Solving Scheduling Problems by Untimed Model Checking

The Clinical Chemical Analyser Case Study

Anton Wijs
CWI, Department of Software
Engineering
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

A.J.Wijs@cwi.nl

ABSTRACT

In this paper, we show how scheduling problems can be
modelled in untimed process algebra, by using special tick-
actions. As a result, we can use efficient, distributed state
space generators to solve scheduling problems. Also, we
can use more flexible data specifications than timed model
checkers usually provide. We propose a variant on breadth-
first search, which visits the states per time slice between
ticks. We applied our approach to find optimal schedules for
test batches of a realistic clinical chemical analyser, which
performs several kinds of tests on patient samples.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems—Sequencing and scheduling

General Terms

Measurement, Verification, Experimentation, Algorithms,
Languages

Keywords

Process algebra, scheduling, search algorithms, untimed
model checking

1. INTRODUCTION

The Clinical Chemical Analyser (CCA) is used to auto-
matically analyse patient samples (blood, plasma or urine).
TNO Industry, in cooperation with the Eindhoven Univer-
sity of Technology (TU/e), has been involved in the redesign
of the CCA. The project charter was originally drawn up by
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Vital Scientific, a customer of TNO, to examine the possi-
bility of a 100% throughput increase.

At TU/e several projects have been devoted to the CCA.
First, the basic outline for the hardware was explored [22]
while, in a parallel project, the scheduler was developed [20].
Then, the hardware for a CCA mock-up was designed [13].
Currently, a new scheduler is being designed [23]. The fact
that a schedule providing optimal performance of the CCA
still has not been found raised the idea to look at this prob-
lem using a modelling language.

Already a lot of research has been done in the field of
timed automata to solve scheduling problems, translated to
reachability problems. In a paper by Niebert, et al. [18], the
problem of minimum-time reachability for timed automata
is considered. It is shown that this problem can be solved
by examining acyclic paths in a forward reachability graph
generated on-the-fly from a timed automaton. Three algo-
rithms are proposed to find a minimal-time path, all of which
have a worst-case complexity which is worse than polyno-
mial in the size of the simulation graph. (This result cannot
be fairly compared to our algorithms presented in this pa-
per, which are linear in the size of the state space, because
their simulation graphs are symbolic in the representation
of clock regions). In several papers by Behrmann, et al. [2,
3], linearly priced timed automata are introduced as an ex-
tension of timed automata with prices on both transitions
and locations. Next they consider the minimum-cost reach-
ability problem. An algorithmic solution is offered, based
on a combination of branch-and-bound techniques, which
can be used for limiting the search space and for quickly
finding near-optimal solutions, and a new notion of priced
regions. It is shown that using these techniques reduced the
explored state space by 90% when compared to a straight-
forward breadth-first search.

Timed model checkers like UPPAAL [14], a tool using timed
automata to model systems, prove to be very well suited for
handling scheduling problems. However, because of the us-
age of time, state space explosion can become a practical
problem very quickly. Furthermore, it may be hard to work
with a lot of data. That is why we considered the possibility
to solve scheduling problems in a simpler, untimed setting.
In other words, work with less theory and more brute force.
In [19], the model checker SPIN is used for modelling and
solving scheduling problems. The depth-first search algo-



rithm of SPIN is enhanced with a branch-and-bound mech-
anism. The idea is that the LTL formula to be checked
is modified during verification, to reflect the best solution
found so far. The algorithm is implemented by linking C-
code to the Promela model and therefore very specific to the
architecture of the SPIN tool.

We wanted a more general approach. With this in mind,
we looked at the modelling language pCRL [12]. Although
not a lot of work has been done yet with uCRL in the field
of scheduling, its powerful toolset [7] seems very able to
attack this type of problems. Using pCRL, one can work
with complex data structures, which was required for the
CCA system. Besides that, recently the pCRL toolset was
expanded with a distributed state space generator [5] and
a distributed state space reduction tool [6], allowing very
large state spaces to be generated within reasonable time.
In this paper we present a general scheduling methodology
for uCRL.

