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Preface

T
HIS THESIS DEALS WITH THE incorporation of timing aspects in (mostly)
explicit state model checking. Therefore, time as a concept appears every-
where in the thesis, whether as an aspect of timed modelling languages,
as a notion of cost in weighted state spaces, or encoded in timed labelled

transition systems. Besides that, different notions of time are also represented in the
work; it considers both discrete relative time, where periods of time can be divided into
atomic time intervals and moments in time are always referred to in relation to earlier
moments in time, and continuous absolute time, where no atomic time interval can be
identified, and moments in time are referred to with respect to a global clock.

There is, however, one more aspect of time present in the thesis, but only implicitly,
and only visible, often partially, to people involved with the work in between these cov-
ers. This book is more than just a list of chapters, and more than the contents, at least
to me. It embodies a four year period of work at CWI, a period which I enjoyed very
much, and as I flip through this thesis, memories come flooding back to me. Although
I can hardly cover them all, in this preface, I will try to make this very personal aspect
of time somewhat more explicit to the reader.

For example, the work on translating χt to µCRL is, besides appearing in the first
chapters, also chronologically speaking the first subject I looked at within those four
years. I remember being introduced to Elena Bortnik and Nikola Trčka in Eindhoven,
and the three of us being assigned to deal with a turntable case study, in order to get
familiar with model checking. Little did we know that this small case study would,
almost literally, haunt us for the complete first year. I say haunt, since on a few occa-
sions, it even caused me to dream at night about products being rotated, drilled, and
tested. Luckily it turned out that every product eventually leaves the table, and like-
wise, the turntable eventually left our focus. Anyway, I enjoyed working with Elena
and Nikola very much, and wish to thank them here.

The first part is concluded by a chapter, which stems from, funnily enough, work
created almost at the very end of my PhD period. In a way, it therefore completes a
circle. This particular chapter is one of my personal favourites, as I feel that I was only
able to write this chapter because I had done the work encompassed by Parts II and III.
Though these parts might, at first sight, not appear to be that related to that chapter,
writing them helped me to get more into touch with aspects such as the inclusion of
time in process algebras, and the design of search algorithms.
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Part II is the result of very different events, at different locations. Chronologically,
the whole part grew out of one particular moment, which I can still remember well.
I was looking into pruning techniques, as Mohammad Torabi Dashti appeared in my
room, asking whether it would be possible in the µCRL toolset to associate priority val-
ues with action labels, allowing a search algorithm to only traverse transitions whose
action labels have high enough priorities. Right at that moment, I was implementing
that very mechanism in the toolset. What followed was a collaboration, resulting in pa-
pers on beam search, which form the basis of Chapters 8 and 9, and papers on partial
order reduction. It was an enjoyable experience, and I thank him for this.

Chapter 7 of Part II is based on my contribution to a, yet to appear, survey paper
on the area of Directed Model Checking, which grew out of a Dagstuhl seminar on
Directed Model Checking. I thank the people involved in that seminar for inviting
me, and Husain Aljazzar, Dragan Bošnački, Stefan Edelkamp, Ansgar Fehnker, and
Viktor Schuppan in particular, with whom I wrote the survey paper. Both the seminar
and the writing of the survey paper were very helpful for me to get into the subject of
Directed Model Checking. This experience finally helped me to create Chapter 6, which
I associate with Braga, Portugal, as the basis of it was written by me in between and
after the talks at the TACAS 2007 conference.

For Part III of the thesis, I thank my supervisor Wan Fokkink and co-author Jun
Pang. In fact, I thank Wan for all his supervision, but specifically the theory of timed
bisimilarities was a subject which I would not have been able to deal with without him.
I am glad that I got involved in this research, which happened when I was explaining
my initial ideas for modelling time in µCRL to Wan. Part III forms, in my opinion, a
nice theoretical addition to this otherwise practically oriented thesis.

I thank all my colleagues in the TIPSy project which I have not mentioned already,
namely Jos Baeten, Koos Rooda, Asia van de Mortel-Fronczak, Bas Luttik, and Ralph
Meijer, for all the useful discussions at the regular meetings, and Bert van Beek for the
discussions on χ. Of course, I thank Jaco van de Pol, my other supervisor, for his help,
mostly concerning Part II. His comments pushed me to go further in my research. I
thank all my former colleagues at CWI, in particular Bert Lisser, who was always there
to implement new techniques and explain the inner workings of the µCRL toolset, and
Jens Calamé, for helping to solve the occasional LATEX2ε problem, and with whom I
could by now write a paper concerning the social behaviour of the rose-ringed parakeet.

Thanks go out to the members of the reading committee, namely Jos Baeten, Stefan
Edelkamp, Radu Mateescu, and Jan Willem Klop. Their comments were very helpful,
and resulted in a further improvement of the thesis.

I thank my friends Coen, Sander, Tim, and Wouter. It is intriguing to see how we are
all doing such different things with the knowledge we gained during our study. I thank
Marjolein for being a good friend. And I thank my parents for their constant support.

Anton Wijs
Auckland, New Zealand, July 2007
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Chapter 1

Introduction
The past is but a beginning of a
beginning, and all that is and has been is
but the twilight of a dawn.

(H.G. Wells)

1.1 The Basic Concepts

M
ODEL CHECKING IS THE PROCESS of checking whether a given model sat-
isfies a given logical formula, as Wikipedia tells us (the italics are placed
by the author). In this description, particularly the terms model and logi-
cal formula attract our attention. A model, first of all, usually represents

the behaviour of a system in real life. Such a system may be a piece of technology, e.g.
a mobile phone or a car, but it can as well be something else, such as an organism (the
usual kind of subject in the area of bio-informatics). By creating a model of a system,
we obtain a ‘map’, so to say, of all possible (re)actions of that system. For the sake
of presentation, let us consider a detective, who has to solve a murder mystery. The
detective, together with his environment, let us say, the house where the murder was
committed, and the suspects present in the house, constitute the system here. More
specifically, one might note that they constitute a so-called concurrent system, in which
the detective, the house, and the suspects represent co-existing agents who may com-
municate with each other. As a model of this system, we have a so-called ‘interactive
novel’. Reading the novel should commence at page one, as is the case for any usual
book, but at some point the reader may hit a decision point in the story; at such a point,
the reader, who is usually identified as the protagonist in the story, i.e. the detective,
must decide what to do next. The following example shows in which fashion such a
decision point is presented:

You approach a door. What to do next?

• If you want to open the door, continue reading at page a;

• If you want to ignore it, continue reading at page b.

1



Chapter 1 Introduction

Given such a choice (always between a finite number of alternatives), the reader
might either continue reading at page a, b, etc., from where the story continues until
the next decision point is reached. One can imagine that the book contains many
decision points, and thus allows the reader considerable freedom to decide how the
story develops. In fact, let us assume that the book covers all possible unfoldings of
events.

The second highlighted term in the description of model checking which started this
chapter, is logical formula. Such a formula describes (usually undesired) behaviour of
the system to be investigated, i.e. a property. For instance, considering again our book
describing the murder mystery, we may wish to check that “it never happens that a
second murder is committed”.

How to check that this undesired behaviour never occurs? In fact, this is an impor-
tant question in the area of model checking, and, as Part II of this thesis demonstrates,
it is one which can be answered in many ways. If we stick to the existing reading
structure of the book, one way to read the whole book is by reading all individual alter-
natives of a decision point up to the next decision point right after each other. Taking
the example above, we would continue reading at page a. We read from there until we
hit the next choice, let us say at page a′. Now, we move to the second alternative of the
earlier decision point, i.e. we move to page b. There we continue until we hit the next
choice at page b′. In this manner we go on until all the alternatives at the original de-
cision point have been covered up to one decision point deeper. After that, we move our
attention to all the alternatives of the decision point at page a′, at page b′, etc. Such a
reading procedure would be called breadth-first reading (searching) in model checking.
We cover the decision points in order of the number of decision points between them
and the first page. Note that it does not necessarily mean that we need to read the
whole book; the moment we discover a second murder we may stop reading. Of course,
this reading procedure, in general, does not really imply a good reading experience.

Opposed to that, there is the depth-first way of reading the book. Let us just read the
book how we are supposed to, but each time we reach a decision point, we write down
the page and the decision we make. This gives us a list of decisions on paper while
reading. The moment we hit an ending, instead of closing the book, we ‘backtrack’
to the page of the last decision point we encountered. There, we now make a choice
different from our first one and read on. We continue to read and backtrack, skipping
decision points that we have already covered completely. As with breadth-first reading,
this depth-first way of reading also covers all the reachable pages in the book, since the
book only has a finite number of pages. Furthermore, also here, we do not need to read
the whole book, unless a second murder is never committed, or the second murder is
encountered for the first time at exactly the last page considered by us.

Making the connection to the usual systems subjected to model checking mentioned
earlier, a system, for instance a mobile phone, might be modelled using a modelling
language, describing all the possibilities of that phone. From this model, a so-called
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state space can be derived, which should be viewed as a virtual space describing all
potential behaviour of the phone. If there is some undesired behaviour of the phone
possible, however unlikely it may be that it actually occurs in real life, it will be rep-
resented in the state space. If we describe undesired behaviour as a logical formula,
for instance “the phone explodes”, then we can check whether this appears anywhere
in the state space or not, searching it in either a breadth-first, a depth-first, or any
other manner. This is what differentiates model checking from simulation. A simu-
lation can be compared with reading the interactive novel exactly once, in one of the
possible ways, from the beginning to an ending. If the undesired behaviour is not found
in a simulation, then this is no guarantee that the undesired behaviour can never be
encountered in any simulation.

The techniques which allow us to perform model checking, i.e. a modelling language,
the derivation of a state space from a given system model, a logical language to express
a property in a logical formula, the checking of a logical formula, etc., are called formal
methods. In short, formal methods are mathematical techniques in order to reason
about the correctness of systems. Section 1.3 gives an overview of the main tools using
formal methods which have been applied during the research covered in this thesis.

At this point it is relevant to explain how the terms model checking, state space
search, and state space generation relate to each other, as all three appear multiple
times in this thesis. Model checking, as already explained, involves checking whether
a specific situation occurs in a state space. State space search refers to the traversal
of a state space. Of course, by means of state space search one can perform model
checking, but the main focus of state space search itself is the strategy used to traverse
the state space. Finally, state space generation, in the most basic sense, does not focus
on searching or checking at all; it merely means the creation of a state space (e.g.
printing and binding the interactive novel). Also here, there is a connection with state
space search; a state space can be generated by employing the traversal strategy of
a state space search. However, note that from a generation point of view, there is no
interesting distinction between any two (exhaustive) strategies, as the focus is on the
end result of the traversal, which is the state space.

To complete the circle, model checking can be performed both after and during state
space generation. The latter way, which is called on-the-fly model checking, may often,
resource-wise, be preferable over generating a state space first and checking a property
later. If the novel is incredibly thick, then we can save a lot of trees by searching the
book for a second murder while printing it. If a second murder is found, we can stop
printing.1 Likewise, the state space of a formal model of a concurrent system may be
so large that generating and storing it fully on disk takes a lot of time.

