) 6= cend .

The intuition behind this, is that we can distinguish two kinds of endstates: one
where the predetermined goal is reached, and one where it is not.

The general structure of a µCRL model of a scheduling problem can be described
as consisting of a process (or processes), which is an alternative composition of all tasks
ti, each followed by a sequence of tick actions, to indicate the execution time. The tasks
ti can only be executed if the accompanying conditions Ci are met, written in the model
as conditions for the actions representing the tasks, and, once executed, a task has an
effect on the progress of the processing (as expressed by function prog). So this model
can execute all available tasks as long as the constraints are satisfied. Which tasks to
execute and when is decided non-deterministically; there are no built-in priorities.

Besides that, we introduce a special action called finished. We use this action in
such a way that it can be executed iff it leads to a termination state.

Sometimes, a system consists of several processes running in parallel, and the sched-
uling problem involves the parallel execution of tasks. In µCRL, it is possible to model
multiple processes in parallel and have them work with time correctly. For this it must be
enforced that all tick actions are synchronised; only if all processes can do a tick action,
a tick action occurs. Explaining in detail how this can be achieved is outside the scope
of this paper, since it involves a detailed explanation of µCRL. The interested reader
is referred to [8, 40]. We can note here, that having several processes in the structure
mentioned earlier, means that we can still relate a schedule to a path in the state space.
For this, we need to interpret a sequence of tasks, not containing any tick actions, as a
set of tasks happening at the same time. Consider, for example, the sequence a·b·tick in
a trace, where ‘·’ is the sequential composition operator of µCRL. Due to the structure
of the processes, we know that a and b originate from different processes; if not, they
would be seperated by at least one tick action (assuming that the execution of each task
takes at least one time unit). Furthermore, we can interpret a·b·tick as a and b happen-
ing at the same time, which makes sense, considering that they happen in the same time
unit (i.e. between the same two tick actions). If we do this, then we do not differentiate
a·b·tick from b·a·tick. Note, that this relates to the notion of independent actions for
partial order reduction [32]. Using this terminology in our case, given a solution path,
we abstract away the particular action arrangement of independent actions.

Having created a µCRL model, it is possible, using the µCRL toolset, to generate
a state space from it. This state space incorporates all possible behaviour of the system
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described by the model. Somewhere in this state space there is at least one minimal-time
trace to a finish. Given Definition 2, we use the finished action as transition a, in order
to formulate a minimal-time trace to a termination. In [41], this modelling approach is
applied on a clinical chemical analyser, and a specific minimal-cost search is explained
(the search is mentioned again later in this paper in section 6).

4 Beam Search

Beam search [5] is similar to breadth-first search as it progresses level by level. At each
level, it uses a heuristic evaluation function to estimate the promise of encountered
states. The β most promising states are selected for further examination. Because of
this aggressive pruning, the generation time is a linear function of β and is thus heavily
decreased. When β → ∞, beam search behaves as breadth-first search [39].

The beam search approach is a branch-and-bound technique where only the β most
promising states at each level of the search tree are selected for further branching. This
β is the so-called beam width, which is fixed to a value before searching. Other states
are discarded, so searching can be done relatively quickly. Because of this, using the
beam search technique does not guarantee finding an optimal solution, since wrong
decisions can be made while pruning. To limit the possibility of wrong decisions one
can increase the beam width, at the cost of an increase in computational effort.

Clearly the evaluation function used to select states is very important. In the past,
two types of evaluation functions have been used: priority and total cost evaluation
functions. A priority evaluation function calculates a priority for each task, while a total
cost evaluation function calculates an estimate of the total cost of the best schedule
that can be found continuing from the partial schedule represented by the state. Priority
evaluation functions have a local view of the problem, since they only consider the next
task to be scheduled, while total cost evaluation functions have a global view, taking
the complete schedule into account. These types of functions lead to two classic beam
searches, namely priority and detailed beam search, using a priority and a total cost
evaluation function, respectively.

In a detailed beam search, at each level up to β nodes are selected to continue,
regardless of what their parent states are, therefore it could be the case, that some nodes
have multiple selected children, while others have none. A total cost evaluation function
allows comparison of states from different executions as it shows the progress each
execution is making (i.e. it has a global view). This in contrast to priority evaluation
functions, which only allow comparison of alternatives, which are part of the same
trace up to that point.

