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Abstract. We extend the partial order reduction algorithm of Clarke et al. [CJM00]
to handle branching security protocols, such as optimistic fair exchange proto-
cols. Applications of the proposed algorithm in both model checking and con-
straint solving approaches are discussed. We also report some experimental re-
sults using a µCRL implementation of the algorithm.

1 Introduction

Two main approaches to automatic verification of security protocols are model check-
ing and constraint solving. Both these techniques in principle need to enumerate all
possible interleavings of actions performed by protocol participants. Partial order re-
duction (POR) techniques identify and avoid generating identical interleavings, mod-
ulo the properties that are to be verified, to reduce the time and memory used in the
verification procedure. Clarke et al. [CJM00] were the first to formally present a POR
algorithm for security protocols and determine the class of modal properties that are
preserved by it. They observe that the intruder’s knowledge in the course of a protocol
run is non-decreasing and, intuitively, with more knowledge the intruder can do more
(harm). Therefore, when verifying reachability properties, it is safe to prioritise actions
which increase the intruder’s knowledge over other actions. This is the heart of the POR
algorithm of [CJM00]. This algorithm was originally used in BRUTUS, a tailored model
checker for verifying security protocols, and, later on, in [MS01] to reduce the number
of constraint sets that have to be solved in order to verify a security protocol.
Motivations The POR algorithm of [CJM00] assumes that security protocols are
non-branching. Each participant of a non-branching protocol at each state of the proto-
col has at most one single action to perform, i.e. no alternative options are available to
it. These protocols are widely used in the literature as an abstract model for various au-
thentication and key distribution schemes since early years of security protocol analysis
(e.g. see “ping-pong protocols” of [DEK82]). However, in practice, participants of, for
example, authentication protocols have choice points in the course of a protocol run.
They can for instance take alternative steps when a received message does not satisfy
its preset conditions or a timeout occurs. Therefore, any faithful model of these proto-
cols needs to allow such choice points in the specification as well. More importantly,
some security protocols are inherently branching, i.e. they cannot be modelled properly
without allowing branching protocol participants. Prominent examples of branching se-
curity protocols are optimistic fair exchange protocols, including non-repudiation, fair



payment, certified email and electronic contract signing protocols (e.g. see [Aso98]).
Participants of these protocols can choose between continuing the normal flow of the
protocol and resorting to trusted third parties, in case of long delays of the opponent or
communication failures. As is motivated in this paper, branching behaviours of partici-
pants require special considerations when performing POR.
Contributions We extend the POR algorithm of Clarke et al. to handle branching
security protocols. To achieve this, we present an enriched model of security protocols
that explicitly allows conditionals and choice points in the specification of participants.
We first focus on how the extended POR algorithm can be used in explicit state model
checking approaches to security protocol verification. Next we discuss the application
of the proposed POR to constraint solving for security protocol verification. Some ex-
perimental results using a µCRL [BFG+01] implementation of the extended POR al-
gorithm are also presented in the paper.
Related work Algorithms for POR are by now an established branch of model check-
ing and state space generation fields, see, e.g., [PPH96,Pel98,CGP00]. POR techniques
for analysing security protocols can perhaps be traced back to [SS98], where some
methods to reduce the number of states when verifying security protocols are proposed,
but no formalisation of the techniques is provided. Similarly, [Bas99] applies heuristics
to prune the search space of security protocols, but only intuitively justifies them. We
follow the approach of [CJM00] that formally presents a POR algorithm for security
protocols. In [CM05], a POR algorithm for security protocol has been proposed that
preserves a limited class of properties compared to [CJM00], but gains more reduc-
tions. We did not consider extending the algorithm of [CM05], because, first, the logic
that is preserved by this algorithm is rather restricted. Second, it heavily relies on the
depth-first traversal strategy and cannot easily be embedded in a breadth-first explo-
ration algorithm. It would thus defy an efficient distributed implementation, which is
part of our future plans. Both [CJM00] and [CM05] have implemented their POR algo-
rithms in special-purpose tools for model checking security protocols. In contrast, we
have incorporated our POR algorithm in a general purpose flexible state space genera-
tion and reduction framework based on the process algebra µCRL [GP95].
Structure of the paper We start in section 2 with introducing some preliminary con-
cepts. In section 3.1, we shortly recall the algorithm of [CJM00], and then we introduce
our POR algorithm for branching security protocols in section 3.2. In appendix A we
prove that the proposed POR algorithm preserves LTL−X properties, by showing that
the reduced state space is stuttering equivalent to the full state space. We mainly focus
on how the proposed POR algorithm can be used in explicit state model checking. The
case of constraint solving is discussed in section 4. In section 5 we report some experi-
mental results using our POR algorithm. Finally we conclude the paper in section 6.

2 Preliminaries

We consider a model of processes with asynchronous message passing via a network
which is controlled by the attacker. First we set up the machinery required to formalise
this model.



2.1 Messages

We model security protocols as a collection of message passing processes. Below we
define the set of messages.

Definition 1. Let MF be a set of function symbols and MV be a set of message vari-
ables. The set of messages Msg is defined as:

– m ∈ MV =⇒ m ∈ Msg
– m1, · · · ,mk ∈ Msg =⇒ f (m1, · · · ,mk)∈ Msg, if f is a k-ary function symbol in MF.