1This is, of course, a weak part of the used metaphor, since the searching can be done much easier through
an electronic version of the book, but the author hopes that the reader gets the point.
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1.2 The TIPSy Project

The work in this thesis is the result of working in the NWO project 612.064.205 –
“Tools and Techniques for Integrating Performance Analysis and System Verification”
(TIPSy). Academic partners in this project were the Formal Methods group at the
department of Computer Science of the Technical University of Eindhoven (TU/e),
the Systems Engineering group at the department of Mechanical Engineering of the
TU/e, and the Embedded Systems group at the Centrum voor Wiskunde en Informat-
ica (CWI). The Dutch company ASML was an industrial partner.

The purpose of the TIPSy project was to combine performance analysis and formal
verification. In performance analysis, the focus is on performance aspects of a given
system (such as ‘throughput’ and ‘flow time’), aspects which are usually quantifiable.
Formal verification, on the other hand, deals with the functional correctness of a sys-
tem. The main questions here are whether the system does what it is supposed to do,
and whether it cannot do what it is not supposed to do. This kind of analysis con-
cerns the quality of the system. Questions asked in formal verification can usually be
answered by either ‘yes’ or ‘no’, e.g. “is it impossible for this machine to crash?”.

About ten years ago, the Systems Engineering group at the TU/e developed a mod-
elling language called χ. This language can be used to model manufacturing systems,
consisting, for instance, of a manufacturing line or a single machine. Such a model
can then be analysed using specific tools. The analysis produces results considering
the behaviour of the system, which can then be used to improve the system. In the
past, χ specifications were mainly subjected to performance analysis by measurement
through simulation. When considering functional verification, however, the usefulness
of simulation is rather limited; one may find errors using this technique, but it is not
possible to determine the absolute absence of errors. At this point, formal methods can
help in improving the analysis.

Recently, χ has been redesigned as a hybrid modelling language. With a hybrid
language, it is possible to describe systems which exhibit both continuous and discrete
dynamic behaviour. The discrete event subset of this language, called timed χ or χt, is
comparable with the old version of χ.

One of the goals of the TIPSy project was to integrate χt with existing formal meth-
ods. The common denominator here is process algebra; process calculi form a family
of algebraic modelling languages for the specification of concurrent systems. These
specifications are usually subjected to functional verification. Prominent examples of
process calculi are CCS (Milner, 1989), CSP (Hoare, 1985, 1978), and ACP (Bergstra
and Klop, 1984b). As the language χt is based on CSP, the possibility to connect χt
with formal methods available for functional verification was very plausible. In order
to achieve such a connection, first, we needed to determine which formal methods ac-
tually existed. In the TIPSy project, three PhD students were active: Elena Bortnik,
from the Systems Engineering group at the TU/e, Nikola Trčka, from the Formal Meth-
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ods group at the TU/e, and the current author, from the Embedded Systems group at
CWI. We started by investigating the current offer of formal methods. This was done
by taking a case study, a turntable system, and trying to model and verify the system
using different methods, comparing the experiences with these tools along the way.
The majority of the first part of this thesis is a result of this research.

From then on, each of us focussed on different techniques relevant for the project,
but still, we collaborated at times and discussed, together with our supervisors, the
progress of the project at regular intervals. Naturally, the work of one of these students
resulted in the current thesis. The work of the others is briefly described next.

Bortnik further concentrated on translating χt specifications to timed automata us-
able in the model checker UPPAAL. She designed a general translation scheme, proved
its correctness, and applied it in practice. Together with the current author, she inves-
tigated the working of a Clinical Chemical Analyser, a system presented in the second
part of this thesis. She contributed in developing techniques to integrate models and
implementation artifacts. Such a combination is useful for early analysis of an inte-
grated system, enabling the detection and subsequent prevention of problems before
they would actually occur during real integration. Finally, she investigated the pos-
sibility to avoid large state spaces by statically analysing specifications, and, in the
field of supervisory machine control, made some existing techniques available in the χ
toolset to automatically derive a supervisor for a specified system.

Trčka (2007), on the other hand, investigated the possibility to do performance anal-
ysis using formal methods through the usage of so-called Markov Chains. He has
contributed to the field of Markov processes, in order to improve the possibilities for
performance analysis, a practical result of which is the tool ‘Markovian Chi’. Besides
that, he has solved some problems for the functional verification of timed systems, in
particular he has extended the notion of labelled transition system (a way to describe a
state space) to incorporate state labels, discrete time steps, and successful termination.
He has defined a language to generate these state spaces, and has extended the exist-
ing equivalence relation branching bisimulation, which is applicable to untimed state
spaces, to a version which is applicable to state spaces involving a (relative) notion
of time. Finally, he has made a connection between the theory of transition systems
and the theory of Markov processes, by describing the first theory in the setting of the
second, i.e. using matrix theory.

1.3 Model Checking Tools
As mentioned earlier, formal methods are mathematical techniques in order to reason
about the correctness of systems. One way in which formal methods are available
in practice is through a large number of model checking tools. In this section, we
introduce the ones most often referred to in the current work. Besides these, at times
in subsequent chapters, other tools will be mentioned and presented.
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µCRL toolset A toolset, described, for instance, by Blom et al. (2001) and Wouters
(2001), which accepts specifications written in the µCRL modelling language (Groote
and Ponse, 1995). The language, which is based on the process algebra ACP extended
with equational abstract data types (Loeckx et al., 1996), will be described in more
detail in Chapter 2. The main purpose of the toolset is the functional analysis of con-
current systems and communication protocols, by means of simulation, model check-
ing and theorem proving (i.e. proving mathematical theorems by means of a computer
program). Most of these techniques rely on explicit state space generation. The veri-
fication environment of µCRL together with the model checker CADP (to be described
next), which can serve as a back-end to the toolset, have been used to analyse for in-
stance an in-flight data acquisition unit (Fokkink et al., 2002), a distributed system for
lifting trucks (Groote et al., 2003), a sliding-window protocol (Badban et al., 2005), and
a cache-coherence protocol (Pang et al., 2007).

As case studies get bigger, the limits of the available memory and computation power
of a single workstation become apparent. In order to deal with this, most of the tech-
niques in the toolset have been adapted for usage in a distributed setting, i.e. a setting
where several workstations, forming a so-called cluster, perform the analysis together.
Blom and Orzan (2005) developed the distributed state space minimisation techniques,
which can be used to minimise a state space modulo strong or branching bisimulation.
An example of distributed analysis is the automatic detection of strongly connected
components in state spaces, which can be done using a tool created by Orzan and Van
de Pol (2005). Blom et al. (2007) provide an overview of using the distributed tech-
niques of the µCRL toolset for a number of case studies, in a number of application
areas, such as security, scheduling, testing, and game solving. The usefulness of the
toolset for scheduling purposes is one of the subjects of Part II of the thesis.

CADP The Construction and Analysis of Distributed Processes (CADP) toolbox (Gar-
avel et al., 2002), formerly known as the Cæsar Aldébaran Development Package, is
a toolbox for the design of communication protocols and concurrent systems. For this
toolbox, specifications may be written in either LOTOS (Bolognesi and Brinksma, 1987),
finite state machines, or µCRL. It includes several equivalence checking tools for the
comparison and minimisation of state spaces modulo bisimulation relations. Besides
that, it is, for example, possible to check properties of a system, either on-the-fly or
not, perform symbolic verification, and compositionally minimise a state space. It also
incorporates distributed analysis techniques (Garavel et al., 2006). Finally, some addi-
tional functionalities are provided, such as visual checking and performance analysis.

SPIN SPIN (Holzmann, 1997, 2004) is a model checker developed in the USA. Its in-
put language for the specification of systems is called PROMELA, which is derived from
the C programming language (Kernighan and Ritchie, 1988), also using the commu-
nication primitives of CSP (Hoare, 1985), and control flow statements based on the
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guarded command language (Dijkstra, 1976). With SPIN, it is possible to do simula-
tion and (on-the-fly) model checking. Most of the model checking is done in a (bounded)
depth-first manner, either exhaustively or using an efficient approximation method.
Some basic data types are supported by the tool.

UPPAAL UPPAAL (Behrmann et al., 2004; Larsen et al., 1997) is a model checker us-
ing real-valued clocks for the validation and verification of real-time systems, modelled
as networks of timed automata. These automata are presented graphically by means of
a well-developed and documented graphical user interface. The tool supports a number
of basic data types. Its name is derived from the two sites where the tool is constructed,
namely the Uppsala University in Sweden and the Aalborg University in Denmark. All
the available techniques are focussed on symbolic model checking, i.e. they deal with
symbolic states, which are regions of states in a state space. In other words, the indi-
vidual states are not dealt with explicitly. It is possible to do both random and directed
simulation, and on-the-fly verification. While generating a state space, UPPAAL has
several techniques to perform abstraction and symmetry reduction. More recently, a
spin-off tool, called UPPAAL CORA, has been developed (Behrmann et al., 2005), which
incorporates specific techniques to deal with scheduling problems.

1.4 Contributions and Structure of the Thesis
How the majority of the work in this thesis relates to the basic concept of model check-
ing described earlier, can best be described by returning to our interactive novel. Let
us consider the metaphor in a new way in order to explain this relation. Say that, for a
change, we are interested in some desired behaviour of the system concerning the mur-
der mystery, for instance “the murderer is caught”.2 On top of wishing to know whether
this happens at all in the novel, we wish to find a trace, i.e. a storyline running from
the first page to the murderer being caught, which takes the smallest amount of time
to read. If we consider a reader who reads at a constant speed, then we can roughly
express the time needed to read a storyline as the number of lines in the storyline. The
question “what to do next?” in the example given earlier now literally refers to a point
in the future. The inclusion of time in state spaces raises a number of issues for model
checking; for instance, how can state spaces involving time be described elegantly by
means of a modelling language? And can these state spaces still be described using
an untimed language? Part I of the thesis deals with the relation between timed and
untimed modelling languages, and the possibilities and impossibilities of expressing
timed behaviour using an untimed modelling language. In particular, we provide a

2In model checking, this is usually described by stating that “it never happens that the murderer is caught”;
if the reader produces a counter-example to this statement, then we know that somewhere in the novel,
the murderer is actually caught.
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general translation scheme from χt to µCRL, by which it is possible to verify χt spec-
ifications with the techniques available for µCRL. By doing so, we provide a bridge
between performance and functional analysis, since χt is mainly used for the former
kind of analysis, and µCRL for the latter kind. Furthermore, the work provides in-
sight into the conceptual differences and similarities of timed and untimed modelling
languages. Following, we show how the verification of χt specifications can be done in
this manner in practice. Finally, the research led to µCRLtick, an extension of µCRL
with a notion of time, which can actually be mapped back to the standard µCRL. This
allows the specification of timed systems in an untimed setting, the benefit of which is
that the methods and tools available for untimed µCRL specifications can be reused for
specifications involving time. The approach builds on earlier proposals to model time
with an untimed process algebra. The contributions are that in the µCRLtick approach
the emphasis is put on ease of use for the modeller, meaning that the modeller does not
need to be concerned about the correctness of the time mechanism in a specification,
and the incorporation of time jumps of arbitrary size. The verification of timing prop-
erties is achieved by extending Linear Temporal Logic (LTL) with timing constraints
(subsequently translated into deterministic finite automata) and applying a verifica-
tion approach previously proposed by Ioustinova (2004). The main contribution of the
work is that it provides more insight into an approach not often explored in the field of
timed process algebras, in which it is investigated in how far timed behaviour can be
expressed using an untimed modelling language.