The paper is set up as follows: First we give an introduc-
tion to the CCA. Then we provide a short introduction to
pCRL, followed by a description how to deal with scheduling
problems in general using fCRL, and two methods to find
a minimal-time trace in a state space. Then we give a small
example of a scheduling problem and the pCRL model to
solve it. After that we discuss the CCA models we used for
the CCA case study, followed by the results obtained from
these models. Finally, conclusions are given.

2. THE CHEMICAL ANALYSER

What follows is a description of the scaled-down CCA as
we used it for the research described in this paper.
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Reagent Crank (RC
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Figure 1: The scaled-down CCA

Figure 1 shows the setup of the CCA; There is a cuvette
rotor containing 11 cuvettes, which are indexed from 0 to
10 counter-clockwise (this in contrast with both the CCA
mock-up, which has 45 cuvettes, and the real CCA, which
has 120 cuvettes). There are three cranks, which are able
to perform actions on these cuvettes: The reagent crank
can add a reagent from the reagent rotor to a cuvette, the
sample crank can add a patient sample from the sample rotor
to a cuvette, and the emptying crank can empty a cuvette.
Besides that there is a mixing crank, but it is unimportant
for the scheduling problem, which will become clear later
on.

The use of the machine is to process test recipes. Each
available patient sample should be processed according to
one of three possible test recipes.

In Table 1 the three recipes are depicted. In recipe 1 first
a reagent (R1) and later a sample (S) is added to a cuvette.

After that the cuvette is emptied (E). Recipe 2 is an ex-
tension of recipe 1 in the sense that after having added a
sample to the cuvette a second reagent (R2) must be added.
Finally, recipe 3 requires even a third reagent (R3) to be
added to the cuvette. This adding of fluids cannot be done
at any time however. The A occurrences in Table 1 repre-
sent delays of certain lengths (measured in time units). The
values of t1,...,t7 are limited to the following possibilities:
t1 > 15,12 <105,3 <t3 < 27,84 <105—13,6 <15 <21,9<
te < 42,t7 <105 —t5 — t6."

The CCA consists of a number of independently working
parts (cranks and rotors) which have to be controlled us-
ing a set of low-level actions. In order to avoid problems,
these actions are used as the building blocks for higher level
instructions, so-called operations. Careful design of the op-
erations has led to the property, that no errors occur within
them. These are the operations available:

e R;(j): Reagent i of a test is added to cuvette j;
e S(i): The sample for cuvette 7 is added;
e E(i): Cuvette i is emptied.

Finally, a number of operations together form a cycle, which
is the basic building block for a schedule. There are three
types of cycles, the 12, 16 and 24-cycles, differing in the
number of time units they require for execution. In the 12-
cycles round 1 of operations occurs, in the 16-cycles rounds
1 and 2 occur, and in the 24-cycles all three rounds occur.
The rounds being (in this order):

1. Given an empty cuvette i, the first reagent of a test
can be added to this cuvette. At the same time, if
possible, the sample for the test in cuvette i — 5 can be
added. Finally, also at the same time, if cuvette i + 3
contains a finished test, the cuvette can be emptied.

2. If a cuvette j (i # j) is ready to receive a second or a
third reagent, this reagent can be added.

3. If a cuvette k (¢ # k,j # k) is ready to receive a second
or a third reagent, this reagent can be added.

The cycles can be named by listing the operations that occur
in each round. We do not list the E operations though,
since emptying is done whenever possible. For instance, in
the 12-cycle Ri(¢) round 1 from the list above is carried out
without adding a sample. When rounds 2 and 3 occur in a
cycle, it will always be after having done round 1. Also for
these rounds the necessary cuvette indexes are given. For
instance, cycle R1SR2(i,7) first performs round 1, with a
first reagent being added to cuvette ¢ and a sample being
added at the same time to cuvette i —5, after which a second
reagent is added to cuvette j in round 2. In the real machine
it happens to be the case that there is no cycle which only
empties a cuvette. This is important to know when looking
at the results of the case study in section 7.

It was previously mentioned that there is a mixing crank.
Mixing should happen every time an extra fluid is added
to a cuvette. This, however, is not part of the scheduling
problem, because mixing is done within the operations.

The scheduling problem is now the following: given a
batch of tests to be processed, provide a sequence of cycles

'A time unit in the scaled-down CCA model corresponds
with a duration of 4 seconds in the actual CCA.