For function symbols of arity 0 (serving as constants) instead of f () we write f .

Let the function var : Msg → 2MV return all message variables occurring in a message.
We define var({m}∪M) = var(m)∪ var(M) and var( /0) = /0. A messages m is called
closed iff var(m) = /0. The set of all closed messages is Msgc = {m∈Msg | var(m) = /0}.
Let σ be a partial function σ : MV →Msgc. For a message m∈Msg, [m]σ is the message
that is obtained by simultaneously substituting all message variables v ∈ var(m) in m
with their corresponding σ(v). The domain of partial function σ is denoted by d(σ).

2.2 Labelled transition systems

A Labelled Transition System (LTS) is a tuple (Σ ,s0,Act,Tr), where Σ is a set of states,
s0 ∈ Σ is the initial state, Act is a set of actions and Tr ⊆ Σ ×Act×Σ is the transition
relation. A transition (s,a,s′) ∈ Tr, denoted s a

−−→ s′, indicates that the system can move
from state s to s′ by performing action a.

Each action a ∈ Act is a pair a = (l,m), also denoted l(m), where l is the action’s
label and m ∈ Msg is the action’s parameter. The set of all action labels of Act is de-
noted ΛAct = {l | ∃a ∈ Act,m ∈ Msg. a = (l,m)}. The action set Act is called closed iff
var(ΩAct) = /0, where ΩAct = {m ∈ Msg | ∃a ∈ Act, l ∈ ΛAct. a = (l,m)}.

The set of enabled actions in state s is en(s) = {a ∈ Act | ∃s′ ∈ Σ . s a
−−→ s′}. For

A ⊆ Act, we let nxt(s,A) = {s′ ∈ Σ | ∃a ∈ A. s a−−→ s′}. We write →∗ for the reflexive
transitive closure of a−−→ for any a ∈ Act.

Now we are ready to describe different properties of LTSs. An LTS is called finite
if its set of states Σ and its set of actions Act are finite. An acyclic LTS is such that
∀s,s′ ∈ Σ ,a ∈ Act. s a−−→ s′ =⇒ ¬ (s′ →∗ s). A branching (or deterministic) LTS is
such that ∀s ∈ Σ ,a ∈ Act. (s a

−−→ s′ ∧ s a
−−→ s′′) =⇒ s′ = s′′. A non-branching LTS is

such that ∀s ∈ Σ ,a,a′ ∈ Act. (s a−−→ s′ ∧ s a′−−→ s′′) =⇒ (s′ = s′′ ∧a = a′).
A property φ is a function φ : Ł → {T,F}, where Ł is the set of all LTSs. Given a

set of properties Φ and two LTSs L and L′, we write L 'Φ L′ iff ∀φ ∈ Φ . φ(L) = φ(L′).

2.3 Modelling security protocols

Our model of security protocols is related to the strand space formalism of [JHG99].
We model a security protocol as a finite number of processes and an asynchronous com-
munication subsystem. The set of protocol participants is divided into a set of honest
processes, denoted by P, and one single intruder process which models all malicious



participants and, moreover, controls the communication subsystem. We consider the
Dolev-Yao (DY) model [DY83] as the intruder. Each process p ∈ P is an LTS in it-
self, with the annotation that it can interact with the communication subsystem. From
this point on, the two terms process and LTS are used interchangeably. We require that
the processes that model roles of honest participants of the protocol are finite, acyclic,
deterministic and uniquely named. We first describe the behaviour of honest processes.

To interact with the communication subsystem, a process p ∈ P has two desig-
nated actions sendp(m) and recvp(m), in which message m is produced and consumed,
respectively. Apart from send and recv, 1 all other actions of honest processes are as-
sumed internal, i.e. not interacting with the communication subsystem. These are sym-
bolic actions which typically denote security claims of protocol participants or their
internal decisions. An internal action is called invisible if it does not appear in the prop-
erties being verified. Else, it is called visible. We assume that all internal actions of
process p contain p as a subscript, e.g. secretp(m) can be an internal action performed
by p when concluding that m is a secret. Note that internal actions can also have mes-
sages as parameters, as is shown in the aforementioned example. The set of action
labels of a process p = (Σp,s0p ,Actp,Trp) can thus be partitioned into four groups:
ΛActp = Vp∪ Ip∪Sp∪Rp, with Vp and Ip denoting the set of visible internal actions and
the set of invisible internal actions of p, respectively, Sp = {sendp} and Rp = {recvp}.
Since all these actions are subscripted with their corresponding process names, for any
two different honest processes p and q, we have Actp∩Actq = /0. To avoid name clashes,
we assume that ∀p,q ∈ P. p 6= q =⇒ var(ΩActp)∩ var(ΩActq) = /0.

Below we define well-formed processes. Intuitively, a well-formed process can only
send (or decide based on) closed messages in the course of any protocol execution. But
before that, we need to introduce a notion of path.

Given a process p = (Σp,s0p ,Actp,Trp), a path (or execution) in p is a sequence
ξ = s0,α0,s1,α1, . . ., where si ∈ Σp and αi ∈Actp, such that (si,αi,si+1)∈ Trp, for i≥ 0.
When s0 = s0p , ξ is called rooted.

