
Achieving Discrete Relative Timing with Untimed Process Algebra

A.J. Wijs
CWI, Department of Software Engineering,

P.O.Box 94079, 1090 GB Amsterdam, The Netherlands
wijs@cwi.nl

Abstract

For many systems, timing aspects are essential.
Therefore, when modelling these systems, time should
somehow be represented. In the past, many timed pro-
cess algebras have been developed, using untimed pro-
cess algebras as initial inspiration. In this paper, we
take another approach, considering the possibility to
model timing aspects with an untimed process algebra.
The advantage is that the algebra itself does not need to
be extended, and the available tools can be reused. In
contrast to other work, where this approach has been
looked at, we focus on ease of modelling, and single
delay steps of varying sizes. We present the timing
mechanism used, our approach, and some examples.

1 Introduction

Model checking has proven to be very useful in find-
ing bugs in embedded system specifications. µCRL [13,
23], for instance, has been used to verify properties of
many systems and protocols. Many cases, however,
are time-critical, meaning that time should also play
a role in specifications of those systems, in order to
be able to check relevant properties. Over the years,
the inclusion of time in modelling languages has shown
to be complex, both on a theoretical and on a practi-
cal level. As can be found in the literature, in theory,
subjects like the extension of modelling languages with
time [1, 2, 17, 20] and the design of relations between
systems such as timed branching bisimilarity [9, 24]
are very complicated, and at times difficult to get, and
prove, correct. On the practical side, a major prob-
lem in model checking is the so-called state explosion
problem, meaning that a linear growth of the number of
processes placed in parallel in a specification leads to an
exponential growth of the resulting state space. Adding
time to a specification makes this problem even more
difficult, often leading to infinite state spaces, such as

when an action is allowed to happen at any time.
In the past, based on the modelling language µCRL,

which is basically the process algebra ACP [4] with
abstract data types [15], a timed language, called timed
µCRL [11], has been developed. For practical reasons,
one of which is the aforementioned tendency of state
spaces to be infinite, there are currently no tools for
that language yet.

In [6, 14], another approach was taken. There, the
possibility to model time in regular, untimed µCRL
was investigated, which would enable modellers to
use the fully developed and highly optimised µCRL
toolset [5] when dealing with timed systems. Moreover,
existing relations between systems, such as branching
bisimilarity [10], can then be checked on timed systems.
What they finally presented was a framework, a recipe,
to express processes involving some notion of time. It
is very important that a modeller follows this recipe
faithfully, otherwise unwanted and bizarre timing be-
haviour might occur, such as the violation of principles
like time determinism [2] and maximal progress [2], to
which we will return later in this paper. Besides that,
a delay of one time unit corresponds directly with one
transition in the system, resulting in large sequences of
delays whenever a big time jump has to be made.

After that, in [22], this recipe was used as an in-
spiration for a translation scheme from the timed lan-
guage χt [3] to µCRL. By this, it was again shown that
time could be modelled using an untimed modelling
language, but in some cases, most notably when us-
ing alternative composition, it led to complex process
terms. The complexity of the resulting process was not
so problematic, since it was the result of an automatic
translation, but a high complexity cannot be demanded
when a modeller has to create the term directly.

The work on modelling time in [6, 14] and the trans-
lation scheme in [22] inspired us to investigate the pos-
sibilities of modelling time in an untimed process alge-
bra, such that:

1. The resulting timing mechanism makes sense, i.e.

1

principles such as time determinism and maximal
progress hold.

2. The modeller can use the process algebra as freely
as when modelling untimed systems.

3. Arbitrarily big time jumps can be made in a single
transition, provided that the system cannot fire
any action during the time interval.

4. The existing tools can be applied on the timed sys-
tems, i.e. relations, such as branching bisimilarity,
and properties, expressed using temporal logics,
can be checked.

The creation of this paper was a back and forth of
designing a timing mechanism on the one hand and try-
ing to model it in µCRL on the other. On a number of
occasions the mechanism had to be changed somewhat
due to the limitations of modelling, while still making
sure that the mechanism remained reasonable from the
perspective of the theory of timed systems.

In this paper, we start with an explanation of µCRL,
and a discussion of the timing mechanism we wish
to have, leading to, as we call it, the extended lan-
guage µCRLtick . Then we explain how this mechanism
is achieved for a µCRLtick specification through the
transformation to a µCRL specification. The correct-
ness proofs can be found in appendix A. Finally, we
show some examples, briefly discuss possible extensions
and future work, and provide a conclusion.

Contributions We propose a way to achieve time
through modelling in an untimed process algebra. Con-
trary to earlier attempts, we focus on ease of mod-
elling and time jumps of arbitrary size, the latter since
it often practically leads to smaller state spaces. We
achieve this by the introduction of a timed extension
of the algebra and a transformation to the original.
Through doing so, this paper offers more insight into
the relation between untimed and timed process alge-
bras.

Related Work There are many papers on extending
a specific process algebra with time. Here, we focus on
papers on the basic timing concepts and comparisons of
timing mechanisms. In [2, 17], a range of timing mecha-
nisms are discussed and compared according to a list of
time properties (mentioned in this paper in section 3);
additional axioms and transition rules are provided for
a number of process algebras, and extra operators are
introduced. Some of the time properties are further
elaborated on in [1]. A general framework for design-
ing timed process languages is proposed in [20]. The

idea in these papers is to embed untimed into timed
process algebra; in a sense one could say that we take
an opposite approach, namely embedding timed into
untimed process algebra, by means of a transformation
procedure.

2 Preliminaries

µCRL The language µCRL is based on the process
algebra ACP [4], extended with equational abstract
data types [15]. It comes with a toolset [5] that can
build a state space from a specification and store it in
the .aut format, one of the input formats of the model
checker CADP [7]. Next to that, in order to strive for
precision in proofs, an important research area is to
use theorem provers such as PVS [18] to help in find-
ing and checking derivations in µCRL. A large number
of distributed systems have been verified in µCRL, of-
ten with the help of a proof checker or theorem prover,
e.g. [8, 12].

We will give a short overview of the language nec-
essary for understanding this paper. For a complete
reference, see [13, 23].

Definition 1 (µCRL specification). We define a
µCRL specification M as a sextuple (D,F ,A, C,P, I),
where

• D is the set of data domains used;

• F is the set of functions defined over the data do-
mains in D;

• A is the set of actions used;

• C is the set of communication rules for the actions;

• P is the set of processes in the specification;

• I is the initialisation line, combining and initial-
ising the processes.

Following is a more detailed description of each ele-
ment in the sextuple.

Data domains and functions In order to inter-
twine processes with data, actions and recursion vari-
ables can be parametrised with data types. Each spec-
ification should start by defining the necessary data
types and the functions that work on them. In fact, it
is mandatory to define the boolean type in each speci-
fication, since the conditional construct, wich is one of
the µCRL operators, works with boolean expressions.
One can virtually define any data type. In this paper
we assume the presence of the domains of the booleans
(B) and the natural numbers (N), and definitions of

2

the most common functions, such as equality. In other
words, for a specification M, B ∈ D, N ∈ D, and, for
example, (=: N × N → B) ∈ F . It should also be
noted, that a variable d of type D is written as d : D,
while an element of D is written as d ∈ D, e.g. x : N
and 2 ∈ N.

Actions In µCRL one can declare actions. These ac-
tions may have zero, one or several data parameters.
In this paper, we denote actions a, b, etc. appearing
in a specification M as being elements of A. Finally,
the process deadlock (δ), which cannot terminate suc-
cessfully, and the internal action τ are predefined, and
τ, δ /∈ A.

Communication rules It is possible to define com-
munication rules for actions. For instance, for a, b, c ∈
A, one can define the rule a | b = c, meaning that
a and b can synchronise with each other, forming ac-
tion c. For every rule a | b = c, we have (a, b, c) ∈ C.
Communication can only take place, if the data pa-
rameters of a and b have the same types and values.
The rules are both commutative and associative; for
instance, (a, b, c) ∈ C iff (b, a, c) ∈ C.