Table 1: Recipes for the CCA

| Description || Recipe |
1-reagent Rl — At = S — Aty - F
2-reagent Ri — At; —» S — At — Ry > Aty — F
3-reagent Ry — At - 5 — Ats — Ry — Atg — R3 — Aty — FE

that enable the CCA to process the tests in the minimum
time possible.

3. THE LANGUAGE uCRL

Basically, #CRL is based on the process algebra ACP [4],
extended with equational abstract data types [15]. In or-
der to intertwine processes with data, actions and recursion
variables can be parametrised with data types. Moreover, a
conditional construct (if-then-else) can be used to have data
elements influence the course of a process, and alternative
quantification (also called choice quantification) is added to
sum over possibly infinite data domains.

The language comes with a toolset [7] that can build a
state space from a specification and store it in the .aut for-

mat, one of the input formats of the model checker CADP [11].

A large number of distributed systems have been verified in
uCRL, for instance [9].

We will give a short overview of the language necessary for
understanding this paper. For a complete reference, see [12].

A specification starts by defining the necessary data. These
are specified as algebraic data types, consisting of sorts,
function declarations, and equations. In fact, the Boolean
sort is mandatory, since the conditional construct works
with Boolean expressions. Algebraic data types yield flexi-
bility, while keeping the language simple. In fCRL one can
declare actions, which may have zero, one or several data
parameters. Finally the process deadlock (§), which cannot
terminate successfully, and the internal action 7 are pre-
defined. There are eight operators in pCRL. We omit the
parallel composition operator, the encapsulation operator,
the renaming operator and the abstraction operator since
we do not use them in this paper. We present the other four
with an informal semantics.

1. The alternative composition operator (+). A process
p—+q proceeds (non-deterministically) as p or g (if they
can proceed).

2. The sum operator (3, , X (d)), with X (d) a mapping
from the data type D to processes, behaves as X (d1) +
X (d2)+..., i.e., as the possibly infinite choice between
X (d) for any data term d taken from D. This operator
is used to describe a process that is reading some input
over a data type [16].

3. The sequential composition operator (.). A process p.q
proceeds as p followed by q.

4. The process expression p<br g where p and ¢ are pro-
cesses, and b is a data term of data type Bool, behaves
as p if b is equal to T' (true) and behaves as ¢ if b is
equal to F' (false). This operator is called the condi-
tional operator.

The heart of a pwCRL specification is the proc section,
where the behaviour of the system is declared. This section

consists of recursion equations of the following form, for n >
0:
proc  X(r1:81,...,%n:8n) =1

Here X is the process name, the x; are variables and the
s; are sorts. Moreover, t is a process term possibly con-
taining occurrences of expressions Y (d1,...,dn), where Y
is a process name and the d; are data terms that may con-
tain occurrences of the variables xi,...,x,. In this rule,
X(z1,...,xn) is declared to have the same behaviour as the
process expression ¢ [10].

The initial state of the specification is declared in a sepa-
rate initial declaration init section, which is of the form

it X(di,...,dn)

Here di, . .., d, represent the initial values of the parameters
Z1,...,Zn. In pCRL specifications the init section is used to
instantiate the parameters of a process declaration, meaning
that the d; are data terms that do not contain variables.

4. TACKLING ASCHEDULING PROBLEM
WITH pCRL

4.1 Modelling scheduling problems

Scheduling problems are about time; given a machine or
combination of machines, which are able to perform tasks,
the question in general is in which order these tasks should
be performed in order to achieve the highest possible effi-
ciency. Therefore, if we want to create a model of a system
in order to solve a scheduling problem, at least we should
be able to work with time.

The original process algebra ¢CRL has no built-in notion
of time. A later addition, timed uCRL [12], adds absolute
time stamps to all actions. However, these time stamps
usually make state spaces infinite. Also, there are currently
no tools for generating a state space for timed uCRL.