In [39], detailed and priority beam search were extended for usage on arbitrary
state spaces, as opposed to highly structured trees. In the following section we present
extended detailed beam search, as implemented in the µCRL state space generator. For
a detailed comparison between the basic notion of this beam search and the extension
and eventual adaptation to the µCRL toolset setting, the reader is referred to [39].
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5 Extended Detailed Beam Search

In this section we first present the extended detailed beam search in its sequential form.
After that we adapt it to a distributed setting. From now on, whenever detailed beam
search is mentioned, we refer to the search extended for arbitrarily structured state
spaces.

5.1 Sequential Detailed Beam Search

A user of the µCRL toolset can perform a detailed beam search, i.e. a beam search
using a total cost evaluation function. The user can provide a function using constants
and variables from the model, combining them using mathematical operators.

Algorithm 2 shows in pseudo-code the detailed beam search algorithm as used in
the µCRL toolset. The evaluation function is called f : Σ → N. This function is de-
composed to f (s) = g(s)+ h(s), where g(s) represents the cost taken to reach s from
the root of the tree, which is defined as g(s) = g(s′)+ cost(a) if s′ a−−→ s. The function
cost : Act →N assigns weights to actions that can, for instance, denote the time needed
to perform different jobs in a scheduling problem. These are usually fixed to certain val-
ues before searching starts. Since the range of cost is non-negative numbers, if s a−−→ s′,
then g(s′) ≥ g(s), for any action a. The h(s) function is an estimation of the cost it
would take to efficiently complete the schedule continuing from s. Here, we consider
admissible heuristics, i.e. for all states s, h(s) is an underestimation of the real mini-
mal cost needed to complete the schedule. The function get fmax : P(Σ) → Σ , given
a set of states, returns one of the states that has the highest f value. It thus computes
f (s) = g(s) + h(s) for each member of the set. Contrary to Algorithm 1, here, all Si
and Closed contain pairs of states and corresponding g-values. Finally, the functions
unify(X) and update(X ,Y ) are defined as follows: unify(X) = {〈s,g〉 ∈ X | ∀〈s′,g′〉 ∈
X .s = s′ =⇒ g ≤ g′} and update(X ,Y ) = {〈s,g〉 ∈ X | ¬∃g′ ≤ g.〈s,g′〉 ∈ Y}. These
functions are used to perform a delayed duplicate detection, where revisiting of a state
is allowed if it is reached via a path with a lower cost than the g-cost assigned to it so
far.

Note, that no additional stopping condition appears in Algorithm 2, i.e. it appears as
though we exclude searching for something in particular, for instance the violation of a
property. This, however, can in practice be done on top of any search. Relating back to
section 3, we can perform a detailed beam search and at the same time check, whether
a transition s a−−→s′ is found, such that a = finished. Once this is the case, the search can
be stopped and a trace from s0 to s′ can be returned, which corresponds to a schedule.
This approach is used in our experiments (see section 7).

5.2 Distributed Detailed Beam Search

Because of the global view of total cost evaluation functions, designing a distributed
version of detailed beam search is non-trivial. Clients should not select states for further
exploration in isolation of each other, but have to communicate.

Say we have a manager and n clients to do a distributed detailed beam search. As
described in 2, we have a hash function Checksum:Σ →N, which is used to distribute
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Algorithm 2 Detailed beam search for state space generation
procedure detbs (s0, β )

s0.g := 0
i := 0
Si := {〈s0,s0.g〉}
Closed := /0
while Si 6= /0 do

Si+1 := /0
while |Si|> β do

Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}
for all s ∈ Si do

for all s a−−→ s′ ∈ expand(s) do
s′.g := s.g+ cost(a)
Si+1 := Si+1∪ {〈s′,s′.g〉}

Closed := unify(Closed∪Si)
Si+1 := update(unify(Si+1),Closed)
i := i+1

return Finished

generated states over the clients for future exploration. Say the LTS consists of levels
S0, S1, etc. As detailed beam search is done in a breadth-first manner, each level of states
Si gets distributed over the n clients before exploration, leading to the subsets S1

i ,. . .,Sn
i ,

such that S1
i ∪ . . .∪ Sn

i = Si for all levels i, where S j
i is the subset of Si designated to

client j by the hash function.