Returning to the novel, another issue raised when incorporating (reading) time is
that this time must now be taken into account when searching the novel; a search
method needs to keep track of the number of lines of all the different storylines. In
order to do this, sometimes a search might need to go through some parts of the novel
multiple times, since they are shared by several storylines, whereas if we are not in-
terested in the number of lines of all the storylines, we can avoid rereading altogether.

The kind of searching described here can be related to searching for an optimal solu-
tion for a given scheduling problem. If we consider some industrial production process,
then it might be an interesting question how the process can produce as many products
as possible in a given time interval, or how it can produce a fixed amount of products
as fast as possible. In the latter case, the desired situation is “all the necessary prod-
ucts are produced”, and the search tries to find this situation, such that the trace in
the state space leading to this situation is as short (time-wise) as possible. The ac-
tual solution is then represented by this trace, which describes the actions to take by
the process. In the second part of this thesis, we first describe a range of ways to
search a state space, also considering searches where additional information is fed to
the search beforehand, such that it may go to the more interesting areas first, or even
altogether ignore the non-promising areas. Our contribution to the field here, is that
we give a uniform presentation, which emphasises the connections between different
existing searches, thereby highlighting a framework in which individual searches can
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1.4 Contributions and Structure of the Thesis

be placed. Along the way, we add more and more features to a basic best-first search,
ending up with a search algorithm which covers the most prominent searches in the
field. We propose a further generalisation, in which a search may consist of a number
of so-called phases, which introduces compositionality of best-first searches. Next, we
describe a setting in which transitions play a central role in directing a search, as op-
posed to states. The overview of the field is concluded by presenting a glossary with
terms related to Directed Model Checking.

Following, we narrow our viewpoint slightly to those searches useful for schedul-
ing with model checkers. We discuss how to model scheduling problems in µCRL,
PROMELA, and priced timed automata, consider techniques to solve scheduling prob-
lems available in the model checkers SPIN and UPPAAL CORA (sometimes extending
them in order to improve efficiency or quality of the solution), and propose additional
techniques to solve scheduling problems, which we have implemented in the µCRL
toolset. After that, we narrow our viewpoint one more time, and focus on one particu-
lar search useful for scheduling, called beam search, which restricts the search to those
areas in a state space which are estimated to be the most interesting, considering the
target of the search. This is done by means of a heuristic function, provided by the
user. Originally, beam search stems from the field of Artificial Intelligence, where it
is typically applied on search trees. We propose a number of extensions of the search,
making it effective when applied on arbitrary state spaces. These extensions yield a
spectrum of beam searches, instances of which turn out to be comparable with other
prominent search algorithms. To be able to compare searches, we establish a mech-
anism to do so; searches can be identified by means of a guiding signature, and two
guiding signatures may be compared using some equivalence notion. We propose two
such equivalence notions, namely strong and weak guiding equivalence.

Next, we explain how both these beam search extensions and another exhaustive
search for scheduling can be moved to a distributed setting, allowing these searches to
be performed by a cluster of computers. Finally, we present several case studies, one of
which is a Clinical Chemical Analyser, which we used to analyse the proposed searches
in practice. One could say that Part II provides possible answers for someone wishing
to explore a state space and asking “what to do next?”.

A major problem in model checking is the so-called state space explosion problem,
meaning that a linear growth of the number of processes placed in parallel in a spec-
ification leads to an exponential growth of the resulting state space. Adding time to
a specification makes this problem even more difficult, often leading to infinite state
spaces, such as when an action is allowed to happen at any time. It stands to reason,
therefore, that dealing with the state space explosion problem in a timed setting is one
of the main concerns in the first and second part of the thesis.

Another new way to consider the metaphor, is by looking at the book as a whole.
At this ‘higher’ viewpoint, we may check whether two books are equal or not, meaning
that they contain exactly the same set of possible storylines. We can read the two books
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from the beginning, relating the first page of one book with the first page of the other,
and continue reading the two books at the same time, always opening them at pages
which we identify as being ‘related’. If we never encounter a situation in one book
which is not also present in the other, then we conclude that the two books are ‘equal’.

In model checking, state spaces can be compared using a range of relations, which
are often a kind of bisimilarity. In practice, these relations are usually used to min-
imise a state space to a smaller, but equivalent, one, making the system behaviour
easier to check. It shows in the literature that when including a notion of time in a
state space, as described earlier in this section, constructing useful timed relations to
reason about these state spaces, and, moreover, prove these relations to be correctly de-
fined, is a very complex matter. This is the focus of the third part of this thesis, where
we look at the properties of timed branching bisimilarity. We consider this relation
in an absolute, continuous time setting, and show that the existing definition needs
to be extended. Then we prove that the extended notion is an equivalence, i.e. that it
is reflexive (a timed process is timed branching bisimilar to itself), that it is symmet-
ric (if a timed process p is timed branching bisimilar to a timed process q, then q is
also timed branching bisimilar to p), and that it is transitive (if p is timed branching
bisimilar to q, and q is timed branching bisimilar to a timed process r, then p is also
timed branching bisimilar to r). After that, we prove that a so-called rooted version of
timed branching bisimilarity is a congruence over a process algebra with parallelism,
successful termination, and deadlock, meaning that if p and q, expressed in this pro-
cess algebra, are rooted timed branching bisimilar, then the results of any possible
algebraic operation according to this algebra on these timed processes are also rooted
timed branching bisimilar, i.e. f (p) and f (q) are also rooted timed branching bisimilar
if f is a possible algebraic operation of the process algebra.

1.5 How to Read the Thesis
The thesis can be read in a number of ways. First of all, Chapter 2 presents the basic
notions of the work, ordered by the way in which an average modeller uses them in
model checking. When a modeller wishes to verify a system, he or she first creates a
specification using a modelling language, after which a state space is derived from the
specification (possibly in a distributed setting, in case the state space is very large),
and finally, properties to be checked can be expressed using a temporal logic.

After that, the three parts of the thesis deal with the inclusion of time (and/or cost)
into this basic model checking approach. Each part can mostly be read independently
from the others; the reader can choose which steps of the model checking approach
to focus on. The first part mostly deals with modelling and verifying timed systems,
the second part deals with searching (and therefore, indirectly, generating and model
checking) a state space including a notion of cost (which may, if appropriate, be seen as
a notion of time). Finally, the third part focuses on comparing timed state spaces.
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1.5 How to Read the Thesis

As a final guideline, we describe how the thesis can be read as a reachability problem
using a µCRL specification M. In M, D = {B}, F = {∨,∧}, A = {samenvatting, summary,
prelim, partI, partII, partIII, finished}, C=;, P= {Reading}, with Reading as displayed
in Figure 1.1, and finally, either I = Reading(F, F) or I = Reading(F, T), depending on
the level of expertise of the reader. In the state space resulting from M, the goal is to
reach the action finished. For the reader to be able to read this ‘map’, he or she may be
forced to read Chapter 2 first, which is anyway advised. Depending on the willingness
to spend energy into reading, the reader can choose a path towards finished.

Reading(ReadTheSummary : B, HaveBasicKnowledge : B) =
samenvatting·Reading(T, HaveBasicKnowledge) / “Ik prefereer Nederlands”. δ+
summary·Reading(T, HaveBasicKnowledge) / “I wish to (re)read the summary”. δ+
prelim·Reading(ReadTheSummary, T) / “I wish to (obtain ∨ refresh my) basic knowledge”. δ+
partI·Reading(ReadTheSummary, HaveBasicKnowledge)

/ “I want to read about modelling and verifying timed systems” ∧ HaveBasicKnowledge. δ+
partII·Reading(ReadTheSummary, HaveBasicKnowledge)

/ “I want to read about best-first state space searches” ∧ HaveBasicKnowledge. δ+
partIII·Reading(ReadTheSummary, HaveBasicKnowledge)

/ “I want to read about comparing timed state spaces” ∧ HaveBasicKnowledge . δ+
finished·Reading(ReadTheSummary, HaveBasicKnowledge)/ReadTheSummary . δ

Figure 1.1: How to read the thesis
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Chapter 2

Preliminaries
They always say that time changes
things, but you actually have to change
them yourself.

(Andy Warhol)

2.1 The Modelling Language µCRL

T
HE LANGUAGE µCRL IS BASED on the process algebra ACP (Bergstra and
Klop, 1984b), extended with equational abstract data types (Loeckx et al.,
1996). It comes with a toolset (Blom et al., 2001) that can build a state
space from a specification and store it in the .aut format, one of the input

formats of the model checker CADP (Garavel et al., 2002). Next to that, in order to
strive for precision in proofs, an important research area is to use theorem provers
such as PVS (Owre et al., 1992) to help in finding and checking derivations in µCRL. A
large number of distributed systems have been verified in µCRL, often with the help of
a proof checker or theorem prover (e.g. Badban et al., 2005; Groote et al., 1998).

We will give an overview of the language, including most of its axioms and transition
rules, necessary for understanding this thesis. Groote and Ponse (1995), Groote and
Reniers (2001), and Wouters (2001) provide more elaborate explanations. For example,
the abstraction operator is omitted in the current description, since it is not used in
any subsequent chapter. An introduction to process algebra is provided by e.g. Fokkink
(2000b).

Definition 1 (µCRL specification). We define a µCRL specification M as a sextuple
(D,F,A,C,P, I), where

• D is the set of data domains used;

• F is the set of functions defined over the data domains in D;

• A is the set of actions used;

13



Chapter 2 Preliminaries

• C is the set of communication rules for the actions;

• P is the set of recursive equations in the specification;

• I is the initialisation line, combining and initialising the processes.

Following is a more detailed description of each element in the sextuple.

Data domains and functions In order to intertwine processes with data, actions
and recursion variables can be parameterised with data types. Each specification
should start by defining the necessary data types and the functions that work on them.
For this purpose, µCRL incorporates the usage of equational abstract data types. An
equational abstract data type contains the following:

1. A declaration list, starting with the keyword func, of constructors. A constructor
of a data type is a function with this data type as the target domain. Together,
the constructors define the structure of the data type.

2. A declaration list of additional functions (started by the keyword map), which
are not constructors. Their definitions are given by means of a finite number of
variables and equations, in the following lists.

3. A declaration list of variables, indicated by the keyword var, used in the defini-
tions in the next list.

4. A list of equations, with the keyword rew, defining the constants and functions.

In fact, it is mandatory to define the boolean data type in each specification, since the
conditional construct, which is one of the µCRL operators, works with boolean expres-
sions. Let us look informally at the definition of the boolean data type B with functions
‘=’ (equality) and ‘∧’ (conjunction). We follow the general description of an equational
abstract data type, and start the definition of the data type with the keyword sort:

sort B

func T, F :→ B (T is true and F is false)
map =,∧ : B×B→ B

var b : B
rew b = b , T

T = F , F
F = T , F
T ∧ b , b
F ∧ b , F

One can virtually define any data type as an equational abstract data type. For
more on equational abstract data types, see e.g. the work of Loeckx et al. (1996). In
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this thesis, we assume the presence of the domains of the booleans (B) and the natu-
ral numbers (N), and definitions of the most common functions, such as disjunction,
conjunction, and negation (for the booleans) and addition and multiplication (for the
natural numbers). In other words, for a specification M, B,N ∈ D, and, for example,
∧,∨ : B ×B→ B,¬ : B→ B,+,× :N ×N→N ∈ F. Furthermore, it is mandatory that
equality is defined for each data type, since data elements must be comparable when
synchronising actions. Finally, a variable d of type D is written as d : D.