Processes Processes can be created by combining
actions from A and other processes using a given set
of operators and guarded recursion. Next, we will give
an informal description of the operators used, followed
by a description how processes are defined in µCRL.
We define a special process X ∈ P, which immediately
terminates successfully.

Operators There are four operators for creating pro-
cesses in µCRL.

1. The alternative composition operator (+). A pro-
cess P + Q proceeds (non-deterministically) as P
or Q (if they can proceed).

2. The sum operator (
∑

d:DX(d)), with X(d) a map-
ping from domain D ∈ D to P, behaves as
X(d1) + X(d2) + . . ., i.e. as the possibly infinite
choice between X(d) for any data term d taken
from D. This operator is mostly used to describe
a process that is reading some input over a data
type [16].

3. The sequential composition operator (·). A pro-
cess P ·Q proceeds as P which upon successful ter-
mination is followed by Q.

4. The process expression P / b . Q where P,Q ∈ P,
and b : B, behaves as P if b is equal to T(true)

and behaves as Q if b is equal to F(false). This
operator is called the conditional operator.

Linear Process Equations The heart of M is P,
where the behaviour of the system is declared. This
set consists of recursion equations which are rewritable
to the normal form called linear process equation
(LPE) [23]. In essence an LPE is a vector of data
parameters together with a list of summands consist-
ing of a condition, action and effect triple, describing
when an action may happen and what its effect is on
the vector of data parameters. It is of the following
form:
X(d : D) =

X
i∈I

X
ei:Di

ai(fi(d, ei))·Xi(gi(d, ei)) / hi(d, ei) . δ

where I is a finite index set, D,Di,Dai ∈ D, ai ∈
A ∪ {τ}, ai : Dai , fi : D×Di → Dai , gi : D×Di → D

and hi : D×Di → B.
Here, the different states of the process are represented
by the data parameter d : D. We note that actually
types D and Di may be Cartesian products of data
types. The data parameter ei can influence the pa-
rameter of action ai, the condition hi and the resulting
state gi. Parameter ei is typically used to let a read
action range over a data domain (i.e. choice quantifica-
tion). In the future, when writing IP , we refer to the
index set of process P .

Furthermore, we define enI(X, d), with enI : P ×
D → 2I , to be the set of enabled indices of process
X(d). It is defined as follows: enI(X, d) = {i ∈ I |
∃e.hi(d, e)}. Note that from enI(X, d), we can de-
rive which actions ai are enabled, and which terms are
reachable from X(d). The set of enabled actions of
X(d) is referred to as enA(X, d). An enabled transi-
tion is a triple (X(d), ai(e), Xi(d′)) with e : Dai , which
means that from process term X(d) an enabled action
ai(e) can be fired, leading to a process term Xi(d′). We

denote such a transition as X(d) ai(e)−−−−→Xi(d′). The set
of enabled transitions of X(d) is referred to as en(X, d).
Of course, en(X) = ∅ and en(δ) = ∅.

Initialisation line I defines the initial situation of
a µCRL specification. It is in general of the following
form:1

∂H(X0(d0)|| . . . ||Xm(dm))

Here X0, . . . , Xm ∈ P and ∀0 ≤ j ≤ m.Xj : Dj ∧ dj ∈
Dj . Note, that if m = 0, there is only a single process
initialised. The following operators are used here:

1. The parallel composition operator (||). A process
P ||Q executes P and Q concurrently in an inter-
leaved fashion, i.e. the actions of P and Q are ex-
ecuted in arbitrary order. For all actions a, b, c,

1We omit the abstraction operator since we do not use it in
this paper.

3

such that (a, b, c) ∈ C, if one process can execute
a and the other one can execute b, then P and
Q can communicate (i.e. P ||Q executes the com-
munication action c). Related to this, we write
P ||Q a−−→ P ′||Q iff P a−−→ P ′, P ||Q a−−→ P ||Q′ iff
Q

a−−→Q′, and P ||Q a−−→ P ′||Q′ iff ∃b, c ∈ A.P b−−→
P ′ ∧Q c−−→Q′ ∧ (b, c, a) ∈ C.

2. The encapsulation operator (∂H). In ∂H(P) all
actions of P that occur in the set H ⊆ A are
disabled. Typically this operator is used to en-
force that certain actions synchronise. We have
enA(∂H(P)) = enA(P) \H.

3. The renaming operator (ρf), with f : A → A,
is suitable for reusing a process definition using
different action names. The subscript f signifies
that the action a must be renamed to f(a). The
construction ρf (P) behaves as P with its action
names renamed according to f (after elimination
of || and ∂H).

3 Modelling Time with µCRL

3.1 The Concepts

First in [6, 14], a form of discrete relative tim-
ing was modelled with µCRL. In short it works like
this: An action tick is used to represent the end of
a time slice and the beginning of a new one, i.e. to
model a time transition. In order to share this no-
tion of time, all running processes need to synchro-
nise their tick actions. If at least one of these pro-
cesses is busy and therefore unable to perform a tick,
the tick action will not take place. In our notation,
(P0|| . . . ||Pm

tick−−−→ ⇔ ∀0 ≤ i ≤ m.tick ∈ enA(Pi)).
This synchronisation aspect is essential if one wants to
use global timing.

Timing can be either absolute or relative and the
time scale can be either continuous or discrete [2].
When using absolute timing, all actions are equipped
with a time stamp, indicating when the action has to be
fired (e.g. 12:05 PM). In relative timing the time of an
action is expressed relative to the execution of a previ-
ous action. Here, time stamps are not needed; instead,
we can choose for the so-called two-phase model [17],
where a system seperately fires action and time tran-
sitions. Note that, in the approach just explained, rel-
ative timing is modelled in a two-phase manner, since
the time unit, in which an action can be fired, is ex-
pressed relative to the time unit of actions fired earlier,
using the special tick action for time transitions. On a
discrete time scale, time is divided in finite time units.

In a model using such a scale, a jump in time cannot be
smaller than a single time unit. Note that, using the
technique from [6, 14], we get discrete time in µCRL.

Later, in [22], this approach was extended with the
usage of a second time action, called tick2. It was used
to make actions delayable, which we will describe in
more detail further on. In this paper, the time action
tock takes over this role, but is also used to perform
partial delays, i.e. parts of specified delays, as a ma-
jor extension introduced in this paper is to allow time
jumps of more than one time unit to be performed in
a single transition. This is modelled by parameterising
tick with a delay duration.

For timed process algebras, usually a number of time
properties hold [1, 2, 3, 17, 20]. Which hold and which
do not differs from one process algebra to another. By
only adding time actions to µCRL, we do not achieve
all necessary properties. Because of this, we introduce
an extension of µCRL, called µCRLtick . The idea is
that in the end, a µCRLtick specification can be trans-
formed into a µCRL specification.

In [17], a list of main points in which timing mech-
anisms can differ from one another is provided. We
list these properties here and explain our choices.
The choices depend both on whether the properties
would be achievable through our approach or not, and
whether it makes sense in relation to existing literature.
By doing so, this section sketches the main setting of
subsequent sections.

• Time determinism. The progress of time should
be deterministic. This property is essential [17]. It
has the biggest influence on alternative composi-
tion; if two alternatives can delay, then they delay
together. A further distinction can be made be-
tween strong choice and weak choice. In strong
choice an undelayable alternative prevents all de-
lays in the alternative composition, in weak choice
it does not and the passage of time can therefore
result in making a choice. We choose weak choice
for our mechanism, since it more naturally fits in
our approach. In section 7 we return to this deci-
sion.

• Time additivity. If a process can delay d + d′

time units, then it can delay for d and then for d′

time units. The behaviour of these two cases is
the same. This property very often holds in a tim-
ing mechanism, but not in ours. Since we achieve
time steps through regular action steps, as we will
see later, two delays in sequence result in at least
two steps, while one delay might be done in one
step. It may seem a serious lack of our mechanism,
but there are timed languages known to lack time

4

additivity in certain situations, such as χt [3], in
the case where one uses the ∆d construction for
a delay of d time units. As a positive note, not
having time additivity allows us to use standard
bisimilarity for the comparison of systems.

• Deadlock-freeness. Time can always pass, even
though nothing else can be done. This practi-
cally allows for livelocks instead of deadlocks. This
property holds in our mechanism. Besides that, as
in [1, 2], we are able to introduce an undelayable
deadlock (see section 7).