Instead, based on the work from [8, 21], we use a special
tick action, which models time progression. This is compa-
rable to relative discrete time [1]: A tick action indicates
that the system moves to the next time slice. Using this
technique, the duration of an execution equals the number
of tick actions occurring in this trace. Now we can define
the notion of a minimal-time trace:

Definition 1. Given an LTS and a transition label a, we
say that there is a trace with execution time ¢ (¢t € IN) to a
transition with label a iff there is a trace in the LTS starting
from the starting state sp and reaching a transition with
label a, such that the number of tick transitions occurring in
this trace equals t. We define a trace from sg to a transition
with label a to be minimal-time if there is no other trace in
the LTS from sg to a with less tick transitions.



Using this definition, we can formulate a scheduling prob-
lem as a reachability problem: finding an optimal schedule
to perform a batch of tasks successfully can also be seen as
finding a minimal-time trace to a transition indicating suc-
cessful termination in a state space containing all possible
schedules as traces.

The question now is how to model scheduling problems in
general using pCRL, and how to find a minimal-time trace in
a state space generated from such a model. Modelling can be
done by creating a scheduler process, which allows all valid
executions.? By valid executions we mean all executions
satisfying the available constraints within the system. So
the scheduler can execute all available actions as long as the
constraints are satisfied. The choices which valid actions to
execute and when are non-deterministic; there are no built-
in priorities.

It is possible though to create a scheduler process with a
built-in strategy. By strategy we mean a plan saying when
and how to execute the valid actions. This limits the number
of possible executions (for more on strategy models, see sec-
tion 4.4). The possible executions of this process can then
be compared to the executions of the more general process,
providing us with a way to check the effectiveness of the
strategy in question.

Besides that we introduce a special action called finished.
We use this action in such a way that it can be executed
if and only if the scheduler process reaches the successful
termination of an execution.

Having created a pCRL model, it is possible, using the
1CRL toolset, to generate a state space from it. This state
space incorporates all possible behaviour of the system de-
scribed by the model. Somewhere in this state space there is
at least one minimal-time trace to a successful finish. Given
Definition 1, we use the finished action as transition a, in
order to formulate a minimal-time trace to a succesful termi-
nation. Next we describe two methods to find such a trace.
In the first method we use the tools as they originally exist.
In the second the uCRL toolset is equiped with an optimised
search algorithm.

4.2 Finding a minimal-time trace by full state
space generation

One way is to build a counter in the model, which is used
to keep track of the time spent since the start of the execu-
tion. If we also build in the action called finished(t) which
is executed when a successful termination is reached, with
current value t of the counter as a parameter, we can quickly
find a minimal-time trace.®> Using CADP it is possible to
display all the action labels of a state space. Then we get
an overview of all the occurrences of finished(t) with their
different parameter values. We find the smallest parameter
value and search for a trace leading to this finished(t) oc-
currence using a p-calculus formula [17]. Note that in this
case there is no real need anymore for tick actions; when a
delay occurs the value of the counter is increased.

20ne can decide to use other processes in parallel with a
scheduler process. In that case it must be enforced that all
tick actions are synchronised; if all processes can do a tick
action, they perform a tick action together. If at least one
of them cannot, no tick action occurs. How to enforce this
behaviour can be found in [8, 24].

%Note that in the case of the finished(t) actions we use ab-
solute timing [1].

Using the method described above, we need a complete
state space before we can check anything. In a lot of cases
though, the state space tends to be very big, in some cases
even of infinite size. This possibility is even bigger when us-
ing this time counter, which never assumes the same value
twice within an execution (there is no possibility for loops
within the state space). It is possible though to limit the
state space to the size necessary to find a minimal-time
trace. To do this we can develop a strategy model; this
technique is explained in section 4.4.

4.3 Finding a minimal-time trace using an
optimised algorithm

There is an option in the pCRL toolset to search for a
specific action while generating a state space. As soon as the
action has been discovered, the toolset provides the trace to
this occurrence of the action and can then stop generating.
Because of the fact, that the generation is done breadth-first,
as soon as an action has been found for the first time, the
trace leading to this action will be the shortest one leading
to it.