Actions In µCRL one can declare actions. These actions may have zero, one or sev-
eral data parameters. We denote actions a, b, etc. appearing in a specification M as
being elements of A. Each atomic action a(e), with a : Da and e ∈ Da, can execute
itself, leading to successful termination (we note that actually typeDa may be a Carte-
sian product of data types). This is denoted as a(e) a(e)−→ p

. Only in the state
p

can
successful termination occur, which is expressed as

p ↓.1 Finally, the process deadlock
(δ), which cannot execute itself, nor terminate successfully, and the internal action τ

are predefined, with τ,δ ∉ A and τ
τ−→p

.

Communication rules It is possible to define communication rules for actions. For
instance, for a, b, c ∈ A, one can define the rule a | b = c, meaning that a and b can
synchronise with each other, forming action c. For every rule a | b = c, we have (a, b, c) ∈
C. Communication can only take place, if the data parameters of a and b have the same
types and values. Communication in µCRL is commutative, i.e. the order of a and b in
the rules of C does not matter. In other words, (a, b, c) ∈ C iff (b, a, c) ∈ C. Furthermore,
communication in µCRL is associative, meaning that (a | b) | c = a | (b | c). We return
to these communication rules when describing parallel composition.

Recursive specifications The set P, called recursive specification, is a finite set of
so-called recursive equations, describing the behaviour of a system. Before explaining
these notions, we first describe the notion process term.

Process terms can be created by combining actions from A and a given set of oper-
ators. We call the domain of process terms P. Next, we will give a description of the
operators used.

Operators There are four basic operators for creating process terms in µCRL.

1. The alternative composition operator (+). A process term P + Q proceeds (non-
deterministically) as P or Q (if they can proceed). Differentiating the cases that
P or Q successfully terminates or not, this operator gives rise to four transition
rules:

1An alternative approach present in the literature is the usage of a basic constant for successful termination
ε. For this, see e.g. Baeten and Reniers (2000) and Baeten (2003).
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P a(e)−→ P ′

P + Q a(e)−→ P ′

P a(e)−→p

P + Q a(e)−→p

Q a(e)−→ Q′

P + Q a(e)−→ Q′

Q a(e)−→p

P + Q a(e)−→p

2. The sum operator (
∑

d:D X (d)), with X (d) a mapping from domain D ∈ D to pro-
cess terms, behaves as X (d1)+ X (d2)+ . . ., with d1, d2, . . . ∈D, i.e. as the possibly
infinite choice between X (d) for any data term d taken from D. This operator is
mostly used to describe a process that is reading some input over a data type. See
the work of Luttik (2002) for a formal treatment of the sum operator (also known
as choice quantification). It is difficult to reason about the sum operator, since
it acts as a binder just like the lambda in the lambda calculus (e.g. Barendregt
(1984)). In order to avoid having to deal with all the technicalities of substitu-
tions, we say here that the variable X can be instantiated with functions from D

to P, an approach also used by Groote and Reniers (2001). The transition rules
of the sum operator can then be stated as follows:

X d a(e)−→ P ′∑
d:D X a(e)−→ P ′

X d a(e)−→p
∑

d:D X a(e)−→p

3. The sequential composition operator (·). A process term P·Q proceeds as P, which
upon successful termination is followed by Q. These are its transition rules:

P a(e)−→ P ′

P·Q a(e)−→ P ′·Q
P a(e)−→p

P·Q a(e)−→ Q

4. The process term P / b .Q where P, Q ∈ P, and b : B, behaves as P if b is equal
to T (true) and behaves as Q if b is equal to F (false). This operator is called the
conditional operator. This gives rise to the following transition rules:

P a(e)−→ P ′ b = T

P / b .Q a(e)−→ P ′

P a(e)−→p
b = T

P / b .Q a(e)−→p

Q a(e)−→ Q′ b = F

P / b .Q a(e)−→ Q′

Q a(e)−→p
b = F

P / b .Q a(e)−→p
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Returning to the notions of recursive specification and recursive equation, process
terms can be used in these, to describe system behaviour. A recursive specification is
defined as follows:

Definition 2 (Recursive specification). A recursive specification is a finite set of
recursive equations

X1(x1 : D1) = t1(X1(d1), . . . , Xn(dn))
...

Xn(xn : Dn) = tn(X1(d1), . . . , Xn(dn))

where Di ∈ D are data type names, the X i are recursion variables, the xi : Di are vari-
ables, not clashing with a function name of arity zero, nor with a parameter-less recur-
sive equation, or action name. Moreover, the ti(X1(d1), . . . , Xn(dn)) are µCRL process
terms with possible occurrences of the recursion variables X1, . . . , Xn. Finally, data term
di ∈ Di may contain occurrences of variable xi.

We note that actually types Di may be Cartesian products of data types. A more
restricted form of recursive specification is the guarded recursive specification. It is
defined as follows:

Definition 3 (Guarded recursive specification). A recursive specification

X1(x1 : D1) = t1(X1(d1), . . . , Xn(dn))
...

Xn(xn : Dn) = tn(X1(d1), . . . , Xn(dn))

is guarded if the ti(X1(d1), . . . , Xn(dn)) can be represented in the form∑
ak(dak )·t′k(X1(d1), . . . , Xn(dn)) + ∑

bm(dbm )

with the ak(dak ) ∈ A ∪ {τ}, the bm(dbm ) ∈ A ∪ {τ}, and the t′i(X1(d1), . . . , Xn(dn)) being
µCRL process terms with possible occurrences of the recursion variables X1, . . . , Xn, by
application of the axioms of µCRL (Table 2.1), and replacing recursion variables by the
right-hand sides of their recursive equations. Whenever k = m = 0, the sum represents
δ.

We note that typesDi,Dak ,Dbm may be Cartesian products of data types. From this
point on, when we refer to a process, we often mean a (guarded) recursive equation.
Processes in P can be viewed as components in a µCRL specification. Furthermore, we
define enA(P), with enA :P→ 2A, to be the set of enabled actions of the process term P.
It is defined as follows: enA(P) = {a(e) | a :Da ∈ A∧ e ∈Da ∧∃P ′.P a(e)−→ P ′}. A transition
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is a triple (P, a(e), P ′), which means that from process term P an enabled action a(e)
can be fired, leading to a process term P ′, i.e. P a(e)−→ P ′. The set of transitions of P is
referred to as enM(P). Of course, enM(δ) = ;.

Initialisation line I defines the initial state of a µCRL specification. It is often of
the following form:

∂H(X0(d0) || . . . || Xm(dm))

Here X0, . . . , Xm ∈ P and ∀0 ≤ j ≤ m.X j :D j ∧ d j ∈D j. Note that if m = 0, there is only
a single process initialised. The following operators are used here:

1. The parallel composition operator (||). A process term P || Q executes the actions
of P and Q concurrently in an interleaved fashion. Furthermore, for all actions
a, b, c, such that (a, b, c) ∈ C, if one process can execute a and the other one can
execute b, then P and Q can synchronise (i.e. P || Q executes the communication
action c). These are the transition rules:

P a(e)−→ P ′

P || Q a(e)−→ P ′ || Q

P a(e)−→p

P || Q a(e)−→ Q

Q a(e)−→ Q′

P || Q a(e)−→ P || Q′

Q a(e)−→p

P || Q a(e)−→ P

P a(e1)−→ P ′ Q b(e2)−→ Q′ (a, b, c) ∈ C e1 = e2

P || Q c(e1)−→ P ′ || Q′

P a(e1)−→ p
Q b(e2)−→ Q′ (a, b, c) ∈ C e1 = e2

P || Q c(e1)−→ Q′

P a(e1)−→ P ′ Q b(e2)−→ p
(a, b, c) ∈ C e1 = e2

P || Q c(e1)−→ P ′

P a(e1)−→ p
Q b(e2)−→ p

(a, b, c) ∈ C e1 = e2

P || Q c(e1)−→ p

2. The encapsulation operator (∂H). In ∂H(P) all actions of P that occur in the set
H ⊆A are disabled. Typically this operator is used to enforce that certain actions
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synchronise. We have enA(∂H(P)) = enA(P) \ H, i.e. the transition rules are:

P a(e)−→ P ′ a 6∈ H

∂H(P) a(e)−→ ∂H(P ′)

P a(e)−→p
a 6∈ H

∂H(P) a(e)−→p

3. The renaming operator (ρ f ), with f : A → A, is suited for reusing a given spec-
ification with different action names. The subscript f signifies that each action
a must be renamed to f (a). The behaviour of process term ρ f (P) is obtained by
renaming all actions a which are enabled in P to f (a). The transition rules are
as follows:

P a(e)−→ P ′

ρ f (P)
f (a)(e)−→ ρ f (P ′)

P a(e)−→p

ρ f (P)
f (a)(e)−→ p

While not a requirement in theory, in practice, a µCRL specification should not con-
tain any unguarded recursive equations, nor should any of the recursive equations in
a µCRL specification (syntactically) contain successful termination. This is because a
recursive specification can only be transformed by the µCRL toolset to a so-called lin-
ear process equation (LPE) (Bezem and Groote, 1994) if this requirement is met. The
LPE form lies at the heart of the µCRL toolset; an LPE can be subjected to a range of
analyses, such as state space generation and static analysis.

Linear process equations As mentioned already, P consists of a finite set of re-
cursive equations. It can be seen as the heart of M, since it declares the behaviour
of the specified system. Given that a recursive equation in P is guarded, and does
not (syntactically) contain successful termination, it can be transformed into an LPE.
The transformation itself is entirely a topic on its own, and therefore not covered here.
Notably Usenko (2002a) has described it. In essence, an LPE is a vector of data pa-
rameters, together with a list of summands consisting of a condition, action and effect
triple, describing when an action may happen and what its effect is on the vector of
data parameters. Its form is given in Definition 4.

Definition 4 (Linear process equation2). A linear process equation is a guarded
recursive equation of the following form:

X (d : D) = ∑
i∈I

∑
e i∈Di

ai( f i(d, e i))·X i(g i(d, e i)) / hi(d, e i). δ

2In Section 3.4.1, the definition of LPE will be extended to incorporate successful termination. LPEs with
successful termination can be used to express fragments of recursive equations.
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where I is a finite index set, D,Di,Dai ∈ D, ai ∈ A ∪ {τ}, ai : Dai , f i : D ×Di → Dai ,
g i : D×Di → D and hi : D×Di → B.

Here, the different states of the process, described by the LPE, are represented by the
data parameter d : D. Types D and Di may be Cartesian products of data types. The
data parameter e i can influence the parameter of action ai, the condition hi and the
resulting state g i. Parameter e i is typically used to let a read action range over a data
domain (i.e. choice quantification). In the future, when writing IP , we refer to the index
set of process P.