• Action urgency. Often referred to as maximal
progress, it allows actions to have priority over the
passage of time. In section 5 we explain our version
of it, which is a mix of the ones found in [2, 3].

• Persistency. The passage of time cannot sup-
press the ability to perform an action. As in many
timed process algebras, also in our case, this prop-
erty does not hold, due to weak time determinism.

• Finite variability and bounded variability.
Also known as non-Zenoness, i.e. in every time
unit only a finite number of actions can occur.
In [17], it is reported that only in the process al-
gebra TCSP these properties hold. In our mecha-
nism they do not.

• Bounded Control. There exists a time period
d, such that the enabled set of actions of a process
only changes in time, if the delay is bigger than or
equal to d. In a discrete time domain this auto-
matically holds, therefore also in our setting (take
d = 1).

In the next section, a transformation procedure is
presented, which transforms a µCRLtick specification
MT to a µCRL specification M, in which practically
the chosen set of timed properties is achieved.

3.2 The Axioms and Transition Rules

We will present some axioms and transition rules,
which we would like to hold in our timed setting in
order to achieve the mechanism chosen in the previ-
ous section. In appendix A, we prove that they indeed
hold in our setting. In Tables 1 and 2, the additional

Table 1. Extra axioms of µCRLtick

∀n < 0.tick(n) = δ DRT1

tick(n)·x+ tick(n)·y = tick(n)·(x+ y) DRT2

Table 2. Extra transition rules of µCRLtick

1 m,n > 0

tick(m + n)
tock(n)
−−−−−−→ tick(m)

2 m > 0

tick(m)
tick(m)
−−−−−−→ tick(0)

3
m > 0 a ∈ AD

a
tock(m)
−−−−−−→ a

7 x
tick(m)
−−−−−→ x′ y

tick(m)∨tock(m)
−−−−−−−−−−−−→ y′

x + y
tick(m)
−−−−−→ x′ + y′

4
m > 0 a ∈ AU

a
tock(m)
−−−−−−→ δ

8 x
tick(m)∨tock(m)
−−−−−−−−−−−−→ x′ y

tick(m)
−−−−−→ y′

x + y
tick(m)
−−−−−→ x′ + y′

5 m > 0

X
tock(m)
−−−−−−→X

9 x
tock(m)
−−−−−−→ x′ y

tock(m)
−−−−−−→ y′

x + y
tock(m)
−−−−−−→ x′ + y′

6
tick(0)

ring
−−−→X

10 x
ring
−−−→ x′ y

ring
−−−→ y′

x + y
ring
−−−→ x′ + y′

11 x
ring
−−−→ x′ y 6

ring
−−−−→

x + y
ring
−−−→ x′

12 x 6
ring
−−−−→ y

ring
−−−→ y′

x + y
ring
−−−→ y′

13 x
ring
−−−→ x′

x||y
ring
−−−→ x′||y

14 y
ring
−−−→ y′

x||y
ring
−−−→ x||y′

15 x
ring
−−−→ x′

x·y
ring
−−−→ x′·y

16 x
tick(m)
−−−−−→ x′ y

tick(m)∨tock(m)
−−−−−−−−−−−−→ y′

x||y
tick(m)
−−−−−→ x′||y′

17 x
tick(m)∨tock(m)
−−−−−−−−−−−−→ x′ y

tick(m)
−−−−−→ y′

x||y
tick(m)
−−−−−→ x′||y′

18 x
tock(m)
−−−−−−→ x′ y

tock(m)
−−−−−−→ y′

x||y
tock(m)
−−−−−−→ x′||y′

19 a ∈ {tick, tock} x
a(m)
−−−−→ x′

x·y
a(m)
−−−−→ x′·y

axioms and transition rules are listed for the special
actions tick, tock, and ring, which make discrete rela-
tive timing possible in our setting, the latter being an
action which indicates that at least one delay is fin-
ishing. Actually, in µCRLtick , only tick is available
as an action when modelling, the other two only ap-
pear in resulting transitions. The tick action is used
to model delays (rules 1, 2, 6 to 8, 16, 17, 19), tock
indicates the delayability of actions and partial delays
(rules 1, 3 to 5, 7 to 9, 16 to 19), and ring represents
the finishing of at least one delay (rules 6, 10 to 15).
Besides that, we identify sets AU and AD in relation
to the action set AT of a µCRLtick specification, with
AT ∪ {τ, δ} = AU ∪ AD ∪ {tick}, tick /∈ AU ∪ AD,
AU ∩ AD = ∅, τ ∈ AU and δ ∈ AD. Now, AU con-
stitutes the urgent or undelayable actions, while AD

contains all delayable actions. An enabled urgent ac-
tion is an action, which will be disabled once a delay

5

is fired (rule 4). An enabled delayable action, on the
other hand, is an action, which, in principle, can also
be fired in a later time unit, i.e. can be postponed (rule
3). Note, that we consider τ to be urgent, and δ to be
delayable (which is essential for the deadlock-freeness
property).

We composed the tables by examining the rules of
BPAdrt-ID and ACPdrt [2], which are the Basic Pro-
cess Algebra extended with discrete relative timing by
means of a delay operator, and the Algebra of Commu-
nicating Processes extended with discrete relative tim-
ing, respectively, and comparing them with the exist-
ing, untimed axioms and transition rules of µCRL [13].
In Table 1, DRT1 says that a negative delay consti-
tutes a deadlock. DRT2 is related to the previously
mentioned time determinism principle, in that it says
that the passage of time is deterministic. In Table 2,
rules 1 and 2 reflect the fact that a delay can be per-
formed (partially). Rules 3 and 4 say that delayable
actions can delay and undelayable actions are disabled
after a delay, respectively. Rules 5 and 6 indicate that
at termination, a process can still delay , and a delay of
length 0 terminates with a ring action. Rules 7, 8 and 9
ensure the time determinism principle. The additional
transition rules for the ring action are stated in rules
10 to 15. Rules 16, 17 and 18 express time progress for
parallel composition. Finally, in rule 19, the delayabil-
ity of a sequential composition is explained.

These axioms and transition rules imply weak time
determinism, no time additivity, no persistency, no fi-
nite or bounded variability and bounded control. As
said before, that these axioms and transition rules ac-
tually indeed yield these properties for µCRLtick is
proven in appendix A.

4 Transforming a µCRLtick Specifica-
tion

4.1 Requirements and Approach

The basic idea of achieving discrete relative timing
in this paper, is that a modeller can create a µCRLtick

specification MT(the definition of which is like defini-
tion 1), which will then be transformed into a µCRL
specification M, in which the presented set of timing
properties automatically holds. Though the goal is to
require as little as possible of MT, some requirements
are inevitable.

4.1.1 The Input Specification

An input specification MT = (DT,FT,AT, CT,PT, IT)
can be transformed into a specification M, if the fol-

lowing holds:

• Besides the usual domains N and B, we have a
time domain T. Since we need a discrete and to-
tally ordered time domain, and for practical rea-
sons, negative values are needed, the structure of
the domain can be a copy of Z.

• Similarly, there should be functions using T, based
on the usual functions using Z, in F . Later on, we
assume the presence of an if-then-else construct,
written as b→ x, y, with b : B and x, y : T, where
T→ x, y = x and F→ x, y = y.

• tick ∈ AT with tick : T, which the modeller can
use to model delays of t time units.

• tick is not involved in any rule of C.

• In PT, for all X ∈ PT there are no enumerations
over T. Why this would cause problems will be
explained later.

4.1.2 The Transformation

In this section, we describe how MT, which meets the
given requirements, can be transformed into a speci-
fication M. The majority of the work, of course, is
performed on PT.

We create a specificationM = (D,F ,A, C,P, I), by
first obtaining the following, given specification MT:

• D = DT.