Definition 2. A process p is called well-formed iff the following property holds in
any of its rooted paths s0,α0,s1,α1, · · · : For any αi = lp(m), if lp ∈ Vp ∪ Ip ∪ Sp, then
var(m) ⊆ ∪{m′|∃ j<i. α j=l′p(m′)}var(m′).

We require all members of P (i.e. honest participants) to be well-formed processes.
However, no such condition is put on the intruder process.

Each process p ∈ P has a special set of action labels Bp ⊆ Ip that model its internal
choices. These action labels behave as Boolean functions and can affect the execution
flow of the process, i.e. p may use the results on these functions to decide which branch
to follow. Therefore, for each action label lp ∈ Bp, we have lp : Msgc → {T,F}.

Intruder model To model the DY intruder, which has complete control over communi-
cation channels, we assume it plays the role of the communication media. All messages
are thus channelled through the intruder: Even though process p sends the message m

1 We conventionally omit the subscript p from sendp and recvp when this is clear from the
context or the discussion does not depend on any particular process performing these actions.



with the intention that it should be received by process q, it is in fact the intruder that
receives the message from p, and it is from the intruder that q can receive m. The DY
intruder process is denoted by DY = (ΣDY ,s0DY ,ActDY ,TrDY).

The process DY is always ready to receive messages from other processes, as it plays
the role of the communication subsystem. It subsequently adds the received messages
to its knowledge, that is basically a set of messages. We define the function K : ΣDY →
2Msgc to return the set of intruder knowledge at a given intruder state. We assume that
the state of the intruder is uniquely described with its knowledge set, i.e. K is injective.

The DY intruder can also send a message if it can synthesize it from its knowl-
edge. We do not explicitly define the function synth : Msgc × 2Msgc

→ {T,F}, as our
results do not depend on the rules underlying synth, except for its monotonicity: ∀m ∈
Msgc,X ,Y ∈ 2Msgc

. X ⊆ Y =⇒ (synth(m,X) =⇒ synth(m,Y )).

System properties We consider synchronous communication between honest partici-
pants and the intruder model, as is defined below. However, the communication between
participants of a protocol, via the DY intruder, is asynchronous (the intruder can be seen
as an unbounded message buffer) and a participant has no guarantee about the origin of
the messages it receives.

Let p1 = (Σ1,s01 ,Act1,Tr1), · · · , pn = (Σn,s0n ,Actn,Trn) be n honest participants of
the protocol, i.e. P = {p1, · · · , pn}.

Definition 3. The synchronous product of processes p1, · · · , pn and DY, denoted by
p1‖· · ·‖pn‖DY, is an LTS L = (Σ ,s0,Act,Tr), in which each state s = 〈x0, · · · ,xn,kDY ,σ〉
contains the state of each process of P, the state of the intruder knowledge and also a
partial function σ : MV → Msgc. Below, we describe how L is constructed.

– Initial state: s0 = 〈s01 , · · · ,s0n ,K(s0DY ), /0〉.
– Non-Boolean internal actions:

The transition 〈x0, · · · ,xi, · · · ,xn,k,σ〉
lpi(m)

−−−−→〈x0, · · · ,x′i, · · · ,xn,k,σ〉 can happen
iff ∃m′ ∈ Msg, lpi ∈Vpi ∪ Ipi \Bpi . (xi, lpi(m′),x′i) ∈ Tri ∧ m = [m′]σ .

– Boolean internal actions:
The transition 〈x0, · · · ,xi, · · · ,xn,k,σ〉

τpi−−→〈x0, · · · ,x′i, · · · ,xn,k,σ〉 can happen iff
∃m′ ∈ Msg, lpi ∈ Bpi . (xi, lpi(m′),x′i) ∈ Tri ∧ lpi([m′]σ ) = T.

– send actions:
The transition 〈x0, · · · ,xi, · · · ,xn,k,σ〉

sendpi (m)
−−−−−−→〈x0, · · · ,x′i, · · · ,xn,k∪{m} 2,σ〉 can

happen iff ∃m′ ∈ Msg. (xi,sendpi(m′),x′i) ∈ Tri ∧ m = [m′]σ .
– recv actions:

The transition 〈x0, · · · ,xi, · · · ,xn,k,σ〉
recvpi (m)

−−−−−−→〈x0, · · · ,x′i, · · · ,xn,k,σ ′〉 can hap-
pen iff

∃m′ ∈ Msg. (xi,recvpi(m′),x′i) ∈ Tri ∧
∃σ ′. σ ⊆ σ ′ ∧ d(σ ′) ⊆ d(σ)∪ var(m′) ∧

m = [m′]σ ′ ∧ synth(m,k).

2 To keep the knowledge set K uniform, one can decompose message m into its parts before
adding it to K, c.f. [Pau98].



The set of action labels of Act can be partitioned into four disjoint sets as ΛAct = V ∪
I ∪ S∪R, where V = ∪p∈PVp , I = ∪p∈P(Ip \Bp)∪{τp}, S = ∪p∈P{sendp} and R =
∪p∈P{recvp}. Note that, for convenience, we choose to write the elements of S and
R in bold face (send and recv, in contrast to send and recv) to ease referring to the
LTS in which context they happen. The action recvp is the result of the communication
between the intruder process (which we do not explicitly specify) and p performing a
recvp action (and similarly for sendp and sendp).