However, the shortest trace to an action is not always
a minimal-time trace. For instance, let us say we have two

traces leading to action finished, the first being po—2—+p; —%»

b tick c tick finished
_—

P2 ——P3 —— P4 ——P5 — D6 p7 and the second

. d tick tick tick tick finished
being go — q1 q2 qs qa as

Even though trace qo to g is the shortest trace, trace po to
pr is the fastest. What we need in order to find a minimal-
time trace, is another search algorithm during generation,
which deals with tick actions in a special way. Algorithm 1
is such an algorithm written in pseudo-code, where sg is the
starting state of the state space and finished is the action we
are looking for. Furthermore p and p’ indicate states and a is
an action. The algorithm processes a list of states, each time
looking at the outgoing transitions of the chosen state. If a
transition is a tick transition, the destination state is only
checked once all states in the current time unit have been
processed. In this way the generator checks states from time
slice to time slice. The claim is that the algorithm searches
in such a way, that when action finished is found for the first
time, a minimal-time trace is found. Each time a new state
is reached a pointer is kept to the parent state. This allows
back-tracking to state sg once a finished transition is found.

Notice that we do not search traces with cycles. As pointed
out in [18], we are allowed to do this. By using the set Pro-
cessed we keep track of all the states already visited. If we
visit a state for a second time, it will be at the same exe-
cution time or later than the first time we visited it. The
time it took to go through the loop did not gain us anything,
since we have arrived back at the same state.

It is clear that using this method it is not necessary in
most cases to generate the complete state space, or generate
the state space of a second (strategy) model. Worst-case the
whole state space needs to be generated. A minimal-time
trace is found in O(!) time, with [ being the number of tran-
sitions searched in the state space. Therefore this method
is more efficient than the one described in section 4.2.

4.4 The use of a strategy model

As described earlier, scheduling problems can be modelled
as a single process allowing all possible (valid) executions.
This way we can be sure that a minimal-time trace in the



Algorithm 1 Pseudo-code algorithm for finding minimal-
time trace on-the-fly

TimeSlice := )
Waiting := {so}
Processed := ()
while Waiting # () do
TimeSlice := Waiting
Waiting := ()
while TimeSlice # () do
select p from TimeSlice
for all p 2 p' do
if a = finished then
return The path from so to p’
else if p’ not in Processed then
if a = tick then
add p’ to Waiting
else
add p’ to TimeSlice
end if
end if
end for
add p to Processed
end while
end while
return No successful termination

resulting state space is really the fastest one possible. It can
be useful however to create a model with a built-in strategy
as well. Using such a model has several advantages.

First of all, a strategy model limits the amount of non-
determinism, resulting in a smaller state space. For instance,
we can assign different priorities to different actions, there-

fore eliminating non-deterministic choices between them. This

means that larger problems can be solved by adding strate-
gies. However, the found solutions may be suboptimal, be-
cause all minimal-time traces may have been pruned away.

Note that the solution found by a strategy model is an
upperbound for the minimal time. So the second advantage
of using a strategy model is that it can make the minimal-
time trace detection method from section 4.2 more practical;
using the strategy model we can get a minimal-time trace.
Then we know how many time units this trace costs, say
t. Following, by expanding the guards within the general
model, we can force all executions of this model to stop
after t time units have passed. The only expression that
needs to be added to each guard is that the time counter
has a value of at most t. Whether or not the strategy used
is a good one, a minimal-time trace of the general model
(with execution time t') can be found in the limited state
space, since t’ < t.

Of course it is also possible to pick a reasonable value for
t, without using a strategy model. But the bigger the state
space gets, the riskier this is; if the value chosen is too low,
the time needed to generate the state space is probably still
long and the final result will not contain a minimal-time
trace. If the value is chosen too big, the generation will take
too much time.

Finally, it can be checked, for small instances, whether or
not strategy models provide optimal solutions: if a strategy
model yields schedules of the same length as the fully non-
deterministic model, this is an indication that the strategy
is good. Note this is only an indication, because we can

only check the strategy for problem instances. We cannot,
at least using our methods, check a strategy in general.