• F = FT ∪ {θ : (B × N)u → T}. The function
θ is given a vector bi, ni

−−−→
and returns the smallest

ni for which bi evaluates to Tand ni > 0. The
upperbound u on the size of the vector should be
chosen sufficiently high, as it will imply that not
more than u syntactical occurrences of tick are al-
lowed in each process. For practical reasons, we fix
a sufficiently large constant c (it should be larger
than the largest single delay step inMT) and say,
that θ(bi, ni

−−−→
) = c iff for all (bi, ni), bi = F∨ni ≤ 0

evaluates to Tor the vector size is 0. In the re-
mainder of this paper, we write θ when u = 0,
and m (for any m ∈ T) whenever it is clear that
θ(bi, ni
−−−→

) = m.

• A = AT ∪ {ring , tock , tock ′, tick ′}, where the ac-
tions tock ′ and tick ′ are used for intermediate re-
sults of communication. For more on this, see the
following description of C and I.

• C = CT ∪ {(tick , tock , tick ′), (tock , tick , tick ′),
(tick , tick , tick ′), (tock , tock , tock ′)}.

6

Next, we describe how to obtain I. This is done by
changing IT to the following:

∂H∪{tock}(TX0(d0)|T| . . . |T|TXm(dm))

Here, the TXi ∈ P are translations of the correspond-
ing Xi ∈ PT (we return to this later), and the special
operator |T| is defined using existing operators:

P |T|Q , ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(P ||Q))

This definition is based on the one given for |{tick}|
in [6, 14], except now tock actions are taken into ac-
count. First, in P ||Q, all tick and tock actions are
forced to communicate. As can be seen in the rules
of C, if at least one tick action is involved in communi-
cation, the result is tick ′. After that, all resulting tick ′

and tock ′ are renamed to tick and tock. Note, that |T|
is associative and commutative. It should be stressed,
that the final encapsulation of tock actions in I ensures
that the system as a whole will only perform a delay
if at least one process performs a complete delay, i.e. a
tick-step.

Finally, we explain how to obtain P. Each X ∈ PT

is of the LPE form as described in section 2.
We divide I as follows: I = IU ∪ ID ∪ IC , where

i ∈ IU iff ai ∈ AU , i ∈ ID iff ai ∈ AD and i ∈ IC iff
ai = tick .

Now, for each X ∈ PT in IT, we create TX ∈
P. The vector xic

−→ consists of all xi’s for which
i ∈ IC (similar definitions apply for fic(d, eic)

−−−−−−→
and

hic(d, eic)
−−−−−−→

). For clarity reasons, we write fi , gi and hi

for fi(d, ei), gi(d, ei) and hi(d, ei), respectively.

TX(d : D) =X
i∈I\IC

X
ei:Di

ai(fi)·TXi(gi) / hi . δ +

ring·TX̂(d) / F ∨
_

i∈IC

(fi = 0 ∧ hi) . δ +

tick(θ(hic , fic
−−−−→

))·TX′(d,hic → fic − θ(hic , fic
−−−−→

), fic

−−−−−−−−−−−−−−−−−−→
)

/ θ(hic , fic
−−−−→

) 6= c . δ +X
t∈T

tock(t)·TX′(d,hic → fic − t, fic
−−−−−−−−−−−→

)

/ 0 < t < θ(hic , fic
−−−−→

) . δ

At this point, an explanation is in order. In the first
line of TX(d : D), essentially all the ‘lines’ of X(d : D)
dealing with actions other than tick, are adopted with-
out change. The second line contains a ring action,
which is fired whenever at least one delay completely
finishes. Note that the guard checks whether there are
any tick actions in X enabled with a parameter equal
to 0. This effectively transforms possible occurrences
of delays of length 0 in X to ring . This is similar to

χt [3], where finished delay actions are followed by τ ,
except that here, ring can represent the finishing of
multiple delays simultaneously. Having fired a ring ac-
tion, the process TX̂ is called, which will be described
next. In the third line, a single tick alternative is added
to the process, which has θ(hic , fic

−−−−→
) as its argument,

in other words, the minimal non-zero argument of all
tick ∈ enA(X). After that, TX ′ is called, the defi-
nition of which will be presented later. Suffice it to
say at this point, that, besides d : D, it is equipped
with arguments of type T, each getting the initial value
fic − θ(hic , fic

−−−−→
), if hic holds, and fic , if not. The intu-

ition is, that these arguments will be used to model
timers, used for each tick appearing in X. If the tick
in TX is fired, all ‘enabled’ timers (i.e. timers corre-
sponding to enabled tick actions) must be decreased
by the right amount. Finally, the fourth line contains
a number of tock alternatives, ranging from tock(1) to
tock(θ(hic , fic

−−−−→
)−1). These alternatives allow partial de-

lays to happen, and make delayable actions delayable.
When one of these is fired, the enabled timers are up-
dated accordingly.

Process TX̂ is the transformation of X̂, which is as
follows, where e.g. ai

j indicates aj originating from Xi:

X̂(d : D) =
X

i∈IC

X
j∈IXi

X
eij :D

i
j

ai
j(f

i
j(gi , e

i
j))·Xi

j(g
i
j(gi , e

i
j))

/ hi
j(gi , e

i
j) ∧ fi = 0 ∧ hi . δ

In words, X̂ consists of the alternative composition of
all actions from processes Xi with i ∈ IC . Further-
more, the conditions ensure, that only actions following
finished delays can be enabled. This process is trans-
formed into TX̂, in which the timing works correctly
again.

The process TX ′ is also derived from X. It is of the
following form:

TX′(d : D, ctic : T
−−−−→

) =X
i∈ID

X
ei:Di

ai(fi)·TXi(gi) / hi . δ +

ring·TX̂′(d, ctic
−→

) / F ∨
_

i∈IC

(cti = 0 ∧ hi) . δ +

tick(θ(hic , ctic

−−−−−→
))·TX′(d,hic → ctic − θ(hic , ctic

−−−−−→
), ctic

−−−−−−−−−−−−−−−−−−−−−→
)

/ θ(hic , ctic

−−−−−→
) 6= c . δ +X

t∈T
tock(t)·TX′(d,hic → ctic − t, ctic

−−−−−−−−−−−−−−→
)

/ 0 < t < θ(hic , ctic

−−−−−→
) . δ

In the first line of TX ′, all delayable actions of X
appear unchanged. In the second line, as in TX, a
ring action is placed, to indicate the finishing of de-
lays. Note that here, it is checked whether the cor-
responding timers ct i have expired. In the third line,

7

as in TX, a tick alternative is offered, but also here,
instead of working with the fi’s, the current values of
the timers are used. Finally, in the fourth line, the tock
alternatives are displayed, also working with the timers
instead of the fi’s.

Finally, we have process TX̂ ′, which is the transfor-
mation of X̂ ′ (and similar to TX̂):

X̂′(d : D, ctic : T
−−−−→

) =X
i∈IC

X
j∈IXi

X
eij :D

i
j

ai
j(f

i
j(gi , e

i
j))·Xi

j(g
i
j(gi , e

i
j))

/ hi
j(gi , e

i
j) ∧ cti = 0 ∧ hi . δ

In this manner, every encountered process X leads
to TX, TX̂, TX ′, T X̂ ′. All the resulting processes to-
gether form P. We also need to provide a translation
for the special process X. In P, we place a process
TX =

∑
t∈T tock(t)·TX / 0 < t < c . δ, which does

nothing, except for allowing timesteps no bigger than
c time units to pass.

At this point, we return to the earlier mentioned
restriction, that enumerations over T are not allowed in
MT. One might question the necessity for a µCRLtick

process such as X =
∑

t∈T tick(t), since partial delays
are already achieved in a different way. Note that the
transformation cannot deal with it properly, since the
θ-function cannot be applied.

5 Maximal Progress

Timed systems often use a concept called maximal
progress. It allows actions to have priority over the pas-
sage of time [2, 17, 20]. The application of this tech-
nique differs between languages. In [2], for instance, it
is defined as an operator, applicable on processes, giv-
ing actions from a given set H priority over time. In
χt, on the other hand, a similar concept called urgent
communication is always applied globally on a system,
giving all actions priority. In our approach, we choose
an intermediate form; maximal progress can be applied
once, globally on a specification MT. It is, however,
not mandatory, and it applies for a given subset of ac-
tions. Next, we describe how we achieve this.