We remark that performing a recvp(m) action depends not only on the state of p, but
also on the intruder’s ability to construct the message m. Whereas for a send to happen,
no condition is put on the intruder’s state. Similarly, internal actions of a process can
happen with no conditions on other processes’ or the intruder’s states.

It is worth mentioning that since all processes pi are deterministic and Actpi ∩
Actp j = /0 for i 6= j, L is deterministic as well. Besides, as we only consider well-
formed processes, Act is closed, that is all members of Act have variable-free messages
as parameters. However, we cannot claim that L is finite based on the finiteness of pi,
because the DY process is not necessarily finite. In fact, it can compose an infinite num-
ber of messages with consecutively pairing a single constant value (e.g. see [DY83]),
hence being infinitely branching. However, usually model checking algorithms hinge
on the finiteness of the model, and so does our proposed POR algorithm. Therefore, in
the following discussions we assume that L is finite (for a complementary discussion
see section 4 on POR for constraint solving approaches). In current practice of model
checking security protocols, finiteness of the model can be achieved by, for instance,
hard-coding the intruder’s message templates in the model [KR03] or assuming typed
messages [CCT05]. Moreover, L is acyclic since all pi are (by definition) acyclic.

2.4 State space generation

A state space generation algorithm is normally provided with the LTSs p1, · · · , pn and
DY as input specification, also referred to as spec, and produces L = p1‖· · ·‖pn‖DY
(see definition 3), the LTS that is described by putting them in parallel, as output. We
denote this procedure by spec

std
⇒ L.

As an example, algorithm 1 shows a breadth-first state space generation algorithm.
This algorithm is guaranteed to terminate when generating acyclic finite LTSs (in our
model, security protocols are assumed to result in acyclic finite LTSs, see section 2.3).
Here, we confine to the traversal strategy and abstract away generating the output (file).
In algorithm 1, sets Current and Next denote the set of states at the current and the next
level, respectively. For the definitions of en and nxt see section 2.2.

2.5 Partial order reduction

The main principle of POR is to exploit the commutativity of concurrently executed
actions in order to generate only a sufficient fraction of the state space. A POR algorithm
explores a subset of enabled actions ample(s)⊆ en(s) at each state s, such that a certain
class of desired properties is preserved. For a given specification spec, let L and L′ be
the results of a standard state space generation std and of a POR algorithm por on spec



Algorithm 1 Breadth-first state space generation
REQUIRES: p1, · · · , pn,DY
RETURNS: p1‖· · · ‖pn‖DY

Current := {s0}
Next := /0
while Current 6= /0 do

for all s ∈ Current do
Next := Next∪ nxt(s,en(s))

end for
Current := Next
Next := /0

end while

respectively: spec
std
⇒ L and spec

por
⇒ L′. For the set of properties Φ that is to be preserved

by por, we require L 'Φ L′. For a general introduction to POR see [CGP00].

3 Partial order reduction for security protocols

In this section, first, we briefly describe the POR algorithm of [CJM00]. This is a POR
algorithm tailored for verifying reachability properties of non-branching security pro-
tocols, such as authentication and key distribution protocols. Next, we extend this algo-
rithm to cover branching security protocols.

3.1 POR for non-branching security protocols
In [CJM00] it is observed that the knowledge of the DY intruder is non-decreasing,
and with more knowledge more states are reachable by the intruder. It means that when
verifying reachability properties, intuitively send actions, which typically increase the
intruder’s knowledge, can be prioritised over other actions in the state space describing
the security protocol. This is the heart of the POR algorithm for non-branching security
protocols that is proposed in [CJM00]. The set of actions to be explored at each state s,
namely ample(s), is chosen as follows in [CJM00]:

– If en(s) contains an invisible internal action, then ample(s) is a singleton containing
an arbitrary invisible action picked from en(s).

– Suppose en(s) does not contain an invisible internal action, but does contain a
send action. In this case ample(s) is a singleton containing an arbitrary send action
picked from en(s).

– If en(s) does not contain an invisible action or a send action, ample(s) = en(s).

We briefly give an informal reason why recv actions cannot be prioritised over other
actions. Let s recv(m1)

−−−−−−→ s1 and s send(m2)
−−−−−−→ s2. Since K(s) ⊆ K(s2) (see definition 3) and

synth is monotonic, generally more recv actions can be instantiated at s2. That is why
recv actions may not be prioritised over send actions. A recv action cannot be priori-
tised over other recv or internal actions because they might subsequently enable other
send actions. A formal treatment of this algorithm can be found in [CJM00].



To specify the requirements of security protocols, in [CJM00], a first order logic
where quantifiers range over protocol participants, augmented with a past time modal
operator is considered. Their POR algorithm is shown to preserve formulae of this logic.