Fig. 1. Distributing, parti-
tioning and selecting

Now, we define function p f : P(Σ) → P(P(Σ)),
which is used at each level i by each client j. For practi-
cal reasons, we say, that k is an upper limit of f . Now,
p f distributes the states from a set S j

i over k equiva-
lence classes [σ j

0 ], . . . , [σ j
k−1], such that ∀u∈ {0,1, . . . ,k−

1}.∀s ∈ [σ j
u ]. f (s) = u.

We refer to a selection of γ states from a set S j
i using

evaluation function f as sel f
γ (S j

i ) = [σ j
0 ]∪ . . .∪ [σ j

r ]∪ [σ ′],
with r ∈N and r < k−1, such that |[σ j

0 ]∪ . . .∪ [σ j
r ]|< γ ,

[σ ′]⊆ [σ j
r+1] and |[σ j

0 ]∪ . . .∪ [σ j
r ]∪ [σ ′]|= γ . In practice,

[σ ′] ⊆ [σ j
r+1] is composed according to a so-called tie-

breaking rule. In the remainder of this paper, we denote
sel f

γ as selγ .
The goal to achieve now for the algorithm is the fol-

lowing:

∀i.selγi,1(S
1
i )∪ . . .∪ selγi,n(S

n
i ) = selβ (Si) (1)

Here, β is the beam width and γi,1, . . . ,γi,n ∈N, such that γi,1 + . . .+γi,n = β . If we could
assume that γi,1 = . . . = γi,n, then there would be no problem moving the sequential
beam search algorithm to a distributed setting. Then, however, besides assuming that
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the states of each level are evenly distributed over the clients, we also have to assume
that the β most promising states of a level are evenly distributed. This we cannot assume
in general. Instead, we can move to a more general situation where the γi, js are unequal
to each other. In order to achieve this, extra communication is necessary.

Being in level i, let every client j first determine selβ (S j
i ), this to be prepared for the

worst case scenario where all β most promising states end up at a single client. This is
illustrated in the top part of Figure 1, where each row in the diagram represents a client,
and each column represents an equivalence class. Having constructed the equivalence
classes, selβ (S j

i ) is determined, which, in Figure 1, is highlighted in grey for each client.
Once this is done, the clients send a set of tuples, each consisting of an evaluation value
and the number of states in selβ (S j

i ) that have this evaluation value to the manager. To
put it more formal, the following is sent by each client j, being in level i of the LTS:

E j
i = {(r, |[σ j

r ]∩ selβ (S j
i )|)|0 ≤ r ≤ k−1∧|[σ j

r ]∩ selβ (S j
i )| 6= 0} (2)

All the sets E j
i sent by the clients are used by the manager to determine a final selec-

tion of β states. This is illustrated in the bottom part of Figure 1. First Ei is created
as Ei = {( j,e, t)|(e, t) ∈ E j

i }, where e and t correspond to the first and second ele-
ment in the tuples calculated in (2). Similar to p f , we define a function pe : P(N3)→
P(P(N3)), which allows us to distribute the elements of the set Ei over k equivalence
classes [e0], . . . , [ek−1], such that ∀u ∈ {0,1, . . . ,k−1}.∀( j,e, t) ∈ [eu].e = u.

For selecting the β best states, we define a function Tj : P(N3) → N, which re-
turns the number of states from client j represented in the given evaluation set E;
more specific, Tj(E) = 0 + ∑( j,e,t)∈E ′ t, with E ′ = {( j′,e′, t ′) ∈ E | j′ = j}. We define
T : P(N3) → N as the total number of states represented in the given evaluation set
E, so T (E) = ∑

n
j=1 Tj(E). We refer to a selection of β triples from Ei as evselβ (Ei) =

[e0]∪ . . .∪ [er]∪ [e′], with r ∈ N and r < k− 1, such that T ([e0])+ . . .+ T ([er]) < β ,
[e′] = evsubselβ−(T ([e0])+...+T ([er ]))([er+1]). Here, evsubselβ ′([eu]) = {( j0,e0, t0)}∪ . . .∪
{( jw−1,ew−1, tw−1)}∪{( jw,ew, t ′w)}, where ( j0,e0, t0), . . . ,( jw,ew, tw)∈ [eu], t ′w ≤ tw and
t0 + . . .+ tw−1 + t ′w = β ′. In practice, [e′] is composed according to a tie-breaking rule.