Achieving maximal progress through the tranfor-
mation of specifications turns out to be very compli-
cated, due to the fact that it depends on the inter-
action between processes. However, we observe that
globally applied maximal progress can be straightfor-
wardly obtained by embedding it in state space gen-
eration. There, a system is already considered as a
whole, and it turns out that maximal progress can be
applied on a state by state basis. At first, this approach
may seem unconventional, since traditionally, maximal

progress is added to a timed language through an oper-
ator. We point out, however, that conceptually, max-
imal progress has a lot in common with partial order
reduction [19], many forms of which could in fact also
be achieved with an extra operator, but in that field,
it is custom to embed it in state space generation.

Algorithm 1 Maximal progress breadth-first state
space generation
Require: TX0, d0, H ⊆ A \ {tick , tock , tock ′, tick ′}

Open ← {d0}
Closed ← ∅
Succ ← ∅
while Open \ Closed 6= ∅ do

for all d ∈ Open \ Closed do
if H ∩ enA(TX0, d) = ∅ then

Succ ← Succ∪{d′ | (TX0(d), a(e), TX0(d′)) ∈
en(TX0, d)}

else
Succ ← Succ∪{d′ | (TX0(d), a(e), TX0(d′)) ∈
en(TX0, d) ∧ a 6= tick}

end if
end for
Closed ← Closed ∪Open
Open ← Succ
Succ ← ∅

end while

Algorithm 1 shows a breadth-first search with maxi-
mal progress. It cuts away undesired parts of the state
space, i.e. those which are reached through unnecessary
delays. In practice, ring ∈ H allows for nice construc-
tions, such as time-out (see section 6). The connec-
tion between a specification MT and this algorithm
is achieved through a so-called linearisation step [21],
which maps IT (after transformation) to a single pro-
cess TX0(d0). The set of successors of process term
TX0(d) is obtained with en(TX0, d).

6 Examples

In [14], a watchdog is presented as an example of
using their timing mechanism. As the construction of
a watchdog is very common in timed systems, this is
a nice example to show the applicability of the mecha-
nism. It should watch whether an assigned component
works properly, using two channels to communicate.
On the first channel, an ok message must be received
from the component every m time units. The moment
a time-out occurs, in other words, ok is not received
within m time units, an alarm message is sent over
channel 2. In [14], the µCRL specification for this is
presented as follows, where Timer is their data type for
timers, the initialisation line is started with init, and
the meaning of the functions and actions used should

8

be clear from the context:

A(t : Timer ,m : N) =

expire·B(reset(t),m) / expired(t) . δ +

tick ·A(t− 1,m) / ¬expired(t) . δ +

recv(ok)·A(set(t,m),m)

B(t : Timer ,m : N) = send(alarm)·A(set(t ,m),m)

init A(on(5), 5)

The same watchdog can be specified with µCRLtick

in a much more readable way. For a ∈ AU , we write a.

A = tick(5)·send(alarm)·A+ recv(ok)·A

This leads to the following µCRL processes (for
readability purposes, we removed alternatives with
conditions which do not hold, and filled in results of
the θ-function directly, where possible):

TA = recv(ok)·TA+

tick(5)·TA′(0) +
X
t∈T

tock(t)·TA′(5− t) / 0 < t < 5 . δ

TA′(ct0 : T) = recv(ok)·TA+

ring·TÂ′ / ct0 = 0 . δ + tick(ct0)·TA′(0) / ct0 6= 0 . δ +X
t∈T

tock(t)·TA′(ct0 − t) / 0 < t < θ(T, ct0) . δ

T Â′ = send(alarm)·TA+
X
t∈T

tock(t)·TÂ′′ / 0 < t < c . δ

T Â′′ = TX

Note that in order to make this work as desired,
maximal progress needs to be applied for ring and for
recv and send, or, when the watchdog is part of a big-
ger system, for the eventual communication action (e.g.
say, that (recv , send , com) ∈ CT). Then, tick alterna-
tives to the actions are pruned away during state space
generation. If, however, the component cannot send a
message yet, due to delaying, the watchdog can wait
by firing a tick or tock action, and subsequently keep
track of the number of time units.

An old χt example is a dish washing cluster, as il-
lustrated in Figure 1.

a
b

c

d

e
G W

D1

D2

E

Figure 1. Dish washing cluster

A generator G supplies up to 14 plates, which are
washed in sequence by W . Two driers D1 and D2
dry the plates concurrently, and finally, E removes
the plates from the system. Next, we show how these
processes are defined in µCRLtick , where for each
channel a, sa and ra represent sending and receiving

over the channel, respectively, and (sa, ra, ca) ∈ CT. It
shows that the language is very suitable for specifying
a system like this. The system leads to a state space
of 940 states and 1,732 transitions without maximal
progress, which can be generated in 0.9 seconds, and ...
states and ... transitions including maximal progress,
which shows the practicality of our approach. Maximal
progress ensures that the specified delays are always
performed in as few steps as possible, i.e. intervals
in which no process can perform communication are
jumped in a single transition.

PT = {G(n : N) = sa·G(n+ 1) / n < 14 . δ,

W = ra·tick(15)·(sb+ sc)·W,
D1 = rb·tick(25)·sd·D1,

D2 = rc·tick(25)·se·D2,

E = (rd+ re)·E}

IT = ∂{sa,ra,sb,rb,sc,rc,sd,rd,se,re}(G(0)||W ||D1||D2||E)

7 Conclusions and Extensions

We proposed an extension of µCRL, called
µCRLtick , which can practically be achieved, by trans-
forming µCRLtick specifications to µCRL specifica-
tions, such that the desired time properties still hold.
We build on the work in earlier papers by emphasis-
ing ease of use and allowing time jumps of arbitrary
length in a single transition. The toolset can directly
be used for the verification of properties of µCRLtick

specifications, although an extra state space genera-
tion algorithm needs to be present to provide maximal
progress. Such an algorithm can, however, be imple-
mented straightforwardly.

The setting allows for several extensions, of which we
name a few here. For instance, in [1, 2], a current time
unit time-stop δ is mentioned, which, in contrast to the
standard deadlock, does not allow the passage of time.
This could be added to µCRLtick by adding an extra
action in AT and in the transformation ensure that no
delays can be performed whenever this action, by then
translated to deadlock, is enabled. The communication
mechanism can be left as is. In [2] there is also mention
of relative time-out, which places an upper-limit to the
number of time units allowed to pass in the processes
subjected to it. At least a system-wide version of it is
achievable in our setting by including a process R(c :
T) =

∑
t∈T tock(t)·R(c − t) / c > 0 ∧ 0 < t ≤ c . δ in

P (after transformation), and placing R with a given
upper-limit in parallel with the system.

In this paper we chose a specific timing mechanism,
most suitable for our transformation. There are, nev-
ertheless, other mechanisms possible. Here, we briefly
go into how other decisions would effect the transfor-
mation. For instance, instead of weak choice, we could

9

choose for strong choice. Then, it must be ensured
in all processes that no delays are enabled whenever
an urgent action is, which might result in very exten-
sive conditions for the time actions. Another decision
would be to interpret deadlock as a time-stop [1, 2] as
opposed to a livelock. Then the deadlock relates to the
time-stop as described earlier.

Future Work We want to implement the proposed
transformation. We used it manually on a number
of small cases, but want to use it on bigger ones in
the future. In [14], an LTL-like temporal logic is in-
troduced, which uses tick actions to encode time con-
straints, thereby allowing the usage of time in untimed
temporal formulas. A similar approach can be taken
for the µCRLtick setting, but then also a transforma-
tion from timed formulas to untimed formulas should
be provided, as for instance the property “action a is
fired 3 time units after action b” in practice means,
that any sequence of tick actions is allowed between a
and b, as long as the sum of the delays is 3.

Acknowledgements We thank Wan Fokkink and
the anonymous reviewers for their constructive com-
ments.

References

[1] J.C.M. Baeten. Embedding untimed into timed
process algebra: the case of explicit termination.
Math. Struct. in Comp. Science, 13(4):589–618,
2003.

[2] J.C.M. Baeten and C.A. Middelburg. Process Al-
gebra with Timing. EATCS Monograph. Springer,
2002.