3.2 POR for branching security protocols

Motivations The POR algorithm of [CJM00] is not suitable for branching security pro-
tocols. Examples of branching security protocols are optimistic fair exchange, digital
contract signing, certified e-mail, and non-repudiation protocols, see e.g. [Aso98,KMZ02].
Participants of these protocols can typically choose between multiple send, recv and
internal actions. These are therefore modelled as finite, acyclic, branching named pro-
cesses. Taking only one send from a process into the ample set is not safe in these cases,
because it can in principle disable other actions of that process. This motivates extend-
ing the POR algorithm of [CJM00] to branching security protocols. Below, we intro-
duce our POR algorithm for branching security protocols. Next, we describe the class of
properties that are preserved by the reduction algorithm. We consider an action-based
version of LTL−X (see, e.g., [CGP00] for a formal definition of LTL−X ). Appendix A
shows that a reduced state space using the proposed POR algorithm is stuttering equiv-
alent to the original state space (see, e.g., [CGP00] for a formal definition of stuttering
equivalence). This serves as a proof for preserving LTL−X properties. We could in prin-
ciple prove this result for the logic fragment that is used in [CJM00] as well. However,
we chose a more standard logic.

POR algorithm We mainly follow the idea of [CJM00]. Let L = p1‖· · ·‖pn‖DY be
described as L = (Σ ,s0,Act,Tr), such that ΛAct = I∪V ∪S∪R. We prioritise transitions
with action labels of the set I ∪ S over those of R∪V . However, since processes can
branch in our model, if one action of process p is taken into the ample set, all other
actions of p enabled at that state should be taken as well. Hence, actions of I∪S can be
prioritised over others only if their corresponding process does not perform any action
from V ∪R at that state. This raises a new problem, as is discussed below.

Let p be a process. Consider the following two scenarios: First, the case where p can
only perform one sendp action at state s. Second the case where p can perform sendp
and recvp at state s, but the recvp action of p is not present in the resulting LTS as recvp,
because the intruder does not have enough knowledge to compose that message (see the
definition of synchronous product in section 2.3). These two scenarios are represented
in exactly the same way in the resulting LTS L, 3 while the POR algorithm needs to
differentiate between them. This is because in the first scenario it is safe to prioritise
p’s action over other actions in s, while in the second scenario it is not. A solution
to this problem is to statically pre-process the specification of the protocol by adding
a dummy κ action as an always available choice to all recv actions in every process
specification. 4

3 The problem that is discussed here is rather specific to the state space generation setting and is
in principle not relevant to constraint solving approaches.

4 We assume that in the specification, κ is solely used for this purpose.



Definition 4. Given a process p = (Sp,s0p ,Actp,Trp), a κ-translation of p is an LTS
pκ = (Sp,s0p ,Actp ∪{κp},addκ(Trp)), where addκ is defined as addκ( /0) = /0 and

addκ({(s,a,s′)}∪T ) =

{

{(s,κp,s′}∪{(s,a,s′)}∪ addκ(T ) if a = recvp(m)
{(s,a,s′)}∪ addκ(T ) else

The internal actions κ can subsequently be used in the generation phase to detect the
existence of non-enabled recv actions at each state (i.e. if the corresponding recv action
is not present in the LTS).

Our POR algorithm can be described as follows. Assume a specification spec com-
prising a set of processes p1, · · · , pn,DY . The full state space is defined as spec

std
⇒ L,

that is L = p1‖· · ·‖pn‖DY. We define specκ = pκ
1 , · · · , pκ

n ,DY . We let specκ std
⇒ Lκ , that

is Lκ = pκ
1‖· · ·‖pκ

n‖DY. Our POR algorithm is applied on specκ and results in Lpor:
specκ por

⇒ Lpor.
In the following discussions, we write L = (Σ ,s0,Act,Tr) and Lκ = (Σ κ ,sκ

0 ,Actκ ,Trκ).
Observe that Σ κ = Σ , s0 = sκ

0 , Actκ = Act ∪ {κp | p ∈ P}. We partition ΛActκ into
four action groups: ΛActκ = V κ ∪ Iκ ∪ Sκ ∪ Rκ , where V κ = V, Iκ = I, Sκ = S and
Rκ = R∪{κp | p ∈ P} (the definitions of V, I,S and R are given in section 2.3, the sys-
tem properties subsection). By adding κ actions to Rκ , we ensure that these actions are
treated as (artificial) recv actions.

Below, we continue with introducing some notions used in our POR algorithm.

Definition 5. We define the projection function π : Actκ → P as:

π(a) = p, if a = ap(m), ap ∈V κ ∪ Iκ ∪Sκ ∪Rκ for some m ∈ ΩActκ
π(a) = p, if a = κp

Definition 6. We define the relation ∼⊆ Actκ × Actκ as ∀a,a′ ∈ Actκ . a ∼ a′ ⇐⇒
π(a) = π(a′).

Clearly ∼ is an equivalence relation, and thus partitions Actκ into equivalence classes
such that each class contains only actions performed by one particular process. The set
of all equivalence classes in A ⊆Actκ given the equivalence relation ∼ is denoted A/∼.
For an action a and a state s, we write [a]s = [a]∩en(s), where the equivalence class [a]
is defined as [a] = {a′ ∈ Actκ | a ∼ a′}.

We define the function V : 2Actκ → 2Actκ as V(A) = {a∈ A |Λ{a} ⊆V κ}. Intuitively,
V(A) is the largest subset of A such that all its action labels belong to V κ . The functions
I, S and R are defined similarly. We let ∂κ : 2Actκ → 2Actκ be ∂κ(A) = A\{κp | p ∈ P}.