5. EXAMPLE: 5 TASKS SCHEDULING
PROBLEM

In order to facilitate comparison, we will look at the small
static scheduling problem originally presented in [18] and
adapted in [3]. A number of tasks (a1, a2, ¢, b1 and b2)
need to be performed in a specific order. All tasks need
to be performed precisely once, except task ¢, which can
be performed zero or more times. The order is as follows:
After task a1 one should perform az, followed by (zero or
more times) c. Then task b1 needs to be executed, finishing
with task b2. The system is free to decide for itself how long
it wants to delay after having performed a task. There are
three timing constraints however:

1. The time between execution of a; and execution of by
should be at least 2 time units;

2. The time between execution of as or the last execution
of ¢ and execution of b; should be no more than 1 time
unit;

3. The time between execution of as and execution of b
should be at least 3 time units.

What follows is the pCRL model of the system described
above. We use three counters, x, y and z, to ensure tim-
ing constraints 1, 2 and 3 respectively. Standard sections
defining the data types needed are omitted.

act ai,az,c, b1, b, tick, finished

S(z:Nat, y:Nat, z:Nat, n:Nat) =
a1.S(z,y,z,n+1)dn=0>8 +
tick.S(x + 1,y,z,n)<n =10 +
a2.S(z,y,z,n+1)dan =19 +
tick.S(x+1Ly+1,z+1,n)an=2p0+
c.8(x,0,z,n)dn =20 +
b1.S(z,y,z,m+1)dn=2ANz>2ANy<1pd+
tick.S(z,y,z+1,n)<n=3>0 +
b2.S(z,y,z,m+1)an=3Nz>3pd+
tick.S(x,y,z,n)dn =4p>6 +
finished<in =46

init $(0,0,0,0)

Using the pCRL toolset we can search for a minimal-time
trace using the search method from section 4.3. This delivers
the following trace, which takes three time units to execute:

ay ag tick c tick by tick bo
Sg —> 8] —> 8o —> 83 —> §4 —> S5 —— Sg ——— S7 ——

Ss Sfimished s9. It took the state space generator less than
three seconds to generate the necessary part of the state
space and present a minimal-time trace.

The result is a different one from the one given in [3],
but the execution times of the traces are the same. The
only difference is due to the freedom to delay after a task is
done. Because of this there are several minimal-time traces
present in the state space.



6. CREATING THEMODELFORTHECCA

For the scheduling problem of the CCA it was not nec-
essary to model all the parts of the machine in a very de-
tailed level. It sufficed to concentrate on a scheduling pro-
cess which allowed every valid sequence of cycle commands
to happen. Invalid sequences would consist of cycles applied
to inappropriate cuvettes or cycles applied too soon or too
late.

When designing it was important to choose the parame-
ters in a smart way. The more information you store, the
bigger the resulting state space will be, therefore any un-
necessary information must be avoided. We decided to not
use test IDs; to solve the problem we do not need to link
an individual sample with some particular reagents. We can
assume that the reagent and sample rotors provide the right
reagents and samples when required. Furthermore the num-
ber of samples and second and third reagents that still need
to be added is not needed; it is clear what must be added
when looking at the rotor and the number of unprocessed
first reagents. That leaves us with the following:

e The cuvette list, consisting of 11 tuples. Each tuple
stores which fluids are currently in the corresponding
cuvette, which type of test is in the cuvette, and how
much time is left before a new fluid may be added.

e How many 1-reagent tests should still be started.
e How many 2-reagent tests should still be started.
e How many 3-reagent tests should still be started.

When modelling it became clear how convenient the use
of abstract data types was. The rotor could be modelled
using a specially taylored list data type, and we could define
functions to quickly check the status of the rotor (e.g. Are
there any tests ready to receive a sample, is a certain test
finished). This made working with complex data structures
much easier than for instance in UPPAAL.

We decided to build the model in an incremental way;
first we built a model dealing only with 1-reagent tests and
12-cycles. It consists of a single process which has the 12-
cycles as actions, together with the necessary guards and re-
cursive calls, placed in alternative composition. The guards
are there to check whether a chosen cuvette is indeed ready
to receive a certain fluid. Note that it was not necessary
to incorporate time in this model, as each action requires
a delay of three time units; In such a case a minimal-time
trace in a state space is also the shortest trace. Therefore
we could do a breadth-first search for the finished action.

Using the model in practice though on a number of test
batches we found that the freedom to place new tests any-
where on the rotor led to a state space explosion. We de-
cided to build a second model allowing new tests to be placed
only in the next empty cuvette, looking counter-clockwise.
Since the cranks are placed in such a way that, rotating one
cuvette at a time, a sample can be added to a cuvette the
moment it reaches the sample crank, this restriction will not
lead to a suboptimal solution. In fact, section 7 shows that
this is indeed the case, for a test batch of five products.