[3] D.A. van Beek, K.L. Man, M.A. Reniers, J.E.
Rooda, and R.R.H. Schiffelers. Syntax and Se-
mantics of Timed Chi. CS-Report 05-09, Eind-
hoven University of Technology, 2005.

[4] J.A. Bergstra and J.W. Klop. Process algebra
for synchronous communication. Information and
Control, 60(1-3):109–137, 1984.

[5] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van
Langevelde, B. Lisser, and J.C. van de Pol. µCRL:
A Toolset for Analysing Algebraic Specifications.
In Proc. CAV’01, volume 2102 of LNCS, pages
250–254, 2001.

[6] S.C.C. Blom, N. Ioustinova, and N. Sidorova.
Timed verification with µCRL. In Proc. PSI 2003,
volume 2890 of LNCS, pages 178–192, 2003.

[7] J.-C. Fernandez, H. Garavel, A. Kerbrat,
L. Mounier, R. Mateescu, and M. Sighireanu.
CADP - a protocol validation and verification
toolbox. In Proc. CAV’96, volume 1102 of LNCS,
pages 437–440, 1996.

[8] W.J. Fokkink, J.F. Groote, J. Pang, B. Badban,
and J.C. van de Pol. Verifying a Sliding Window
Protocol in µCRL. In Proc. AMAST 2004, volume
3116 of LNCS, pages 148–163, 2004.

[9] W.J. Fokkink, J. Pang, and A.J. Wijs. Is Timed
Branching Bisimilarity an Equivalence Indeed? In
Proc. FORMATS’05, volume 3829 of LNCS, pages
258–272, 2005.

[10] R.J. van Glabbeek and W.P. Weijland. Branching
Time and Abstraction in Bisimulation Semantics.
Journal of the ACM, 43(3):555–600, 1996.

[11] J.F. Groote. The Syntax and Semantics of timed
µCRL. Technical Report SEN-R9709, CWI, 1997.

[12] J.F. Groote, F. Monin, and J.C. van de Pol.
Checking verifications of protocols and distributed
systems by computer. In Proc. CONCUR’98, vol-
ume 1466 of LNCS, pages 629–655, 1998.

[13] J.F. Groote and A. Ponse. The syntax and se-
mantics of µCRL. In Proc. ACP’94, Workshops
in Computing Series, pages 26–62. Springer, 1995.

[14] N. Ioustinova. Abstractions and Static Analysis
for Verifying Reactive Systems. PhD thesis, Vrije
Universiteit Amsterdam, 2004.

[15] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specifi-
cation of Abstract Data Types. Wiley-Teubner,
Chichester, Stuttgart, 1996.

[16] S.P. Luttik. Choice Quantification in Process Al-
gebra. PhD thesis, University of Amsterdam, 2002.

[17] X. Nicollin and J. Sifakis. An Overview and Syn-
thesis on Timed Process Algebras. In CAV’91,
volume 575 of LNCS, pages 376–398, 1991.

[18] S. Owre, J.M. Rushby, and N. Shankar. PVS:
a Prototype Verification System. In Proc.
CADE’92, volume 607 of LNCS, pages 748–752,
1992.

[19] D. Peled, V. Pratt, and G. Holzmann, editors.
Partial Order Methods in Verification, volume 29
of DIMACS series in discrete mathematics and
theoretical computer science. AMS, 1996.

10

[20] I. Ulidowski and S. Yuen. Extending Process Lan-
guages with Time. In Proc. AMAST’97, volume
1349 of LNCS, pages 524–538, 1997.

[21] Y.S. Usenko. Linearization in µCRL. PhD thesis,
Eindhoven University of Technology, 2002.

[22] A.J. Wijs and W.J. Fokkink. From χt to µCRL:
Combining Performance and Functional Analysis.
In Proc. ICECCS’05, pages 184–193. IEEE Com-
puter Society Press, 2005.

[23] A.G. Wouters. Manual for the µCRL tool set.
Technical Report SEN-R0130, CWI, 2001.

[24] M.B. van der Zwaag. Models and Logics for Pro-
cess Algebra. PhD thesis, University of Amster-
dam, 2002.

A Properties of the Time Mechanism

In this section, we prove that the axioms and tran-
sition rules, as stated in Tables 1 and 2, are achieved
for µCRLtick specificationMT after transformation to
M. We denote the transition rules as TR1,. . .,TR19.
If X = a(i), Y (m) = a(m) and m = i, we say that
X = Y . We start with an observation.

We begin by proving that an untimed system re-
mains unchanged after transformation.

Proposition 1 (Semantics conservation [17]).
Given a µCRLtick specification MT without delays,
then MT behaves as its transformation M.

Proof. Follows from the form of the TX ∈ P and I.
Say thatMT consists of a number of processes without
delays. For each process P , in the transformed process
TP , all actions, with their corresponding parameters,
conditions and process calls are copied from P . Since
IP
C = ∅, furthermore, all other lines in TP are disabled,

except for the tock alternatives. Since this holds for
all processes in MT, communications of time actions
can only result in tock actions, which are in the end
encapsulated in I.

Proposition 2 (DRT1). Given a µCRLtick process
X = tick(n)·X, with n < 0. Then TX behaves as Tδ.

Proof. If we transform X to TX, we get TX =
ring ·TX̂ /n = 0.δ+ tick(θ(T, n))·TX ′(T→ n− t, n)/
θ(T, n) 6= c . δ+

∑
t∈T tock(t)·TX ′(T→ n− t, n) / 0 <

t < θ(T, n).δ. Since n 6= 0, the ring option is disabled.
Furthermore, since θ(T, n) = c, the tick option is also
disabled. So, practically, TX =

∑
t∈T tock(t)·TX ′(n−

t)/0 < t < c.δ. Similarly, since IX
D = ∅, we practically

have TX ′ =
∑

t∈T tock(t)·TX ′(n − t) / 0 < t < c . δ.

Clearly, we have Tδ = δ·X+
∑

t∈T tock(t)·Tδ′/0 < t <
c . δ, and Tδ′ = δ·X +

∑
t∈T tock(t)·Tδ′ / 0 < t < c . δ.

Since the parameter of TX ′ does not have any be-
havioural effect and δ is never an option to fire, these
two systems behave in the same way.

Proposition 3 (DRT2). Given two µCRLtick pro-
cesses Z0 = tick(n)·X + tick(n)·Y and Z1 =
tick(n)·(X + Y). Then, TZ0 behaves as TZ1.

Proof. The transformation leads to the following:

TZ0 = ring·T Ẑ0 / n = 0 . δ+

tick(θ(T, n))·TZ′0(n− θ(T, n), n− θ(T, n)) / θ(T, n) 6= c . δ +X
t∈T

tock(t)·TZ′0(n− t, n− t) / 0 < t < θ(T, n) . δ

T Ẑ0 = T (X[n = 0] + Y [n = 0])

TZ′0(ct0 : T, ct1 : T) = ring·T Ẑ′0(ct0, ct1)

/ct0 = 0 ∨ ct1 = 0 . δ +

tick(θ(T, ct0,T, ct1))·TZ′0(ct0 − θ(T, ct0,T, ct1),

ct1 − θ(T, ct0,T, ct1)) / θ(T, ct0,T, ct1) 6= c . δ +X
t∈T

tock(t)·TZ′0(ct0 − t, ct1 − t)

/ 0 < t < θ(T, ct0,T, ct1) . δ

T Ẑ′0(ct0 : T, ct1 : T) = T (X[ct0 = 0] + Y [ct1 = 0])

TZ1 = ring·T Ẑ1 / n = 0 . δ+

tick(θ(T, n))·TZ′1(n− θ(T, n)) / θ(T, n) 6= c . δ +X
t∈T

tock(t)·TZ′1(n− t) / 0 < t < θ(T, n) . δ

T Ẑ1 = T (X[n = 0] + Y [n = 0])

TZ′1(ct0 : T) = ring·T Ẑ′1(ct0) / ct0 = 0 . δ+

tick(θ(T, ct0))·TZ′1(ct0 − θ(T, ct0)) / ct0 6= c . δ +X
t∈T

tock(t)·TZ′1(ct0 − t) / 0 < t < ct0 . δ

T Ẑ′1(ct0 : T) = T (X[ct0 = 0] + Y [ct0 = 0])

Here, P [b], with b : B, refers to the process P , with all
the conditions of its alternatives extended with ‘∧b’.
First of all, clearly TẐ0 = T Ẑ1. Furthermore, TZ0 =
TZ1, TZ

′
0 = TZ ′1, and T Ẑ ′0 = TẐ ′1, considering that we

can observe, that the two delays are initially of equal
length, and furthermore, at all times ct0 = ct1.