Before defining which requirements the ample set in POR for branching security
protocols has to satisfy, we note that definitions 5 and 6 can trivially be extended to Act
(since Act ⊆Actκ ), thus being legitimate to be used in L. As mentioned earlier, our POR
algorithm receives specκ as input, so the conditions which are checked in the algorithm
refer to this setting (having Lκ in mind), but the final stuttering equivalence is proved
with regard to L as the full state space.

Definition 7. At each state s, the set of actions to explore, i.e. ample(s), is constructed
in two phases. First, we construct an ample0(s) set that satisfies the following require-
ments:



r0. ample0(s) ⊆ en(s) and ample0(s) = /0 =⇒ en(s) = /0.
r1. For all a ∈ en(s), if a ∈ ample0(s), then [a]s ⊆ ample0(s).
r2. V(ample0(s)) 6= /0 =⇒ en(s) ⊆ ample0(s).
r3. R(ample0(s)) 6= /0 =⇒ en(s) ⊆ ample0(s).

And in the second phase, the final ample(s) is defined as ample(s) = ∂κ(ample0(s)).

Requirement r0 is a sanity check, c.f. condition C0 in [CGP00]. Requirement r1 states
that if one action of process p is explored, all other enabled actions of p have to be
explored as well, since they may disable each other. This requirement was not included
in [CJM00] and [CM05] that only deal with non-branching protocols. Requirements r2
and r3, similar to [CJM00], prevent prioritising visible internal actions and recv actions
over any other action, respectively. As κ actions are merely an artificial apparatus to de-
tect the existence of recv actions in case the corresponding recv actions are not present
in the state space, there is no reason to explore κ actions. Therefore, after constructing
ample0, all κ actions are removed from further explorations.

Algorithm 2 shows the construction of an ample set that meets the requirements of
definition 7. We emphasise that this algorithm receives specκ as its input specification.

Algorithm 2 POR for branching security protocols
REQUIRES: pκ

1 , · · · pκ
n ,DY

RETURNS: Lpor = a sufficient fragment of p1‖· · · pn‖DY
Current := {s0}
Next := /0
while Current 6= /0 do

for all s ∈ Current do
Construct en(s)/ ∼ (see definition 6) and name its elements as c1, . . . ,cl .
T := {ci, i ∈ {1, . . . , l} | V(ci)∪R(ci) = /0}
if T 6= /0 then

Pick a c ∈ T
Next := Next∪ nxt(s,c)

else if T = /0 then
Next := Next∪ nxt(s,∂κ (en(s)))

end if
end for
Current := Next
Next := /0

end while

Logic Below we describe the class of properties that our proposed POR algorithm
preserves. We consider an action based version of LTL−X . Given a non-empty set AP of
atomic propositions on states, the set of formulae of LTL−X is defined inductively as:

– Every member of AP belongs to LTL−X .
– If φ1 and φ2 belong to LTL−X , then so do ¬φ1, φ1 ∨φ2 and φ1

⋃

φ2.



The usual logical connective are interpreted as usual. Intuitively, the operator
⋃

states
that φ2 holds at the current or a future position, and φ1 holds until that position. For a
formal definition of the syntax and semantics of LTL−X see, e.g., [CGP00].

To interpret LTL formulae, which are originally defined for Kripke structures, on
LTSs each state is assigned with the labels of the transitions that sprout out of the state,
i.e. each transition label represents an atomic proposition. For a formal treatment of such
cross-interpretations see [NV95]. We assume that only actions from V κ ∪∂κ (Rκ) may
appear as atomic propositions. As we feed the POR algorithm with specκ , but the full
state space is defined with regard to spec, it is worth noting that V κ ∪∂κ(Rκ) = V ∪R.

Theorem 1 L 'LTL−x Lpor.

Proof. See appendix A.

4 POR in constraint solving

Constraint solving for analysing security protocols has mostly been used in verifying
non-branching protocols [MS01]. However, recently the constraint solving approach
of [MS01] has been extended to a large class of branching security protocols, namely
contract signing protocols [KK05]. In the previous sections we focused on POR al-
gorithms for explicit state model checking settings. Below we sketch how our POR
algorithm can be used in the constraint solving setting.

We first cast the constraint solving approaches of [MS01] and [KK05] to our formal-
ism. Given a specification p1, · · · , pn, we construct the product of the LTSs p1×·· ·× pn,
where p×q is defined as the following.

Definition 8. Given p = (Σp,s0p ,Actp,Trp) and q = (Σq,s0q ,Actq,Trq), p× q is the
LTS (Σp ×Σq,(s0p ,s0q),Actp ∪Actq,Trp×q), where Trp×q is

Trp×q = {(sp,sq)
a−−→ (s′p,sq) | (sp,a,s′p) ∈ Trp} ∪

{(sp,sq)
a

−−→ (sp,s′q) | (sq,a,s′q) ∈ Trq}

Note that p and q do not communicate directly (only indirectly via the intruder). The
resulting p× q can be seen as an uninstantiated state space (i.e. the actions of Act p×q
contain messages with free variables). Moreover, (p×q)×q′ = p× (q×q′).