Each client j receives a width γi, j = Tj(evselβ (Ei)), which it uses to obtain selγi, j(S
j
i ).

Since selγi, j(S
j
i )⊆ selβ (S j

i ), this set can be constructed from memory. For this approach
only one extra communication round is necessary. Memory-wise, a distributed detailed
beam search with beam width β is comparable with a sequential detailed beam search
with beam width n.β , but, of course, on the whole, there is more memory available in a
distributed setting than in a sequential one.

One advantage of detailed beam search is that if a level contains up to β states,
for all states s in the level, h(s), which can be computationally expensive, does not
have to be calculated. To achieve this in the distributed version, the manager gets from
every client the number of newly generated states. The sum of these numbers equals the
complete size of the next level. If it sends this number together with the next continue
command, the clients know whether or not to prune (see Algorithms 3 and 4).

In general, distributed state space generation algorithms benefit from symmetry. If
all clients have to do a similar amount of work, than little to no idle time occurs in any of
the clients and therefore no processing power is wasted. However, if we allow unequal
γi, js, then the workload of the clients can be very unequal at times. It makes no sense
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to have clients idle, while they could very well expand states. Exploring more states
than originally asked for can in practice, where the accuracy of the evaluation function5

and the minimally necessary beam width are in general not known, only be seen as
an improvement in accuracy6. For this reason we decided to create a variant where the
manager does not provide every client j with γi, j, but a single γi = max(γi,1,γi,2, . . . ,γi,n)
is provided to all clients. In this way every client expands the same amount of states7,
and we know that the β most promising states are selected8.

Algorithms 3 and 4 show what the clients and the manager do in a distributed de-
tailed beam search, respectively. The selection procedure of the manager in order to
obtain γi is done in calculateLimit(). Matching send and receive functions can be iden-
tified by their names. Note, that duplicate detection is now performed by each client
after having received the new set of states to be expanded. This works thanks to the
Checksum function, which ensures that a state s is always assigned to the same client j.
During the generation, a client can receive the following commands from the manager:

– continue: In the next step, receive new states in Si and expand them.
– finish: Stop the search algorithm.

6 Other Beam Search Variants

In general, minimal-time traces to a transition a are not necessarily shortest traces to
this transition. This fact means that when first encountering a in a BFS, we cannot
claim having found a minimal-time trace. This can, however, be achieved by search-
ing a state space using minimal-cost, or minimal-time, search [41], which can be seen
as uniform-cost search [24], where the costs are modelled using additional actions.
There, compared to BFS, the sets Si do not comprise of states which are i transitions
removed from s0, but, using a total cost function g, in each iteration, Si is transformed
into Ŝi = {〈s,g〉 ∈ Si | ∀〈s′,g′〉 ∈ Si.g ≤ g′}, Ŝi is expanded, leading to Ŝi+1, and fi-
nally, Si+1 = Ŝi+1 ∪ (Si \ Ŝi). This technique can be combined with beam search, re-
sulting in g-synchronised beam search, which is presented in [39] as an instance of
G-synchronised beam search, where G can be any reasonable function. Compared to
regular beam search, now only states with equal g-values are considered at the same
time and states are selected purely on their h-value. It can be seen as greedy search,
as described in [36], on top of minimal-cost, or uniform-cost, search. In each iteration,

5 Of course, an important problem is to find a very good evaluation function. This is however
beyond the scope of this paper, where we assume a given function, its accuracy unknown.

6 There are results where a bigger beam width does not correspond to a higher accuracy, such as
in [29, 41] and in section 7.2. However, this phenomenon mainly occurs when using relatively
small beam widths (compared to the size of the state space), and can therefore be ignored for
bigger cases.