Returning to the notion of the set of enabled actions of a process term P (i.e. enA(P)),
note that from a recursive equation X (d) and a value d0 ∈ D, we can derive the set of
enabled actions enA(X (d0)) by the fact that an action ai is in this set iff there exists
e i ∈ Di, such that hi(d0, e i).

The behaviour of processes can be compared by means of some form of bisimilarity.
The basic notion is called strong bisimulation. It is defined in Definition 5.

Definition 5 (Strong bisimulation). A binary relation R ⊆ P ×P is a strong bisim-
ulation if p R q implies:

• if p a(e)−→ p′ then q a(e)−→ q′ with p′ R q′;

• if q a(e)−→ q′ then p a(e)−→ p′ with p′ R q′;

• if p ↓ then q ↓;

• if q ↓ then p ↓.

Two processes p and q are strong bisimilar, denoted by p ↔ q, if there is a strong
bisimulation relation R such that p R q.

Next, we provide all the axioms of µCRL, minus the ones for the abstraction oper-
ator, in Table 2.1. Groote and Reniers (2001) originally presented these axioms, and
provided a full explanation of them. Axioms A1 to A5 are the basic axioms, A6 and A7
are the axioms for deadlock, and B1 and B2 concern the internal action τ. The axioms
for conditionals are C1 and C2. In order to elegantly describe the axioms for the sum
operator, we say that the variables x, y and z may be instantiated with process terms,
and X and Y can be instantiated with functions from some data type to P. The sum
operator

∑
expects a function from a data type to P, and

∑
d:D expects a process term.

It should be noted that when substituting, no variable may become bound by any of the
sum operators. In order to formulate the axioms concerning the parallel composition
operator, the left merge operator (bb) is used. It behaves exactly as the parallel compo-
sition operator, except that the first action to be executed must come from the left hand
side. The core axiom for parallel composition is CM1, which states that a process term
x || y either executes an action coming from x, an action coming from y, or an action
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resulting from a synchronisation of actions in x and y. The axioms of µCRL are sound
modulo strong bisimilarity.

Table 2.1: The axioms of µCRL without abstraction
x + y = y + x A1 x + (y + z) = (x + y) + z A2

x + x = x A3 (x + y)·z = x·z + y·z A4

(x·y)·z = x·(y·z) A5 x + δ = x A6

δ·x = δ A7 c·τ = c B1

x·(τ·(y + z) + y) = x·(y + z) B2 x / T. y = x C1

x / F . y = y C2
∑

d:D x = x SUM1∑
X = ∑

X + X d SUM3
∑

d:D(X d + Y d) = ∑
X + ∑

Y SUM4

(
∑

X )·x = ∑
d:D(X d·x) SUM5 (∀d :D(X d = Y d)) =⇒ ∑

X = ∑
Y SUM11

∂H (δ) = δ DD ∂H (a(d)) = a(d) if a 6∈ H D1

∂H (a(d)) = δ if a ∈ H D2 ∂H (x + y) = ∂H (x) + ∂H (y) D3

∂H (x·y) = ∂H (x)·∂H (y) D4 ∂H (
∑

X ) = ∑
d:D ∂H (X d) SUM8

∂H (τ) = τ DT ρ f (δ) = δ RD

ρ f (τ) = τ RT ρ f (a(d)) = f (a)(d) R1

ρ f (x + y) = ρ f (x) + ρ f (y) R3 ρ f (x·y) = ρ f (x)·ρ f (y) R4

ρ f (
∑

X ) = ∑
d:D ρ f (X d) SUM10 x || y = x bb y + y bb x + x | y CM1

c bb x = c·x CM2 c·x bb y = c·(x || y) CM3

(x + y) bb z = x bb z + y bb z CM4 (
∑

X ) bb x = ∑
d:D(X d bb x) SUM6

a(d) | a′(e) = C(a, a′)(d) / d = e . δ if C(a, a′) defined CF

δ otherwise
δ | c = δ CD1 c | δ = δ CD2

τ | c = δ CT1 c | τ = δ CT2

c·x | c′ = (c | c′)·x CM5 c | c′·x = (c | c′)·x CM6

c·x | c′·y = (c | c′)·(x || y) CM7 (x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9 (
∑

X ) | x = ∑
d:D(X d | x) SUM7

x | (
∑

X ) = ∑
d:D(x | X d) SUM7’

Finally, we show a small example of a µCRL specification, together with a corre-
sponding linearised version. Let us consider a system, where a sender process repeat-
edly wishes to send a boolean value to a receiver process. The value of the boolean
depends on the value of a counter maintained by the sender process. We define a spec-
ification M with D = {N,B}, ≥:N×N→B,=:B×B→B ∈ F, A = {sa :B, ra :B, ca :B},
and (sa,ra,ca) ∈C. Furthermore, P consists of the sender process Send and the receiver
process Recv presented in Figure 2.1. The sender process contains non-determinism,
since both sa(F) and sa(T) are enabled whenever i ≥ 2. In the receiver process, the enu-
meration over the boolean data type allows the synchronisation with both sa(T) and
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sa(F). A possible instantiation is the following: I = ∂{sa,ra}(Send(2) || Recv).

Send(i :N) = sa(F)·Send(i + 1) / i ≥ 1 . δ+
sa(T)·Send(i − 1) / i ≥ 2 . δ

Recv = ∑
b:B

ra(b)·Recv

Figure 2.1: A small µCRL example of two processes

Next, we show this specification in a linearised form. In such a form, P consists of
a single LPE and parallelism is completely removed from I. Let us call the linearised
specification M′ = (D′, F′, A′, C′, P′, I′). First of all, we have D′ = D, F′ = F, A′ = {ca},
and C′ = ;. The only process in P is the LPE X , displayed in Figure 2.2. In this
case, the linearised form follows directly from M, due to the simplicity of the process
Recv. When dealing with more complex processes, usually the removal of parallelism
involves dealing with all possible interleavings of actions. Finally, the initialisation
I′ = X (2).

X (i :N) = ca(F)·X (i + 1) / i ≥ 1. δ+
ca(T)·X (i − 1) / i ≥ 2. δ

Figure 2.2: A small µCRL example of an LPE

2.2 State Space Generation
Definition 6 (State space). A state space or labelled transition system (LTS) is a
quadruple M = (S , A , T , I ), where S is a set of states, often not fully known a priori,
I ⊆ S is a set of initial states, A is a finite set of action labels and T ⊆ S × A × S

is the transition relation. A transition (s, `, s′) ∈ T , denoted s `−→ s′, indicates that the
system can move from state s to s′ by performing action `. Here, s′ is referred to as a
successor state of s.

In the rest of the thesis, unless explicitly stated, we consider finite state spaces, i.e.
state spaces with finite sets of states and transitions.
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A state s′ is called reachable from state s iff s →∗ s′, where →∗ is the reflexive transi-
tive closure of `−→ for any ` ∈ A . When checking a reachability property, one searches
for an s ∈ G , where G ⊆ S is a given set of goal states, such that there exists an s′ ∈ I

for which s′ →∗ s.
The set of enabled transitions in state s of state space M is defined as enM (s) =

{t ∈ T | ∃s′ ∈ S , ` ∈ A . t = s `−→ s′}. For T ⊆ T , we define nxtM (s, T) = {s′ ∈ S | ∃` ∈
A . s `−→ s′ ∈ T}. Therefore, nxtM (s,enM (s)) is the set of successor states of s. Whenever
enM (s) = ;, we call s a deadlock state. We refer to the set of deadlock states as B = {s |
enM (s) = ;}. Finally, in the state space setting, parameters of an action are considered
to be included in its action label `. However, whenever we compare action labels, for
instance ` = a, we ignore the parameters. We are aware of this discrepancy, but trying
to avoid it would lead to unnecessary complications.

A state space generation algorithm is normally provided with a given specification
(e.g. M in LPE form) as input, and produces the state space that is described by that
specification as output. For the sake of presentation, let us say that for all a ∈ A,
a : DA (such a data type can be created as a Cartesian product of all the data types
of actions in A). The relation between a specification M and a state space M can be
expressed by means of the functions mapp : P→ S and mapa : A ×DA → A , where
mapp is a mapping of µCRL process terms to states, and mapa is a mapping of µCRL
actions plus data elements ofDA to action labels. The definitions of these mappings are
established on-the-fly, while generating the state space. Initially, mapp(I) ∈ I . Then,
for all process terms P such that I

a(e)−→ P, we define mapp(P) ∈ S , mapa(a, e) ∈ A , and
(mapp(I), mapa(a, e), mapp(P)) ∈ T . In this manner, we continue to create S , A , and
T by means of M.

There are many different ways to generate a state space. In this section, we describe
the two most basic ones, namely breadth-first and depth-first state space generation.
The breadth-first state space generation (BFS) algorithm is described by Algorithm 1.
There, each level i of the state space is represented by Li ⊆ S . In Part II of this
thesis, other state space generation algorithms are presented and proposed, by which
it is demonstrated how this basic algorithm can be optimised or accelerated for specific
applications.

Whenever, during generation, a state is encountered for the first time, we say that
the state has been visited. The activity of visiting the successor states of a visited state
s is usually referred to as exploring or expanding state s. Notice that after generation of
the successor states, which are placed in the set Li+1, some states are removed again,
namely those which have been encountered before, and therefore are also present in
the union of the previous levels, i.e.

⋃i−1
j=0 L j. This check is referred to as duplicate

detection. It is an important step in state space search, since it guarantees termina-
tion of state space search when generating finite state spaces, also when they contain
cycles. Furthermore, in Chapter 6, this particular step is extended at times to avoid
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unnecessary exploration in smarter ways.
A round i of the algorithm corresponds to a logical level in the state space, which

is processed in the ith iteration of a state space generation algorithm. It typically
produces Li. In Algorithm 1, a round corresponds with one traversal through the
while-loop.

Algorithm 1 Breadth-first state space generation
Require: M = (S , A , T , I )
Ensure: true

i ← 0
Li ← I

while Li 6= ; do
Li+1 ← ;
for all s ∈ Li do

Li+1 ← Li+1 ∪ nxtM (s, enM (s))
end for
i ← i + 1
Li ← Li \

⋃i−1
j=0 L j

end while
return true

Contrary to breadth-first state space generation, depth-first state space generation
is not supported by the µCRL toolset. However, it is a prominent algorithm present in
other model checkers, such as SPIN and UPPAAL, and we return to it several times in
this thesis. Therefore, we describe it in this chapter.

In depth-first state space generation, an individual trace is followed to the end, after
which the algorithm backtracks, in order to generate another trace. This may continue
until the complete state space is generated. Compared to breadth-first state space gen-
eration, it reaches deeper into the state space much faster. If a state space contains
cycle-less traces of infinite length, the generation might get trapped into these traces,
since the end can never be reached. However, such traces also cause best-first state
space generation to go on forever. A common way to ensure that depth-first state space
generation terminates is to use a depth upper-bound D; whenever the algorithm has
reached this depth, it will backtrack, independent of whether the current trace con-
tinues beyond that depth, or not. Algorithms 2 and 3 describe depth-first state space
generation recursively, in a set-based way. They do not include the upper-bound D, as
this can already be seen as an extension of the most basic version of the algorithms.
In Algorithm 2, the set L̂i is used to contain a subset of level Li, consisting of states
selected for exploration. The exploration of L̂i is then performed by calling the func-
tion dfs, which is described in Algorithm 3. It explores all the states in the given set
of states, places the successor states in Li+1, and repeats the procedure of Algorithm 2
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on Li+1, namely it selects a subset L̂i+1 for exploration, and calls the function dfs. In
this manner, the generation continues until dfs is called with an empty set of states to
explore, or it finds no successor states. Whenever this happens, the generation back-
tracks to a point where there are still visited states to explore, and it continues the
generation. Note that unlike in best-first state space generation, the value of i can
also decrease during a depth-first state space generation. This reflects the fact that a
breadth-first state space generation goes deeper and deeper into a state space, without
backtracking, but a depth-first state space generation backtracks every now and then.
Finally, in case L̂i and L̂i+1 are always singleton sets, Algorithms 2 and 3 describe
so-called explicit-state depth-first state space generation. The set Closed is used for
duplicate-detection.