Proposition 4 (TR1,TR2). For X = tick(m)·X with

m > 0, ∃TXi.TX
tick(m)−−−−−→ TXi with TXi = TY , Y =

tick(0) and ∃TXj .TX
tock(n)−−−−−→TXj with 0 < n < m and

TXj = TZ, Z = tick(m− n).

Proof. Consider a process X = tick(m) with m >
0. This transforms to TX = ring ·TX̂ / m = 0 .
δ + tick(θ(T,m))·TX ′(m − θ(T,m)) / θ(T,m) 6= c .
δ +

∑
t∈T tock(t)·TX ′(m − t) / 0 < t < θ(T,m) . δ

with TX ′(ct0 : T) = ring ·TX̂ ′(ct0) / ct0 = 0 . δ +
tick(θ(T, ct0))·TX̂ ′(ct0 − θ(T, ct0)) / θ(T, ct0) 6= c .

11

δ +
∑

t∈T tock(t)·TX ′(ct0 − t) / 0 < t < θ(T, ct0) . δ
and TX̂ ′ = TX. Since θ(T,m) = m, TX can fire
tick(m), leading to TX ′(m−m), which is clearly equal
to TY . Another possibility for TX is to fire tock(t),
with 0 < t < m, leading to process TX ′(m− t), which
is clearly equal to TZ.

Proposition 5 (TR3). Given a µCRLtick process

X = a·X, with a ∈ AD. Then ∃TXi.TX
tock(m)−−−−−→ TXi,

with 0 < m and TXi = TX.

Proof. We have TX = a·X + tick(θ)·TX ′ / θ 6= c .
δ +

∑
t∈T tock(t)·TX ′ / 0 < t < θ . δ. Since θ = c,

tick 6∈ enA(TX), but tock ∈ enA(TX). We have
(TX, tock(t), TX ′) ∈ en(TX), with 0 < t < c, c
being the reasonable upper-limit to the size of time
steps. Furthermore, TX ′ = a·X + tick(θ)·TX ′ / θ 6=
c . δ +

∑
t∈T tock(t)·TX ′ / 0 < t < θ . δ, so clearly

TX = TX ′.

Proposition 6 (TR4). Given a µCRLtick process

X = a·X, with a ∈ AU . Then ∃TXi.TX
tock(m)−−−−−→ TXi,

with 0 < m and TXi = Tδ.

Proof. We have TX = a·X + tick(θ)·TX ′ / θ 6= c .
δ +

∑
t∈T tock(t)·TX ′ / 0 < t < θ . δ. Since θ = c,

tick 6∈ enA(TX), but tock ∈ enA(TX). We have
(TX, tock(t), TX ′) ∈ en(TX), with 0 < t < c, c
being the reasonable upper-limit to the size of time
steps. Furthermore, TX ′ = tick(θ)·TX ′ / θ 6= c . δ +∑

t∈T tock(t)·TX ′ / 0 < t < θ . δ, which can only fire
tock steps. Clearly TX ′ behaves as Tδ with Tδ′.

Proposition 7 (TR5). For µCRLtick process X, we
have (TX, tock(m), TX) ∈ en(TX).

Proof. We have TX =
∑

t∈T tock(t)·TX/0 < t < c.δ.
Clearly (TX, tock(t), TX) ∈ en(TX), with 0 < t < c,
c being the reasonable upper-limit to the size of time
steps.

Proposition 8 (TR6). Given a µCRLtick process
X = tick(0)·X. Then ∃TXi.TX

ring−−−→ TXi, with
TXi = TX.

Proof. We have TX = ring ·TX̂ / 0 = 0 . δ +
tick(θ(T, 0))·TX ′(0 − θ(T, 0)) / θ(T, 0) 6= c . δ +∑

t∈T tock(t)·TX ′(0 − θ(T, 0)) / 0 < t < θ(T, 0) . δ.
Since θ(T, 0) = c, tick 6∈ enA(TX), but ring ∈
enA(TX). It follows that TX̂ = TX.

Proposition 9 (TR7,TR8). Given two µCRLtick

processes P and Q, such that ∃TPi.TP
tick(m)−−−−−→ TPi

and ∃TQj .TQ
tick(m)∨tock(m)−−−−−−−−−−→ TQj, then (1) T (P +

Q) tick(m)−−−−−→T (Pi+Qj) and (2) T (Q+P) tick(m)−−−−−→T (Qj +
Pi).

Proof. We only prove (1) here. The proof for (2) is
similar, due to the commutativity of +. First of all, let
R(d : D) = P +Q be of the following form:

R(d : D) =
X

i∈IP

X
ePi :DPi

aP
i (f P

i)·XP
i (gP

i) / hP
i . δ +

X
i∈IQ

X
e
Q
i :D

Q
i

aQ
i (f Q

i)·XQ
i (gQ

i) / hQ
i . δ

Now we have TR(d : D) as follows:
TR(d : D) =X

i∈IP \IP
C

X
ePi :DPi

aP
i (f P

i)·TXP
i (gP

i) / hP
i . δ +

X
i∈IQ\I

Q
C

X
e
Q
i :D

Q
i

aQ
i (f Q

i)·TXQ
i (gQ

i) / hQ
i . δ +

ring·TR̂(d) / F ∨
_

i∈IP
C

(f P
i = 0 ∧ hP

i) ∨

_
i∈I

Q
C

(f Q
i = 0 ∧ hQ

i) . δ +

tick(θ(hiPc
, fiPc

−−−−−→
,h

i
Q
c
, f

i
Q
c

−−−−−→
))·TR′(d,

hiPc
→ fiPc

− θ(hiPc
, fiPc

−−−−−→
,h

i
Q
c
, f

i
Q
c

−−−−−→
), fiPc

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
,

h
i
Q
c
→ f

i
Q
c
− θ(hiPc

, fiPc
−−−−−→

,h
i
Q
c
, f

i
Q
c

−−−−−→
), f

i
Q
c

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
)

/ θ(hiPc
, fiPc

−−−−−→
,h

i
Q
c
, f

i
Q
c

−−−−−→
) 6= c . δ +X

t∈T
tock(t)·TR′(d,hiPc

→ fiPc
− t, fiPc

−−−−−−−−−−−−−→
,h

i
Q
c
→ f

i
Q
c
− t, f

i
Q
c

−−−−−−−−−−−−−→
)

/ 0 < t < θ(hiPc
, fiPc

−−−−−→
,h

i
Q
c
, f

i
Q
c

−−−−−→
) . δ

Since ∃TPi.TP
tick(m)−−−−−→ TPi, by the form of TP ,

θ(hiPc
, fiPc

−−−−→
) = m and TPi = TP ′. We can distinguish

two cases:

1. ∃TQj .TQ
tick(m)−−−−−→TQj . Then, by the form of TQ,

θ(hiQc
, fiQc

−−−−−→
) = m and TQj = TQ′. By the definition

of θ, θ(b0, n0
−−−→

, b1, n1
−−−→

) = min(θ(b0, n0
−−−→

), θ(b1, n1
−−−→

)),
therefore θ(hiPc

, fiPc
−−−−→

,hiQc
, fiQc

−−−−−→
) = m. So

TR(d) tick(m)−−−−−→ TR′(d, . . .).

2. ∃TQj .TQ
tock(m)−−−−−→TQj . Then, by the form of TQ,

θ(hiQc
, fiQc

−−−−−→
) > m and TQj = TQ′. By the definition

of θ, θ(b0, n0
−−−→

, b1, n1
−−−→

) = min(θ(b0, n0
−−−→

), θ(b1, n1
−−−→

)),
therefore θ(hiPc

, fiPc
−−−−→

,hiQc
, fiQc

−−−−−→
) = m. So

TR(d) tick(m)−−−−−→ TR′(d, . . .).