In constraint solving approaches, any rooted path of p1 ×·· · × pn is examined by
a constraint solving algorithm CS to decide whether the process DY can trick the pro-
cesses of P to execute this path (and, if so, whether it constitutes an attack). We do not
specify the CS procedure here as our results do not depend on it. We note that our POR
algorithm can readily be used in generating a sufficient fragment of the uninstantiated
state space p1 ×·· ·× pn, see algorithm 3. Constraint solving approaches usually adopt
the depth-first traversal strategy, as opposed to the breadth-first strategy of algorithm 3
which conforms to the previous algorithm of this paper. However, the presented algo-
rithm is only a proof of concept and can easily be converted to follow a depth-first
traversal strategy.



Algorithm 3 POR for branching security protocols: Constraint solving framework
REQUIRES: p1, · · · pn
RETURNS: a sufficient fragment of p1 ×·· ·× pn

Current := {〈s01 , · · · ,s0n〉}
Next := /0
while Current 6= /0 do

for all s = 〈x1, · · · ,xn〉 ∈ Current do
Let ci = en(xi)
T := {ci, i ∈ {1, . . . ,n} | V(ci)∪R(ci) = /0}
if T 6= /0 then

Pick a c j ∈ T
Next := Next ∪ {〈x1, · · · ,x′j, · · · ,xn〉 | x′j ∈ nxt(x j,c j)}

else if T = /0 then
Next := Next ∪ (∪1≤i≤n {〈x1, · · · ,x′i, · · · ,xn〉 | x′i ∈ nxt(xi,ci)})

end if
end for
Current := Next
Next := /0

end while

We remark that in this scenario there is no need to worry about the infinitely branch-
ing behaviour of the DY process in the generation phase of the uninstantiated state
space. Restricting the intruder’s behaviour is a task for the CS phase in [MS01] and [KK05].
For a similar reason, calculating κ-translations can altogether be omitted from the POR
algorithm in this setting. This is because no recvp action will be hidden as a result of
the intruder’s lack of knowledge: The intruder’s abilities are modelled in the CS phase
in [MS01] and [KK05].

5 POR experimental results

This section reports some experimental results using a µCRL [BFG+01] implementa-
tion of algorithm 2. To demonstrate the effectiveness of the proposed POR algorithm
we have modelled a small instantiation of a Digital Rights Management (DRM) proto-
col, thoroughly described in [JND06]. Below we shortly describe this protocol and our
experimental results.

The DRM protocol of [JND06] comprises a finite set of compliant content rendering
devices C, a finite set of trusted entities T and an intruder that controls the communi-
cation channels. The goal of the protocol is to provide a secure environment for fair
exchange of digital items among the members of C. In case of a malicious act (or fail-
ure), the suffered party resorts to one of the trusted entities. The set D contains the
digital items available in the protocol. Each item is bundled with a right declaring the
terms of use of that particular item. The set of rights is denoted R. To keep the state
space finite, each c ∈ C only has access to a finite set of fresh nonces Nc to start new
sessions. Below we consider a small instantiation of this protocol with |C|= 2, |Nc|= 1
for each member of C, and |D| = |R| = 1. The following table compares the number of



states generated and the amount of time consumed by the standard µCRL state space
generator and its modification following algorithm 2, for different values of |T|. 5

Instance Standard POR Reduction
|T| # States Time # States Time in the # States
1 4,036 00:06.97 1,253 00:04.16 69.0%
2 92,976 04:02.61 15,124 00:47.15 83.7%
3 2,674,940 15:08:40.86 258,569 15:41.58 90.3%

Although POR loads the generation algorithm with some book-keeping and ex-
tra computations, the gained reduction definitely compensates for these costs, as is
evident from the time columns. These results unfortunately cannot readily be com-
pared with the existing tools implementing POR for security protocols [CJM00,CM05].
This is because, as mentioned earlier, they do not deal with branching security pro-
tocols. Going back to non-branching protocols, our algorithm coincides with the al-
gorithm of [CJM00] (except that as exploration strategy we opted for breadth-first,
while [CJM00] chose depth-first). We expect the algorithm of [CM05] to yield more
reductions, compared to our algorithm, when analysing non-branching protocols. This
is because the algorithm in [CM05] has been optimised for a rather narrow subset of
LTL−X , which is the class of properties preserved by our POR algorithm.

6 Conclusions

In this paper we have extended the POR algorithm of [CJM00] to branching security
protocols. The proposed algorithm has been implemented in the µCRL general-purpose
state space generation toolset, which is based on process algebra.

As future work, we plan investigating two possible extensions of the presented al-
gorithm: First, usually branching security protocols, e.g. fair exchange protocols, have
requirements beyond LTL−X . For instance, in [KR03] the requirements of these proto-
cols have been encoded in Alternating-Time Logic [AHK97], and [CD06] shows that
some fairness constraints needed when verifying these protocols are not expressible
in LTL. We thus observe that a POR algorithm that goes beyond LTL would be more
suitable for these protocols. As the next step, we intend to extend our results to an
equivalence relation finer than stuttering equivalence (e.g. failure equivalence [Gla93]).

Second, we plan to implement the proposed POR algorithm in the distributed µCRL
toolset [BCL+07]. This seems to be straightforward as the algorithm performs only
local tests and no POR-specific inter-workstation communications would be required.

Acknowledgements We are grateful to Jaco van de Pol for his comments on earlier
versions of this paper.