Algorithm 2 Depth-first state space generation
Require: M = (S , A , T , I )
Ensure: true

Closed ← ;
L0 ← I

while L0 6= ; do
select L̂0 ⊆ L0
L0 ← L0 \ L̂0
Closed ← Closed ∪ L̂0
Closed ← dfs(L̂0, Closed)

end while
return true

Both breadth-first and depth-first state space generation are considered to be blind
or uninformed searches, as there is no additional knowledge concerning the specified
problem accessed in order to guide the search in a smart way. In Part II of this thesis,
we focus on other searches, which are not blind. Even though the descriptions of the
algorithms in Chapter 6 are presented based on Algorithm 1, the depth-first approach
is implicitly covered. An explicit usage of the depth upper-bound D in depth-first state
space generation can be found in Section 7.3.3.

Due to the state space explosion problem, state spaces may get too big for a single
computer to handle. Because of this, distributed state space generation is being devel-
oped, where multiple computers together generate a state space, interchanging state
information whenever needed. As mentioned in Chapter 1, with the µCRL toolset,
distributed state space generation, minimisation, and analysis can be performed.

Moving to a distributed setting, we no longer deal with one machine, but one man-
ager and n clients, where n ∈N. Contrary to depth-first state space generation, which
generates a single trace at a time, breadth-first state space generation lends itself
well for a distributed setting. In distributed breadth-first state space generation, ba-
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Algorithm 3 Procedure dfs(Li, Closed)
if Li 6= ; then

Li+1 ← ;
for all s ∈ Li do

Li+1 ← Li+1 ∪ nxtM (s, enM (s))
end for
Li+1 ← Li+1 \ Closed
while Li+1 6= ; do

select L̂i+1 ⊆ Li+1
Li+1 ← Li+1 \ L̂i+1
Closed ← Closed ∪ L̂i+1
Closed ← dfs(L̂i+1, Closed)

end while
end if
return Closed

Algorithm 4 Distributed BFS state space generation - Client Instantiator
Require: M = (S ,A ,T ,I ), client number ID, set of client numbers CIDs, hash func-

tion # : S → CIDs
i ← 0
L ID

i ← ;
for all s ∈ I do

if #(s) = ID then
L ID

i ← L ID
i ∪ {s}

end if
end for
repeat

L ID
i+1 ← ;

for all s ∈ L ID
i do

L ID
i+1 ← L ID

i+1 ∪ nxtM (s, enM (s))
end for
SendToMgrNewStatesFound(|L ID

i+1| > 0)
i ← i + 1
command ← RecvFromMgr()
if command 6= finish then

SendToClientsNextLevel(L ID
i )

L ID
i ← RecvFromClientsNextLevel()

L ID
i ← L ID

i \
⋃i−1

j=0 L ID
j

end if
until command = finish
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Algorithm 5 Distributed BFS state space generation - Manager Instantiator
Require: Set of client numbers CIDs
Ensure: true

repeat
nextlevel ← false
for all ID ∈ CIDs do

nextlevel ← nextlevel ∨ RecvFromClientNewStatesFound(ID)
end for
if ¬nextlevel then

SendToClients(finish)
else

SendToClients(continue)
end if

until ¬nextlevel
return true

sically every client generates part of the state space in a breadth-first manner. After
generating state space level Li+1, given level Li, how the states in Li+1 should be
distributed over the n clients is determined by a hash function # : S → {1, . . . , n}. In
other words, # assigns to each state a unique owner. Algorithms 4 and 5 present dis-
tributed breadth-first state space generation for a client and a manager, respectively,
where every client is initialised with a unique client number ID. By means of the func-
tion RecvFromClientsNextLevel(), each client ID receives at the end of a round of the
generation a part of the current state space level Li, called L ID

i , consisting of all the
states in Li owned by client ID according to the # function. With n clients, we have
for each level i that Li = L 1

i ∪ . . . ∪ L n
i . Duplicate detection is now performed by

each client after having received the new set of states L ID
i to be expanded. This works

thanks to the # function, which ensures that a state is always assigned to the same
client. Expanding the new states in L ID

i results in a part of the next level of the state
space Li+1, called L ID

i+1. This part, however, does not constitute the part to be explored
by client ID. The states in L ID

i+1 need to be sent to their owners, according to #. This is
done by calling SendToClientsNextLevel(L ID

i+1). Once each state in the system has been
received by its owner, the generation can continue.

Matching send and receive functions can be identified by their names. During the
generation, a client can receive the following commands from the manager, through
the function RecvFromMgr():

• continue: In the next step, receive new states in Li and expand them.

• finish: Stop the search algorithm. This message is sent by the manager when
it observes that in the last round, no client has generated new states.
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Via the function SendToMgrNewStatesFound(), all clients report whether they have
visited new states or not. If at least one client reports that it did, the manager will
decide to continue the generation.

For more information on distributed state space generation, the reader is referred
to, for instance, Ciardo et al. (1998).

2.3 Verifying Properties With Temporal Logic
Using temporal logics, one can express properties about a state space. A model checker
can then be used to check, whether an expressed property holds in that state space or
not. Two temporal logics used in this thesis are Linear Temporal Logic (LTL) (Pnueli,
1981) and the regular alternation-free µ-calculus (Kozen, 1983; Mateescu and Sighire-
anu, 2003). Here, we give a brief introduction to the µ-calculus, relevant for under-
standing the formulas in this thesis. E.g. Mateescu and Sighireanu (2003) provide a
more detailed description. A full explanation of the syntax of both LTL and µ-calculus
is provided by, for instance, Clarke et al. (1999).

We consider here µ-calculus for expressing action-based properties of states. There
exists a more elaborate version of this logic which can express temporal properties
involving data values, but that one is not supported (yet) by CADP, and therefore not
used for the current work.

The state formulas of µ-calculus are defined by the following BNF grammar:

φ ::= F T ¬φ φ1 ∨ φ2 φ1 ∧ φ2 〈`〉φ [`]φ Y µY .φ νY .φ

where ` ranges over A , and Y ranges over some collection of propositional variables.
A state formula can be built using both actions and variables, combining them with the
usual boolean operators, the possibility and necessity modal operators 〈`〉φ and [`]φ,
and the minimal and maximal fixed point operators µY .φ and νY .φ. The expression
〈`〉φ intuitively means “it is possible to fire an `-transition, leading to a state where φ
holds”. Similarly, [`]φ can be interpreted as “φ holds in all states reachable by firing
an `-transition”.

The µ and ν operators act as binders for Y variables, similar to quantifiers in first-
order logic. Here, we restrict to closed µ-calculus formulas, meaning that all variables
occurring in φ are bound. A state satisfies µY .φ iff it belongs to the minimal solution
of the fixed point equation Y = φ(Y ). Similarly, a state satisfies νY .φ iff it belongs to
the maximal solution of the fixed point equation Y = φ(Y ).

The alternation-free µ-calculus (Emerson and Lei, 1987) consists of µ-calculus for-
mulas with no alternation between minimal and maximal fixed point operators. In
practice, this makes a good compromise between expressiveness and efficiency of model
checking.
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In the regular µ-calculus (Mateescu and Sighireanu, 2003), action predicates and
regular expressions over action sequences can be used in the state formulas. Here,
〈β〉φ and [β]φ can be used, where β is a regular formula. The following BNF grammar
defines regular formulas:

β ::= α β1.β2 β1 | β2 β∗

A regular formula is built from action formulas α (to be defined next), using the
concatenation (‘.’), choice (‘|’), and the reflexive transitive closure (‘∗’) operators. The
empty sequence operator ε and the transitive closure operator + are defined as ε = F∗

and β+ = β.β∗.
Finally, action formulas are defined as follows:

α ::= ` ¬` `1 ∧ `2

Action formulas α can be constructed from action names ` ∈ A using the standard
boolean operators. Derivable boolean connectives are e.g. F = ` ∧ ¬`, T = ¬F, and
`1 ∨ `2 = ¬(¬`1 ∧¬`2).

Next, we provide some examples. Note that T holds in all states. Therefore, at
places in a regular formula, where the name of an action is not important we can write
T. Hence, a statement like a.T.b means “first we encounter an action a, then some
other action, followed by an action b”.

If we write ‘〈R〉 T’, then we express that there exists a trace in the state space for
which the regular formula R holds. Such a property is often referred to as a liveness
property. The expression ‘[R] F’ expresses that for all traces in the state space the
regular formula R does not hold. This kind of property is called a safety property,
where R is some undesirable behaviour.

As a final example, the formula ‘[a.T∗.b] F’ expresses that for all traces in the state
space, we do not find one action a, followed by zero or more other actions, followed
again by one action b.

Temporal logic formulas can be used to express a reachability property. As men-
tioned in Section 2.2, when checking a reachability property, the goal is to find a state
s ∈ G , with G a given set of goal states. Of course, when checking such a property on-
the-fly and S is not known a priori, G cannot be given explicitly; however, a temporal
logic formula can be provided, by which it is decidable whether a state is in G or not.
This is because a state formula φ can be interpreted as a set of states in which φ holds,
thereby φ can be mapped to G .3 Mateescu and Sighireanu (2003) explain how state
formulas relate to sets of states. First of all, action formulas relate to sets of actions as

3In practice, a state formula φ is often mapped to S \ G , where φ actually expresses the negation of the
desired property. Then, whenever a state is found which violates φ,i.e. it is a goal state, a trace to this
state is reported by the model checker.
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follows, where the interpretation [[[α]]] ⊆ A of action formulas gives the set of actions
satisfying α:

[[[`]]] = {`}

[[[¬`]]] = A \ [[[`]]]

[[[`1 ∧ `2]]] = [[[`1]]] ∩ [[[`2]]]

Next, regular formulas relate to pairs of source and target states. The interpretation
((β)) ⊆ S × S of regular formulas gives a binary relation between source and target
states of transition sequences satisfying β. The relation between regular formulas and
pairs of states is as follows, where ◦, ∪, and ∗ are the composition, union, and reflexive
transitive closure operators of binary relations, respectively:

((α)) = {(s, s′) ∈ S × S | ∃` ∈ A .s `−→ s′ ∧ ` ∈ [[[α]]]}

((β1.β2)) = ((β1)) ◦ ((β2))

((β1 | β2)) = ((β1)) ∪ ((β2))

((β∗)) = ((β))∗

An action formula relates to one-step sequences s `−→ s′ such that ` satisfies α. Con-
cerning the formula β1.β2, a sequence is the concatenation of two sequences satisfying
β1 and β2, respectively. Regarding the formula β1 | β2, a sequence can satisfy β1 or β2.
A sequence satisfying β∗ is a concatenation of (zero or more) sequences satisfying β.