Next we built a third model with a process using all pos-
sible cycles together with the necessary guards, placed in
alternative composition. We also used this model to find
schedules for different test batches. The results can be found
in section 7. After that we created a fourth model, which was

much more restricted in its possibilities; we put a strategy
in it to cope with a batch of tests. We attached priorities to
cycles, so that the model would always execute the enabled
cycle with the highest priority. In short the strategy is to
always perform as many operations in parallel as possible.
Using the same batches of tests as input for this model we
got the same results as we got using the strategy-free model
(in cases where the complete state space of the latter model
could be generated at least). This tells us that the strategy
used in the strategy model is a good one for the test batches
used.

Recently, the pCRL toolset was expanded with a dis-
tributed version of the state space generator. This makes
it possible to generate state spaces using a cluster of com-
puters. In this case study it became clear quite soon that an
increase of the size of the test batch results in a big growth
of the state spaces of most of the models. For some of the
test batches a minimal-time trace could not have been found
without distributed state space generation.

7. RESULTS

7.1 The scheduling results

Tables 2 and 3 show the results of our case study. A
number of different batches were selected and used in the
four different models. We used the method described in sec-
tion 4.2 to get the results of Table 3 and a breadth-first
search on the finished action in the case of Table 2. The
tables should be read as follows: In every row a test batch
is specified. In Table 2 the number of tests is displayed,
in Table 3 the descriptions are of the form (a,b,c), where
a,b and c indicate the number of 1-reagent, 2-reagent and
3-reagent tests, respectively. The results are in the follow-
ing format: r/s, where r and s equal the number of time
units and the number of cycles in the minimal-time trace,
respectively. Results obtained by using distributed state
space generation, instead of stand-alone state space genera-
tion, are marked by a star (*), and where results could not
be obtained, due to technical reasons, a hyphen is written
(-). Also, the number of states in the different state spaces
is given. From the numbers it is clear that the state spaces
grow rapidly in size when using bigger test batches. In the
models without a strategy this is due to the fact that from
every state the system can do any of the valid actions. In the
strategy model this is due to the non-determinism concern-
ing adding new tests (more precisely, deciding which test
type should be added at which point). One could there-
fore decide to create another strategy model, which applies
a fixed order of tests concerning their type (i.e. first adding
3-reagent tests).

Taking a closer look at the minimal-time traces found we
conclude the following: Concerning the 12-cycles models,
the minimal-time traces are straight-forward: The first five
reagents need to be added without adding a sample, because
of the incubation times. After that a reagent can be added
together with a sample, until there are no reagents left to
add and the final five samples can be added. Having a batch
of ¢ products will therefore lead to a minimal-time trace of
1+ 5 cycles, and (since every cycle takes three time units)
will take 3.(¢ 4+ 5) time units.

For the more general case, using 12, 16 and 24-cycles, it is
more difficult to observe a pattern though. There does not
seem to be any advantage gained by adding the reagents for



Table 2: 12-Cycles models search results

4 Tests Model 12-cycles | # States | 12-cycles restr. # States
5 30/10 * | 416,352 30/10 447
10 - - 45/15 9,878
15 - - 60,/20 528,699
20 - - 75/25 8,403,885
30 - - 105/35 * 222,613,811
Table 3: All cycles models search results
Model
4 Tests All cycles | # States | Strategy | # States
(3,1,1) 36/11 428 36/11 179
(1,3,1) 39/11 1,588 39/11 229
(1,1,3) 47/13 6,048 47/13 235
(6,2,2) - - 51/15 11,477
(3,5,2) - - 55/15 29,929
(1,2,7) - - 73/17 15,631
(7,4,4) - - 75/21 * | 5,270,175
(4,8,3) - - 77/21 * | 1,456,053
(2,5,8) - - 91/22 * | 1,951,446

the different kinds of tests in a certain order (for instance
first adding all the reagents for the 3-reagent tests). Besides
that there does not have to be any pattern shared by the par-
ticular minimal-time traces found by CADP; it could very
well be the case that there are several minimal-time traces
coexisting in the same state space. We only get to see one
though, which shows a possible solution, not necessarily a
mandatory one.