7 The exception to this is when a client has less states available than it is told to expand.
8 One could argue that another approach is to redistribute the β selected states over the clients, in

order to balance the workload. However, then we go against the distribution of the hash func-
tion, which means that clients will no longer be able to perform duplicate detection, leading
possibly to redundant work.
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Algorithm 3 Distributed detailed beam search - Client Instantiator
procedure ddbsclient(CLIENTNUMBER,{clientnumbers},s0,β )

s0.g := 0
i := 0
if Checksum(s0) =CLIENTNUMBER then

Si := {〈s0,s0.g〉}
else

Si := /0
Closed := /0
SendToClientsNextLevel(Si)
(command, levelsize) := RecvFromMgr()
if command 6= finish then

repeat
Si := update(unify(RecvFromClientsNextLevel()),Closed)
Si+1 := /0
if levelsize > β then

while |Si|> β do
Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}

SendToMgrEvalInfo(I), with I as (2), selβ (S j
i ) = Si

γi := RecvFromMgrLimit()
while |Si|> γi do

Si := Si \{(s,g) ∈ Si | s = get fmax(Si)}
for all s ∈ Si do

for all s a−−→ s′ ∈ expand(s) do
s′.g := s.g+ cost(a)
Si+1 := Si+1∪{〈s′,s′.g〉}

Closed := unify(Closed∪Si)
SendToClientsNextLevel(unify(Si+1))
SendToMgrSizeNextLevel(|unify(Si+1)|)
i := i+1
(command, levelsize) := RecvFromMgr()

until command = finish

return Finished

Algorithm 4 Distributed detailed beam search - Manager Instantiator
procedure ddbsmanager({clientnumbers},s0,β )

levelsize := 1
SendToClients(continue, levelsize)
repeat

if levelsize > β then
SendToClientsLimit(calculateLimit(RecvFromClientsEvalInfo()))

levelsize := RecvFromClientsSizeNextLevel()
if levelsize = 0 then

SendToClients(finish,0)
else

SendToClients(continue, levelsize)
until levelsize = 0
return Finished
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first, the current Si is transformed to Ŝi like in minimal-cost search, as described earlier.
Then, h is applied on Ŝi, in order to keep up to β states, as is done in greedy search.
Greedy search from [36] corresponds to beam search with a constant g9. This variant
not only allows finding minimal-time solutions within the beam before any other so-
lutions. If one uses additional actions to model costs, it also removes the necessity to
store the g-value of every state, since revisiting a state necessarily means having found
a less efficient trace compared with a previous trace to the state.

Priority beam search is performed using a priority evaluation function f : Tr → Z,
which assigns priorities to transitions. Therefore, priority beam search works on tran-
sitions, not states. A fixed number of outgoing transitions is selected per state, which
makes the adaptation to a distributed setting straightforward. Since each selection does
not consider the outgoing transitions of other states, communication with other clients is
not needed. We can take the standard distributed state space generation algorithm, and
insert an evaluation and selection step at the point where a state is expanded. Priority
beam search for state spaces is described in more detail in [39].

Two other (related) variants are flexible priority beam search and flexible detailed
beam search, introduced in [39, 41]. Flexible priority beam search behaves as regular
priority beam search, but at each state it also selects any transition which has the same
priority as the least competent member of the usually selected set. In other words, tie-
breaking is avoided, by making the beam dynamic in size. The benefit of this approach
is that there are no selection criteria other than the evaluation function used. This not
only leads to more insight in the effectiveness of the function, but in practice it may also
mean that smaller beam widths can be used, compared to non-flexible beam search (see,
for instance, the results in section 7). The drawback is that the memory requirement
is no longer linear in the maximum search depth, since β is only a guideline for the
beam width. This search can be implemented in a distributed setting, since the local
view characteristic is not lost. Similarly, in flexible detailed beam search we achieve at
each level closure on the worst evaluation value still selected. The algorithm described
in section 5.2 can be made flexible by redefining some functions. First we say that
function selγ(S

j
i ) selects at least γ states, where selγ(S

j
i ) = [σ j

0 ]∪ . . .∪ [σ j
r ]∪ [σ j

r+1], with
r ∈N and r < k−1, such that |[σ j

0 ]∪ . . .∪ [σ j
r ]|< γ and |[σ j

0 ]∪ . . .∪ [σ j
r ]∪ [σ j

r+1]| ≥ γ .
Likewise, we redefine evselβ (Ei) = [e0]∪ . . .∪ [er]∪ [er+1], with r ∈N and r < k− 1,
such that T ([e0])+ . . .+T ([er]) < β and T ([e0])+ . . .+T ([er+1])≥ β .