5 These experiments have been performed on a single machine with a 64 bit Athlon 2.2 GHz
CPU and 1 GB RAM, running SUSE Linux 9.2.
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A Stuttering equivalence

In this section we show that for branching security protocols any POR algorithm that
meets the requirements of definition 7 yields a reduced state space that is stuttering
equivalent to the full state space. We start with some definitions.

Definition 9. An independence relation IND ⊆ Actκ ×Actκ is the largest symmetric,
anti-reflexive relation, such that for each state s and each (a,a′) ∈ IND, if s a−−→ s1 and
s a′
−−→ s′1, then ∃s2. s1

a′
−−→ s2 ∧ s′1

a
−−→ s2.

The dependence relation DEP is defined as DEP = (Actκ ×Actκ) \ IND. Two actions
a and a′ are called dependent iff (a,a′) ∈ DEP.

In the following, we prove some lemmas about the full state space L = (Σ ,s0,Act,Tr),
which are used in proving the stuttering-equivalence theorem.

Lemma 1. For any two actions a and a′, we have [a] 6= [a′] =⇒ (a,a′) ∈ IND.

Proof. Since π(a) 6= π(a′), clearly a and a′ do not disable each other. Besides, if s a.a′
−−−→

s′ and s a′.a−−−→ s′′, then s′ = s′′. This is because performing a has no effect on the state of
the process that performs a′ and vice versa, as processes do not directly communicate
with each other, but only via the intruder (see definition 3). ut

Lemma 2. Assume R([a]s) = /0 in Lκ . Then in L, s a′−−→ s′ with [a] 6= [a′], implies [a]s =
[a]s′ .

Proof. Consider L. Since π(a) 6= π(a′), according to lemma 1, ∀b ∈ [a]. (b,a′) ∈ IND,
and consequently, for any b∈ [a], s b

−−→s1 and s a′
−−→s′ imply that ∃s2. s′ b

−−→s2. Therefore
[a]s ⊆ [a]s′ . Now, we need to show that [a]s′ ⊆ [a]s. Note that the enabledness of actions
of V , I and S only depend on the state of the process performing them (see definition 3).
As the state of π(a) is the same in s and s′ (because s a′

−−→s′ and π(a) 6= π(a′)), V([a]s) =
V([a]s′) and similarly for I and S. However, actions of R also depend on the state of the
intruder, i.e. when a process is waiting to receive a message, the intruder’s knowledge
determines what messages, if any, can be sent to that process. Here, R([a]s) = /0 in Lκ

implies that in particular κp 6∈ en(s) in Lκ (recall that ∀p∈ P. κp ∈ Rκ in Lκ ). Therefore,
κp is not enabled at s′ in Lκ , as well. As a result, R([a]s′) = /0 in Lκ . This implies that
also in L, R([a]s′) = /0, completing the proof. ut



Proposition 1. Let a ∈ en(s) (in L as well as Lκ ) and assume that R([a]s) = /0 in Lκ .
For all paths ξ = σ0,α0,σ1,α1, · · · originating from s (i.e. σ0 = s) in L, we have:

∀i. (a,αi) ∈ DEP =⇒ ∃ j ≤ i. α j ∈ [a]s.

Proof. Let (αi,a) ∈ DEP, for some i. According to lemma 1, (a,αi) ∈ DEP =⇒ αi ∈
[a]. Two cases are possible here:

– If i = 0: Then obviously letting j = i completes the proof.
– If i > 0: Assume ∀ j < i. α j 6∈ [a]s. We prove that then αi ∈ [a]s. The assumption

in particular implies that α0 6∈ [a]s. Since α0 ∈ en(s), we deduce that α0 6∈ [a].
Therefore, according to lemma 1, (a,α0) ∈ IND. As R([a]s) = /0 in Lκ , lemma 2
implies that [a]s = [a]σ1 in L. Repeating this argument, we can show that [a]σ1 =
[a]σ2 , . . ., and finally [a]σi−1 = [a]σi in L. Hence [a]s = [a]σi . Since αi ∈ [a], and
clearly αi ∈ [a]σi , it follows that αi ∈ [a]s.

ut

We recall the following theorem for general LTSs from [CGP00].

Theorem 1. If the ample set of a POR algorithm satisfies the following properties, then
the POR algorithm preserves LTL−X .

C0. ample(s) = /0 iff en(s) = /0.
C1. Along every path in the full state space that starts at s, the following condition

holds: An action that is dependent on an action in ample(s) cannot be executed
without an action in ample(s) occurring first.

C2. If ample(s) 6= en(s), then every a ∈ ample(s) is “invisible”, i.e. not appearing in
the properties being verified.

C3. A cycle is not allowed if it contains a state in which some action a in enabled, but
is never included in ample(s) for any state s on the cycle.

Now we are ready to prove the main theorem about our POR algorithm.

Theorem 2. L and Lpor are stuttering equivalent.

Proof. We show that the conditions C0,C1,C2 and C3 of theorem 1 hold for our pro-
posed ample set:

– Condition C0 holds because of r0.
– Condition C1 holds because of proposition 1.
– Condition C2 holds because of r2 and r3. Recall that we assume that only members

of V κ ∪∂κ(Rκ), that is equivalent to V ∪R, appear in the properties being verified.
– Condition C3 holds simply because we consider acyclic security protocols.

ut