Finally, as previously mentioned, state formulas relate to sets of states. The interpre-
tation [[[φ]]]% ⊆ S of state formulas, where % is a so-called environment or propositional
context assigning state sets to propositional variables, gives the set of states satisfy-
ing φ in the context of %. The relation between state formulas and sets of states is as
follows, where we denote by %[Y ← S] a new environment, identical to %, except that
%[Y ← S](Y ) = S:

[[[F]]]% = ;
[[[T]]]% = S

[[[φ1 ∨ φ2]]]% = [[[φ1]]]%∪ [[[φ2]]]%

[[[φ1 ∧ φ2]]]% = [[[φ1]]]%∩ [[[φ2]]]%

[[[〈β〉φ]]]% = {s ∈ S | ∃s′ ∈ S .(s, s′) ∈ ((β)) ∧ s′ ∈ [[[φ]]]%}

[[[[β]φ]]]% = {s ∈ S | ∀s′ ∈ S .(s, s′) ∈ ((β)) =⇒ s′ ∈ [[[φ]]]%}

[[[Y ]]]% = %(Y )

[[[µY .φ]]]% = ⋂
{S ⊆ S | [[[φ]]]%[Y ← S] ⊆ S}

[[[νY .φ]]]% = ⋃
{S ⊆ S | S ⊆ [[[φ]]]%[Y ← S]}
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Here, the formulas 〈β〉φ and [β]φ relate to the states for which some (all) of the out-
going transition sequences satisfying β lead to states satisfying φ. The formulas µY .φ
and νY .φ correspond with the minimal and maximal solutions (over sets of states) of
the fixed point equation Y = φ.

We can now state the following for reachability problems regarding a set of goal
states G : Given a state formula φ such that [[[φ]]]% = G , we can check whether a state
s is a goal state, by checking if s ∈ [[[φ]]]%. As Part II of this thesis presents a range of
state space search algorithms which accept a set of goal states G , the interpretation
[[[φ]]]% ⊆ S forms a bridge, allowing us to express a reachability property using the reg-
ular alternation-free µ-calculus, and subsequently search for states where the property
holds (or not), using these search algorithms.
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Part I

Modelling Time

IN WHICH ONE MODELLING LANGUAGE IS TRANSLATED TO ANOTHER, THE

VERIFICATION OF A TIMED SYSTEM IS DEMONSTRATED, AND A TIMING MECHANISM

IS MODELLED IN AN UNTIMED SETTING

This part is based on the work of Bortnik et al. (2005a), Wijs and Fokkink (2005), and Wijs (2007)





Chapter 3

From χt to µCRL: A Translation

Je n'ai fait celle -ci plus longue que
d'habitude parce que je n'ai pas eu le loisir
de la faire plus courte.

(Blaise Pascal)

3.1 Introduction

P
ERFORMANCE ANALYSIS IS traditionally based on techniques such as sim-
ulation, Markov chains and queueing networks. By contrast, important
approaches for verifying functional properties are model checking, where
temporal formulas are validated by means of an explicit state space search,

and theorem proving, which is largely based on axiomatic reasoning at the symbolic
level.

In the last few years, these approaches for verifying functional properties have been
extended in order to verify performance aspects of systems. Hermanns and Katoen
(2001) verified performance properties of a LOTOS specification of a telephone system;
LOTOS (Bolognesi and Brinksma, 1987) is a process algebraic language with abstract
data types, which is originally meant for functional analysis. Garavel and Hermanns
(2002) introduced a general approach to carry out some performance analysis within
the framework of LOTOS. They introduce timing information into a LOTOS specifica-
tion, expressing that certain events are delayable by some random delay, captured by
an exponential distribution. From this extended LOTOS specification they generate
an interactive Markov chain, which is basically a labelled transition system contain-
ing both actions and positive reals as labels, where the positive reals denote delays.
They explain how the CADP toolset, which is actually meant for functional verification
of LOTOS specifications, can be used to also carry out performance analysis with re-
spect to interactive Markov chains. Although the approach of Garavel and Hermanns
is promising, it is difficult if not impossible to apply full-blown performance analysis
techniques in a functional verification formalism like LOTOS.
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In this chapter we present another approach to bridge the gap between performance
and functional analysis. Similar to Garavel and Hermanns, we exploit the fact that
specification languages for performance and functional analysis tend to have a lot in
common, so that a translation from one specification language to the other is quite
feasible. However, we propose to keep the performance and the functional analysis
separate, in environments targeted to these analyses. Thus we are in principle able to
carry out full-blown performance as well as functional analysis.

χ (Van Beek et al., 2006) is a modelling language for the specification of discrete-
event, continuous or combined, so-called hybrid, systems. It is based on the process
algebra CSP (Hoare, 1985), and contains some predefined data types. It targets per-
formance analysis of timed systems by means of simulation techniques to estimate
throughput and cycle time. A subset of the language χ, restricted to specify only
discrete-event systems, is called timed χ, or χt (Van Beek et al., 2005). Currently, there
is only a simulator available for using the current version of the language χ (the toolset
is being developed (Toolset of χ, see bibliography)), but predecessors of the language
and their toolsets have been successfully applied to a large number of industrial cases,
such as an integrated circuit manufacturing plant, a brewery and process industry
plants (Van Beek et al., 2002).

In this chapter we present a general translation from χt specifications to LPEs. Note
that we have to limit ourselves to translating χt instead of the complete hybrid χ,
because µCRL cannot cope with continuous events. A translation from χt to µCRL
is feasible, because, although the modelling languages χt and µCRL have different
aims, there are a number of similarities. Most importantly, their input languages are
both based on process algebra, and they are both action-based. The verification of a
turntable system in Bortnik et al. (2005a) illustrates how our translation scheme can
be used to combine performance and functional analysis. In Bortnik et al. (2005a) the
χt specification of a turntable (Bos and Kleijn, 2001) was translated to three differ-
ent specification formalisms: UPPAAL, SPIN and µCRL. The latter translation is also
presented here in Section 4.2.

Our work is closest in spirit to TWOTOWERS (Bernardo et al., 1998), which is a tool
that combines performance and functional analysis. It has a single input language,
based on the stochastic process algebra EMPA (Bernardo and Gorrieri, 1998). Perfor-
mance analysis is based on simulation and reward Markov chains, while functional
analysis is performed by the symbolic model checker NUSMV (Cimatti et al., 2002).

This chapter is set up as follows. The next section provides a short introduction
to χt; the basics of the language are listed and a brief explanation is given. The ap-
proach to model time in µCRL, which is used in the translation scheme, is explained in
Section 3.3. Section 3.4 provides a way to translate χt specifications to linear process
equations. Later, Chapter 4 provides examples of translating a χt specification to a
µCRL specification, and also shows the verification of an industrial case study.
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3.2 The Language χt

The χ language was designed as a hybrid modelling and simulation language. Since
we are interested only in discrete-event specifications and verification, we present here
just a part of the language, disregarding features that are used for simulation and to
model hybrid behaviour. This (discrete-event) subset of the language is known as timed
χ or χt (Van Beek et al., 2005). For a description of the complete χ, see Van Beek et al.
(2006).

Data types Like µCRL, the χt language is statically strongly typed. Every variable
has a type which defines the allowed operations on that variable. The basic data types
are boolean, natural, integer, real number, string and enumeration. The language
provides mechanisms to build sets, lists, array tuples, record tuples, dictionaries, func-
tions, and distributions (for stochastic specifications). Channels also have a type that
indicates the type of data that is communicated via the channel.

Time model Time in χt is dense, i.e. timing is measured on a continuous time scale.
The strong time determinism principle, or sometimes called the time factorisation
property (time does not make a choice), and urgent communication (a process can delay
only if it cannot do anything else) are implicit. Time additivity (if a process can delay
first t1 and then immediately following t2 time units, then it can delay t1 + t2 time
units from the start) is not present. Delaying is enforced by the delay operator, but
some atomic processes can also delay implicitly.

Communication model Communication in χt is synchronous, meaning that a send
and a receive action on the same channel cannot happen individually but only together,
as one communication action.

Atomic processes The atomic processes of χt are process constructors which cannot
be split into smaller processes. They are:

1. The multi-assignment process (xn := en). It assigns the values (which must be
defined) of expressions e1, ..., en to the variables x1, ..., xn, respectively. It does
not have the possibility to delay.

2. The skip process. It performs the internal action τ and cannot delay.

3. The send process (h !! en). It sends the values of the expressions e1, ..., en, for
n ≥ 1, via channel h. For n = 0, h !! en becomes h !! and nothing is sent via the
channel.
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4. The send process (h ! en) is the delayable equivalent of h !! en. It is able to delay
arbitrarily long before sending.

5. The receive process (h ?? xn). It receives values via the channel h and assigns
them to the variables x1, ..., xn. For n = 0, h ?? xn becomes h ?? and nothing is
received via the channel.

6. The receive process (h ? xn) is the delayable equivalent of h ?? xn. It is able to
delay arbitrarily long before receiving.

7. The delay process (∆t). It delays a number of time units equal to the value of the
expression t. The value of t must be a positive real number.

Operators Atomic processes can be combined by means of the following operators.
We present each one of them together with their (informal) semantics. We do not con-
sider operators that are only used for the definition of the semantics of χt, since those
never appear in specifications. Two exceptions to this are the encapsulation operator
and the urgent communication operator. These operators are implicitly used in χt, but
should be considered explicitly when translating a specification to µCRL.

1. The delay operator (∆t). The process ∆t(p) is forced to delay for the amount of
time units specified by the value of numerical expression t, after which it can
proceed as p.

2. The delay enabling operator ([]). For a process [p], time transitions of arbitrary
duration are allowed before the execution of p is initiated.

3. The guard operator ( → ). For action behaviour, a process b → p behaves as p if
the value of the boolean expression (guard) b is true. For delay behaviour, b → p
can delay according to p as long as the boolean expression b evaluates to true.
While b evaluates to false, b → p can perform any delay, but p cannot execute.

4. The sequential composition operator ( ; ). A process p; q behaves as p followed
by q.

5. The alternative composition operator ([]). A process p [] q represents a (non-
deterministic) choice between p and q (if they can proceed).

6. The repetition operator (∗). A process ∗p will keep on executing p.

7. The guarded repetition operator (∗:). A process ∗b : p can be interpreted as “while
b do p”.
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8. The parallel composition operator ( || ). A process p || q executes the actions of p
and q concurrently in an interleaved fashion. If one of the processes can execute
a send action and the other one can execute a receive action on the same channel,
then p || q executes the communication action on this channel.1

9. The scope operator (|[ | ]|). A process |[ s | p ]| behaves as p in a local state s. The
state s is used to define local variables and channels visible only to the process
p. It is defined as “disc s, chan h, i, LR” with s a list of local variables, h a list
of local channels, i an initialisation predicate, restricting the allowed values of
the variables initially, and LR a list of recursion definitions. A variable si is
defined as si : type. A channel hi can either be a channel for receiving, defined as
hi ? : [type] (optionally it can receive data of a given type), a channel for sending,
defined as hi ! : [type], or a channel for both receiving and sending, defined as
hi !? : [type]. In the initialisation predicate, terms may appear of the form si = e i,
with si a variable defined in s and e i a value.2 Finally, a recursion definition in
LR is of the form X i 7→ pi, with X i a recursion variable and pi a process.