7 Experimental Results

In this section we will show some experimental results of trying to solve instances of
what we call the Zebra Finch problem. We based this problem on a combination of
several river crossing problems [14], such as five jealous husbands and soldiers and
children. First we describe the problem and then we provide the results obtained using
the techniques described in this paper.

9 It should be noted, that in the literature greedy search is sometimes given a different meaning.
At least one other greedy search exists, which corresponds to detailed beam search with β = 1
(e.g. [43]).
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7.1 The Zebra Finch Problem

Zebra Finches (Taeniopygia guttata) are small birds living in Central Australia [42].
They are found in large colonies of pairs inhabiting open steppes with scattered bushes
and trees. These birds can react aggressively towards each other, for instance when a
jealous male bird tries to keep other male birds away from his mate. When young birds
reach an age where they can live outside the nest they are quickly adopted by the group.

Fig. 2. A pair of Zebra
Finches

We consider a group consisting of n pairs and m young,
sitting in a tree on an open steppe. They want to migrate
to some bushes up ahead, but they have to travel in smaller
groups, since there are some hawks flying in the distance,
which can spot a group of more than k adult finches. Once
a group has reached the bushes, at least one of the Zebra
Finches needs to fly back, in order to signal that a new group
can travel. On top of this there are two other conditions:

1. Considering the jealous nature of the male Zebra
Finches, no female finch may ever be either in the tree,
the travelling group or the bushes in the presence of other
male birds, unless her partner is also present.

2. The young in the colony have to be guided by at least
one adult finch, so the travelling group cannot consist of
only young finches. In limiting the group size, two young are equivalent to one
adult.

Finally some costs are related to the travelling from tree to bushes and back:

– A group consisting of only adults needs 1 time unit to travel the distance, indepen-
dent of the size of the group;

– If the number of young in the group does not exceed the number of adults, the time
needed to travel is 2 time units (each adult needs to take care of at most one young);

– When, in the group, the number of young exceeds the number of adults, the travel
takes 3 time units, since at least one adult takes care of more than one young.

We model the problem allowing all possible actions at all times. It demonstrates the
techniques’ ability to deal with arbitrary state spaces; problem instances lead to state
spaces containing both cycles (while forming the group and when birds fly away and
back again), and deadlocks (violations of the ‘jealous male’ condition).

7.2 Results

In Table 1 we present some results we found for instances of the Zebra Finch prob-
lem. We used minimal-cost search, g-synchronised detailed beam search and its flexible
variant, where for the last two cases we defined the h for each state as the number of
finches still in the tree, thereby encouraging fast removal and discouraging the returning
of finches. Problem instances are described by providing n, m and k. For each search,
the total execution time of the result found is given. Furthermore, the number of states
searched to find the solution and the time needed to find it is provided. Searches not
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performed are marked with hyphens, and where the results could not be obtained due
to technical reasons, dots are written. When a search is done in a distributed setting, an
asterisk is placed after the number of states. Sequential searches were performed using
a machine with a 64bit Athlon 2.2Ghz processor, 1 GB of memory and running Suse
9.3, while 16 of these machines together performed the distributed searches.

The minimal-cost search tells us that as the problem instances get bigger, the state
spaces grow very rapidly. The beam searches on the other hand show a much nicer
increase in states from instance to instance. Looking at the (50,50,10) instance though,
we see an unwanted effect in the regular g-synchronised beam search, already briefly
referred to in section 5.2, namely that increasing β not necessarily means getting a
better result. This might be due to pruning sometimes not being done only based on f ,
but also on other criteria, simply because more than β states turn out to be promising
enough. Although this mainly has a noticeable effect in smaller instances, it is undesired
and does not occur in its flexible variant. The fact, by the way, that a much bigger beam
width was also needed for the flexible search in comparison with previous instances
may indicate that the evaluation function can still be improved.