Finally, we also used the optimised search algorithm to
find minimal-time traces for the strategy model using five
and ten products (in the varying type combinations). We
found that the state spaces still needed to be generated al-
most completely in order to find the solutions. This may
indicate the presence of a lot of minimal-time traces and
only a few other traces.

7.2 Other findings

Looking at the (4,8,3) batch within the strategy model
produced some strange results; the state space turned out
to be of infinite size. Since this was unexpected we looked
at it in more detail and found a trace of infinite size show-
ing that it would be wise to have a cycle which only emp-
ties a cuvette, if one wants to allow the scheduler to create
any valid schedule. The trace in question will now be pre-
sented, where we always indicate the type of the test sub-
jected to an operation, using a superscript ¢ for an i-reagent
test. Furthermore, € is the 12-cycle in which no operation
at all is executed; basically it is a delay. This is the trace:
[R1(0), R(1), Ri(2), Ri(3), Ri(4), R15°(5), RiS°(6),
RIS®R3(7,0), RIS R (8, 1), RiS® RL(9,2), B3 S" R§(10,0),
STR3(0,1), RIR3(3,2), R3(6), S°(1), RIS*R3(4,7),
S?R3(2,8), RIR5(5,8),5%(8), S R3(9,3), S*R3(0, 4),
S?R3(10,6), S2R3(3,5), R3(9), €, €, ¢, ...]. In this trace all the
cuvets get filled with tests in such a way that there is never a
completed test at the emptying position. In the end the ro-
tor is filled entirely with completed tests, but nothing can be

removed, because there is no cycle in which only a removal
operation is done.

8. CONCLUSIONS

The modelling language pCRL is well-suited for modelling
scheduling problems. The data support it has is very con-
venient when working with complex data structures, as in
the case of the CCA. In this regard no changes have to be
made to the current uCRL toolset. Furthermore, it suffices
to model a single process, which can generate all valid se-
quences of operations. This applies to scheduling problems
in general, since the nature of this kind of problems is to find,
within all possible sequences of commands, actions, etc. the
minimal-time trace leading to a successful termination.

The number of possible execution sequences can grow very
rapidly though. In case of the CCA, we already encountered
technical problems concerning the size of the state space
when working with 10 products in a test batch. It is possible
however to limit the model in certain ways to make this
state space smaller. In the case of the CCA, we restricted
new tests to be added to the first empty cuvette on the rotor
(counter-clock wise) available.

Another way is to build a model with a strategy. By
introducing a strategy, the number of possible execution se-
quences can be brought down a lot, depending on the level
of non-determinism still in the model. A strategy model can
be used to compare a certain strategy to the general model,
and it can serve to determine a practical limit for a state
space generated from a general model.

As a side note, we showed an example of gaining results
not related to the scheduling problem in question. When
generating a state space you may notice some unexpected
behaviour, which could lead to more insight into the system.

Finally, we extended the yCRL toolset with a new search
algorithm to make on-the-fly searching for a minimal-time



trace in a state space possible. This discards the necessity to
generate the complete state space of a system, before being
able to search.

It would still be very interesting though, to see if it is pos-
sible to come up with other search algorithms. In particular
a lot would be gained if it were possible to prune traces from
the state space which are not promising. Important to note
though, is that we are only interested in getting optimal
solutions, not near-optimal ones.

9. FUTURE WORK

We plan to adapt the search algorithm for distributed
state space generation. This may be based on the algorithm
used in the distributed state space generator of uCRL to
search for the shortest trace in a state space. Then we want
to implement the distributed search algorithm in the yCRL
toolset and see what kind of results we get using this.

We want to see whether or not it is possible in our own
setting to develop more efficient search algorithms, as is done
in [2], where branch-and-bound algorithms are used. Our
breadth-first algorithm resembles branch-and-bound, in the
sense that we don’t generate solutions that are strictly longer
than necessary. However, we have not yet pruned traces that
will not lead to a valid solution. In the CCA case study,
nearly all traces can be extended to a valid solution.

The results so far can be used to find the best schedule
for a given batch of tests. It is an interesting (and much
harder) research question, to automatically synthesize an
optimal on-line scheduler. In that situation, the scheduler
should optimally react on the arrival of new jobs.
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