Finally, we show that TR′(d, ctiPc : T
−−−−−→

, ctiQc : T
−−−−−→

) =

T (P ′+Q′). We have TR′(d, ctiPc : T
−−−−−→

, ctiQc : T
−−−−−→

) = T (P+
Q)′. It follows directly that T (P + Q)′ = T (P ′ + Q′).
A similar argument holds for TR̂ and TR̂′.

12

Proposition 10 (TR9). Given two µCRLtick pro-

cesses P and Q, such that ∃TPi.TP
tock(m)−−−−−→ TPi and

∃TQj .TQ
tock(m)−−−−−→TQj, then T (P +Q) tock(m)−−−−−→T (Pi +

Qj).

Proof. First of all, let R(d : D) = P +Q and TR(d : D)
be of the forms as presented in Proposition 9.

Since ∃TPi.TP
tock(m)−−−−−−→ TPi, by the form of

TP , θ(hiPc
, fiPc

−−−−→
) > m and TPi = TP ′. Since

∃TQj .TQ
tock(m)−−−−−→ TQj , by the form of TQ,

θ(hiQc
, fiQc

−−−−−→
) > m and TQj = TQ′. By the defini-

tion of θ, θ(b0, n0
−−−→

, b1, n1
−−−→

) = min(θ(b0, n0
−−−→

), θ(b1, n1
−−−→

)),

therefore θ(hiPc
, fiPc

−−−−→
,hiQc

, fiQc
−−−−−→

) > m. So TR(d) tock(m)−−−−−−→
TR′(d, . . .).

Finally, we show that TR′(d, ctiPc : T
−−−−−→

, ctiQc : T
−−−−−→

) =

T (P ′+Q′). We have TR′(d, ctiPc : T
−−−−−→

, ctiQc : T
−−−−−→

) = T (P+
Q)′. It follows directly that T (P + Q)′ = T (P ′ + Q′).
A similar argument holds for TR̂ and TR̂′.

Proposition 11 (TR10). Given two µCRLtick pro-
cesses P and Q, such that ∃TPi.TP

ring−−−→ TPi and
∃TQj .TQ

ring−−−→TQj, then T (P +Q) ring−−−→T (Pi +Qj).

Proof. First of all, let R(d : D) = P +Q and TR(d : D)
be of the forms as presented in Proposition 9.

Since ∃TPi.TP
ring−−−→ TPi, by the form of TP , ∃k ∈

IP
C .f

P
k = 0∧hP

k and TPk = T P̂ . Since ∃TQj .TQ
ring−−−→

TQj , by the form of TQ, ∃l ∈ IQ
C .f

Q
l = 0 ∧ hQ

l and
TQl = TQ̂. By the form of TR(d), it follows that
TR(d) ring−−−→ TR̂(d).

Finally, we show that TR̂(d) = T (P̂ + Q̂). We do
that by comparing R̂(d) with P̂ + Q̂. For R̂(d), we
have:

R̂(d : D) =
X

i∈IP
C

X
j∈I

XP
i

X
e
i,P
j :D

i,P
j

ai,P
j (f i,P

j (gP
i , e

i,P
j))·

Xi,P
j (gi,P

j (gP
i , e

i,P
j)) / hi,P

j (gP
i , e

i,P
j) ∧ f P

i = 0 ∧ hP
i . δ +X

i∈I
Q
C

X
j∈I

X
Q
i

X
e
i,Q
j :D

i,Q
j

ai,Q
j (f i,Q

j (gQ
i , e

i,Q
j))·

Xi,Q
j (gi,Q

j (gQ
i , e

i,Q
j)) / hi,Q

j (gQ
i , e

i,Q
j) ∧ f Q

i = 0 ∧ hQ
i . δ

Clearly, this is equal to P̂ + Q̂.

Proposition 12 (TR11,TR12). Given two µCRLtick

processes P and Q, such that ∃TPi.TP
ring−−−→ TPi and

TQ 6 ring−−−−→, then (1) T (P+Q) ring−−−→TPi and (2) T (Q+
P) ring−−−→ TPi.

Proof. We only prove (1) here. The proof for (2) is
similar, due to the commutativity of +. First of all, let
R(d : D) = P + Q and TR(d : D) be of the forms as
presented in Proposition 9.

Since ∃TPi.TP
ring−−−→ TPi, by the form of TP , ∃k ∈

IP
C .f

P
k = 0 ∧ hP

k and TPk = T P̂ . Since TQ 6 ring−−−−→, by
the form of TQ, ¬∃l ∈ IQ

C .f
Q
l = 0 ∧ hQ

l . By the form
of TR(d), it follows that TR(d) ring−−−→ TR̂(d).

Finally, we show that TR̂(d) = T P̂ . We do that
by comparing R̂(d) with T P̂ . R̂(d) is of the form as
presented in Proposition 11. Since we know that ¬∃l ∈
IQ
C .f

Q
l = 0 ∧ hQ

l , effectively, TR(d) = P̂ .

Proposition 13 (TR13,TR14,TR15). Given a
µCRLtick process P , such that ∃TPi.TP

ring−−−→ TPi,
then, for any other µCRLtick process Q, TP |T|TQ ring−−−→
TPi|T|TQ, TQ|T|TP ring−−−→ TQ|T|TPi and TP ·TQ ring−−−→
TPi·TQ.

Proof. Follows from the transition rules for || and · in
µCRL, since in the transformed IT, ring actions are
not treated in a special way, i.e. are not encapsulated
or renamed.

Proposition 14 (TR16,TR17). Given two µCRLtick

processes P and Q, such that ∃TPi.TP
tick(m)−−−−−→

TPi and ∃TQj .TQ
tick(m)∨tock(m)−−−−−−−−−−→ TQj, then (1)

TP |T|TQ tick(m)−−−−−→TPi|T|TQj and (2) TQj |T|TPi
tick(m)−−−−−→

TQj |T|TPi.

Proof. We only prove (1) here. The proof
for (2) is similar, due to the commutativity
of |T|. First of all, we have TP |T|TQ ,
ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TP ||TQ)). We can
distinguish two cases:

1. ∃TQj .TQ
tick(m)−−−−−→ TQj . Since (tick , tick , tick ′) ∈

C, ∂{tick ,tock}(TP ||TQ) tick ′(m)−−−−−−→
∂{tick ,tock}(TPi||TQj), therefore

ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TP ||TQ)) tick(m)−−−−−→
ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TPi||TQj)).

2. ∃TQj .TQ
tock(m)−−−−−→ TQj . Since (tick , tock , tick ′) ∈

C, ∂{tick ,tock}(TP ||TQ) tick ′(m)−−−−−−→
∂{tick ,tock}(TPi||TQj), therefore

ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TP ||TQ)) tick(m)−−−−−→
ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TPi||TQj)).

13

Proposition 15 (TR18). Given two µCRLtick pro-

cesses P and Q, such that ∃TPi.TP
tock(m)−−−−−→ TPi

and ∃TQj .TQ
tock(m)−−−−−→ TQj, then TP |T|TQ tock(m)−−−−−→

TPi|T|TQj.

Proof. First of all, we have TP |T|TQ ,
ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TP ||TQ)). Since

(tock , tock , tock ′) ∈ C, ∂{tick ,tock}(TP ||TQ) tock ′(m)−−−−−−→
∂{tick ,tock}(TPi||TQj), therefore

ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TP ||TQ)) tock(m)−−−−−−→
ρ{tick ′→tick ,tock ′→tock}(∂{tick ,tock}(TPi||TQj)).

Proposition 16 (TR19). Given a µCRLtick process

P , such that (1) ∃TPi.TP
tick(m)−−−−−→ TPi, then for any

µCRLtick process Q, TP ·TQ tick(m)−−−−−→ TPi·TQ, and (2)

∃TPi.TP
tock(m)−−−−−→ TPi, then for any µCRLtick process

Q, TP ·TQ tock(m)−−−−−→ TPi·TQ.

Proof. Both cases follow directly from the form of TP .

14