Furthermore, it is interesting to note that for smaller instances, the distributed algo-
rithm performs worse than the sequential version, which can be seen in the (50,50,20)
case, where we performed both a sequential and a distributed search. The Si sets in
the state space are all relatively small, making the communication overhead of the dis-
tributed algorithm noticeable. This seems to be directly related to the argument found
in the literature against distributed beam search in a more traditional setting [5], men-
tioned in more detail in section 8. Besides that, note that the result obtained with the
distributed search is better than the one of the sequential search, even though the beam
widths are equal. This is due to tie-breaking, which, in a distributed environment, can
happen at multiple places in a single level, instead of only at one point. In the flexible
search, where tie-breaking is avoided altogether, this behaviour does not appear.

The (100,100,50) and the (100,100,80) case have a big difference in execution time,
while the number of states in the latter case is even lower. However, although the num-
ber of expanded states is lower in the (100,100,80) case, the number of encountered
and evaluated states is much higher. This is directly related to the maximum size of the
travelling group k.

The last two cases could not be solved using flexible beam search. The main reason
for this is that in many levels all states had to be expanded, since no states could be
pruned based on f . This shows that the flexible variant can point to the necessity to
design a better evaluation function, in this case for instance one, that also takes the
number of finches in the group into account. Finally, as stated earlier in section 6, for
the flexible search, overall β is more stable compared to the non-flexible search. This
means in general, that, given some search results, it is easier to determine β for a new
flexible search, than for a new non-flexible one.

8 Related Work

Concerning scheduling, quite some research has been done in the field of timed au-
tomata. In a paper by Niebert, et al. [28], the problem of minimum-time reachability for
timed automata is considered. In several papers by Behrmann, et al. (e.g. [2]), linearly
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Table 1. Zebra Finch problem results

Instance minimal-cost search g-synch. detailed BS Flex. g-synch. det. BS

n m k result # states time β result # states time β result # states time

10 5 5 19 228,737 00:00:29 400 19 58,272 00:00:14 400 19 67,804 00:00:18

10 10 5 21 513,123 00:01:07 400 21 65,605 00:00:18 400 21 85,633 00:00:24

10 10 8 10 2,020,061 00:04:28 450 10 48,669 00:00:19 400 10 69,550 00:00:21

50 50 5 121 18,157,429 00:48:13 1,000 121 641,315 00:04:49 400 121 298,065 00:02:31

50 50 10 41 475,744,120 * 05:13:26 1,000 43 637,285 00:07:28 - - - -

50 50 10 - - - 1,500 44 946,660 00:13:37 - - - -

50 50 10 - - - 4,000 43 2,139,347 . . . 4,000 42 2,365,102 . . .

50 50 20 - - - 5,000 24 3,478,600 01:14:00 1,500 22 1,649,203 . . .

50 50 20 - - - 5,000 20 3,095,782 * 02:01:05 4,000 20 2,579,479 * 01:48:16

100 100 10 - - - 5,000 87 6,009,134 * 01:39:52 4,000 87 5,318,589 * 06:22:54

100 100 20 - - - 5,000 41 5,884,895 * 00:42:48 4,000 42 5,433,733 * 04:02:26

100 100 50 - - - 20,000 17 27,366,213 * 02:57:21 4,000 18 41,611,293 * 06:16:29

100 100 80 - - - 20,000 10 19,107,091 * ca. 24h . . . . . . . . . . . .

200 200 50 - - - 50,000 35 135,964,662 * ca. 36h . . . . . . . . . . . .

priced timed automata are introduced as an extension of timed automata with prices
on both transitions and locations. They consider the minimum-cost reachability prob-
lem and an algorithmic solution is offered. In [37], an approach specific for SPIN is
presented using a depth-first search algorithm.

There are many papers on solving job-shop scheduling problems, for instance [10].
Most approaches, however, are specifically designed for job-shop problems, while the
techniques described in this paper are also meant for other, industrial systems.

Distributed state space generation has appeared in various forms and in various set-
tings, we will just mention a few here. An early approach not limited to any specific
input language was proposed in [11]. In [13], a distributed generation algorithm is pre-
sented for the MURφ verifier. Based on this technique a distributed UPPAAL has been
developed [3]. An implementation of a distributed state space exploration algorithm
based on the SPIN model checker [26] exists. In [18], a method is described to generate
LTSs in a distributed way by means of the CADP model checker. All these approaches,
however, focus on exhaustive state space generation and not on heuristically pruning
parts of the state space on-the-fly in order to solve a particular kind of problem. In [23],
a distributed, external version of A∗ is developed, combining the fields of distributed,
directed and external model checking.

Attempts to create a distributed beam search can be found outside of model check-
ing [5]. In those settings one usually works with search trees which have a much lower
average branching factor (the number of outgoing transitions per state) compared to an
average state space. Because of this, small beam widths, usually not bigger than 10, can
be used, making a distributed beam search counter-productive due to the communica-
tion overhead (a similar result can be found in section 7.2). In model checking, however,
we wish to deal with arbitrary state spaces, where the average branching factor can be
much higher, thereby, for bigger instances, making a distributed beam search effective.
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Relating our extensions of beam search to other work, in [16], best-first search is
extended to k-best-first search, allowing to compensate for inaccuracies in the evalua-
tion function by selecting in each iteration more than only the best state. Essentially, the
difference between k-best-first search and beam search is the decision to keep states not
selected in one iteration for the next iteration. This makes k-best first search a complete
search, but it also means its memory requirement is higher, since there is no pruning
done. A trade-off can, however, be achieved, by using inadmissible heuristics, such that
fewer states are expanded, but the solution will be near-optimal. This trade-off is also
used for weighted A∗ [33] and linear-space best-first search [25], where the h-function
is multiplied by some factor. Moreover, in the latter, the memory requirement is linear
in the size of the search depth. Our extension of g-synchronised beam search can prob-
ably best be compared with filtered beam search [30], in the sense that in each iteration,
the current set of states undergoes two phases; in filtered beam search, first a priority
beam search is applied, and on the outcome of that, detailed beam search is used, this to
lessen the computational complexity. In g-synchronised beam search, we first postpone
some states, and then prune states from the remaining set.

In [20], the development of heuristics is the main focus, making it nicely connect-
ing to this paper, in the sense that we start with the assumption of having a heuristic
function. Their objective is to model check Java programs with heuristics constructed
using the properties to check, the structure of the programs and additional input of
the user. They use a number of search algorithms, one of which is beam search. Their
beam search, however, seems to deviate from the traditional notion, in that f (s) = h(s),
making it practically a linear space greedy search. Furthermore, they include duplicate
detection, but do not consider other extensions in order to deal more efficiently with
arbitrary state spaces, such as a flexible search.

Finally, in [43], beam search is extended to a complete search, by using a new data
structure, called a beam stack. With this it is possible to achieve a range of searches,
from depth-first search (β = 1) to BFS (β → ∞). Considering our extensions for arbi-
trary state spaces, it would be interesting to try to combined these two approaches.

9 Conclusions

We presented a distributed version of detailed beam search, used in a model checking
setting. Due to the global view of detailed beam search, creating this version was non-
trivial. In practice it shows that for bigger problem instances, the distributed algorithm
pays off. We developed a variant called g-synchronised beam search, which considers
the states sorted by increasing g. It does not need the storage of g-values of all states
when using additional cost actions, since reopening is never necessary. Furthermore, we
observed that sometimes increasing β does not lead to finding better results, due to the
sometimes cutting away of states which are promising enough. To avoid this unwanted
behaviour, we created a (distributed) flexible variant of beam search.
Future work Usage in practice indicated that modelling time using a sequence of tick
actions leads to state space explosions very quickly. The searches could be adapted to
deal with tick(t) actions, where t ∈N denotes a number of time units delayed at once.
Furthermore, as the construction of a suitable f is a big problem when using heuristics,
it might be interesting to try to quantify the effectiveness of a given function.
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