10. The encapsulation operator (∂A). A process ∂A(p) disables all actions of p that
occur in the set A. Typically this operator is used to enforce that send and receive
actions synchronise.

11. The urgent communication operator (υH). Send and receive actions in a process
υH(p) via channels from set H can only delay when no communication with a
corresponding receive or send action on the same channel is possible.

Specification definitions The language χt provides the possibility to define specifi-
cations. A χt specification is of the following form:

〈 disc s1, . . . sk, chan h1, . . . , hm, i, X1 7→ p1, . . . , Xr 7→ pr | p〉

Here, disc s1, . . . sk,chan h1, . . . , hm, i and X1 7→ p1, . . . , Xr 7→ pr are as described earlier
for the scope operator and p is a process.

1If p || q can execute a communication action, then its separate component actions cannot be executed, due
to implicit encapsulation of all the send and receive actions in χt.

2In χt it is also possible to provide a range of possible valuations for a variable. We do not consider this
here, since it cannot be modelled easily in µCRL.
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Finally, an example of a χt specification:

〈 chan c !? : nat

, P 7→ |[ disc x : nat , b : bool , b = true | b → c ? x ]|
, Q 7→ |[ disc y : nat , y = 3 | c ! y ]|

| P || Q
〉

Since initially b = true, process P can receive a natural number via channel c. Pro-
cess Q sends the value 3 over this channel.

3.3 Using Time in µCRL
Delaying for a certain amount of time is impossible in µCRL at first glance. This is be-
cause µCRL does not work with time. A later extension of µCRL to timed µCRL (Groote,
1997) introduced the notion of time. However, at present, creating a timed µCRL spec-
ification is not very practical since the µCRL toolset can only parse timed µCRL code
and cannot generate a state space from it.

There is another way, however, to simulate some notion of discrete time. In this part
of the thesis, we build on a method introduced by Blom et al. (2003) and Ioustinova
(2004). Since it forms an important basis for this and the following two chapters, we
describe the method here, adapted to our own notation.

In general, timing can be either absolute or relative and the time scale can be either
continuous, also known as dense, or discrete (Baeten and Middelburg, 2002). In abso-
lute timing, the execution time of an action is expressed in an absolute fashion with
respect to the running time of the modelled system, whereas in relative timing, the
time of an action is expressed relative to the execution of a previous action. Besides
that, one can adopt a setting in which atomic actions take zero time to execute, or some
non-zero time to execute. The latter case is often achieved by equipping all actions
with a time stamp, indicating when the action has to be fired (e.g. 12:05 PM). When
atomic actions may take zero time to execute, time stamps are not needed; instead,
we can choose for the so-called two-phase model (Nicollin and Sifakis, 1991), where a
system alternatingly fires action and time transitions. Practically all combinations of
the settings described here exist in the literature; for instance, Baeten and Middelburg
(2002) use, among other settings, absolute timing with the two-phase model, whereas
in Part III of this thesis, absolute timing is used with time stamps. In the approach for
µCRL to be described next, relative timing is modelled in a two-phase manner, since
the time unit, in which an action can be fired, is expressed relative to the time unit
of actions fired earlier, using a special tick action for time transitions. On a discrete
time scale, time is divided in finite time units. In a specification using such a scale, a
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jump in time cannot be smaller than a single time unit. On a continuous or dense time
scale, there is no smallest time unit. Using the technique from Blom et al. (2003) and
Ioustinova (2004), which we describe next, we get discrete time in µCRL.

For a specification M, an action tick ∈ A is used to represent the end of a time slice
and the beginning of a new one, i.e. to model a time transition. In order to share this
notion of time, all running processes need to synchronise their tick actions. If at least
one of these processes is busy and therefore unable to perform a tick, the tick action
will not take place. In our notation, (P0 || . . . || Pm

tick−→ ⇔ ∀0 ≤ i ≤ m.tick ∈ enA(Pi)).
This synchronisation aspect is essential if one wants to use global timing. On the top
level of a specification, the synchronisation of all processes on tick is achieved by using
an adapted parallel composition operator, called | {tick} |. It is defined as follows, given
that tick, tick′ ∈ A and (tick, tick, tick′) ∈ C:

P | {tick} | Q , ρ{tick′→tick}(∂{tick}(P || Q))

In ∂{tick}(P || Q), tick actions in P and Q are forced to communicate with each other.
In P |{tick} | Q, the resulting tick′ transitions are renamed back to tick. The action tick′

is used for intermediate synchronisation results.
The |{tick} | operator is commutative; this follows immediately from the commutativ-

ity of ||. Moreover, one can prove that | {tick} | is associative for tick′-free processes; that
is, if P, Q and R cannot perform any tick′-transitions, then

(P | {tick} | Q) | {tick} | R ↔ P | {tick} | (Q | {tick} | R)

We only informally argue why this is the case (for the sake of simplicity, we disregard
successful termination).

The transitions of (P | {tick} | Q) | {tick} | R can be classified as follows:

1. For actions a 6= tick, tick′, (P | {tick} | Q) | {tick} | R a(e)−→ (P ′ | {tick} | Q′) | {tick} | R′ iff
(P || Q) || R a(e)−→ (P ′ || Q′) || R′;

2. Since P, Q, R are tick′-free, (P |{tick} | Q) |{tick} | R tick−→ (P ′ |{tick} | Q′) |{tick} | R′ iff
P tick−→ P ′, Q tick−→ Q′, and R tick−→ R′;

3. Clearly, (P | {tick} | Q) | {tick} | R cannot perform any tick′-transitions.

Likewise for the transitions of P | {tick} | (Q | {tick} | R). Now, associativity of | {tick} |
follows in a straightforward fashion from associativity of ||.

Besides the introduction of tick and | {tick} |, there are specification disciplines given
for the construction of a process. This is done to distinguish on the one hand receive
and on the other hand send and internal actions, which differ in their ability to delay.
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Therefore, two patterns are provided; one for a receive state and one for a send state.
The receive state (or process) is, slightly adapted to fit our notation, as presented in
Figure 3.1.

A(d : D, t1 : Timer, . . . , tm : Timer) =
a1·X1(da1 , t1, . . . , tm)/ expired(t1) . δ+
...

am·Xm(dam , t1, . . . , tm) / expired(tm) . δ+

tick·A(d, t1 − 1, . . . , tm − 1) / ¬
m∨

j=1
expired(t j). δ+∑

e1:D1

in1( f1(d, e1))·Y1(g1(d, e1), t1, . . . , tm)/ h1(d, e1) . δ+

... ∑
ek :Dk

ink( fk(d, ek))·Yk(gk(d, ek), t1, . . . , tm)/ hk(d, ek) . δ

Figure 3.1: Receive process pattern

Timers t1, . . . , tm are here of the special type Timer. The data domain of time has the
same structure as N. A number of functions are applicable on a timer; its value can be
increased, set and reset, and there is a check expired, which tells whether the value of
the timer has already reached 0. In A, there are actions a1, . . . , am, which can be fired
whenever one of the m timers has expired. The tick action can be fired when no timer
has expired. Finally, there are receive actions in1, . . . , ink.

A send (or, more precisely, non-receive) process is of the form presented in Figure 3.2.
Note that there is no delay alternative here, meaning that the actions b1, . . . , bl are not
delayable. The reason for this will become clear in the upcoming text.

When achieving time through modelling, one of the important issues is how commu-
nication should be dealt with. When two processes can communicate with each other,
the communication should have priority over the passage of time. However, when only
one process can communicate, it should be able to postpone this activity until the other
process can do so. Blom et al. (2003) and Ioustinova (2004) resolve this issue by in-
troducing asymmetry in communication, namely by allowing only receive actions to
delay. Their argumentation for this is that otherwise communication cannot be seen
as synchronous. Looking at χt, we see that communication there is symmetrical, so if
we want a translation scheme from χt to µCRL, we would like to achieve symmetrical
communication in µCRL. Considering the tick-mechanism described here, this seems
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B(d : D, t1 : Timer, . . . , tm : Timer) =∑
e1:D1

b1( f1(d, e1))·Z1(g1(d, e1), t1, . . . , tm)/ h1(d, e1) . δ+

...∑
e l :Dl

bl( f l(d, e l))·Zl(gl(d, e l), t1, . . . , tm)/ hl(d, e l). δ

Figure 3.2: Non-receive process pattern

to be not possible.
However, the synchronisity of communication is not at issue in the tick-mechanism;

in fact, by the very nature of communication in process algebras such as µCRL, com-
munication cannot be anything but synchronous. Communication only occurs, when
a send and a corresponding receive action can both be fired at the same time. Pro-
cess P sending a message and, at a later time, process Q receiving it can actually not
be modelled (unless we would, for example, additionally model some message buffer).
What is at issue here is the so-called maximal progress of communication actions, i.e.
communications as a whole need to have priority over the passage of time. In χt, this
is achieved by the implicit use of the urgent communication operator. If we simply pro-
vide tick alternatives to both send and receive actions we will not achieve this. But this
problem can be dealt with in other ways than making communication asymmetrical.
Next, we present a way to avoid many situations which violate maximal progress; to
be more exact, we avoid unforced delays in the system as a whole, i.e. the system only
delays if one of its components has to delay. Full maximal progress can be achieved in
a number of ways, though, which will be explained in the upcoming section.

Avoiding unforced delays can be achieved like this: We introduce a second time ac-
tion, called tock. The differences between tock and tick are the following:

• The action tick is used for translating delays, while tock is used to make an action
delayable (which means adding a tock self-loop as an alternative to this action);

• A tick action can synchronise with any number of tick or tock actions, but a tock
action cannot synchronise with only tock actions (at least one tick action is needed
for going from one time unit to the next).

Now, several delayable processes can delay together if there is a tick action enabled in
at least one process.

In order to achieve this timing mechanism in µCRL, first of all we define tick, tick′,
tock, tock′ ∈ A and (tick, tock, tick′), (tock, tick, tick′), (tick, tick, tick′), (tock, tock, tock′)∈
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C. Here, the primed actions are used for intermediate communication results. Note
at this point that if at least one tick action is involved in communication, the result is
tick′.

Second, we define a parallel composition operator |T| in the following way:

P |T| Q , ρ{tick′→tick,tock′→tock}(∂{tick,tock}(P || Q))

In ∂{tick,tock}(P || Q), tick and tock actions in P and Q are forced to communicate with
each other. In P |T| Q, the resulting tick′ and tock′ transitions are renamed back to tick
and tock. Commutativity and associativity of |T| can be argued in a similar fashion as
commutativity and associativity of tickpara.

By putting tock in the set H of the encapsulation operator used in the initialisation
I = ∂H(P1 |T| . . . |T| Pn), we remove all tock actions remaining in the final system.

Using this method we can avoid unforced delays in a system. Say we have a sys-
tem consisting of two processes P and Q, and both send and receive actions are made
delayable by means of tock self-loops. If process P is waiting for process Q to send
a message, process Q may not be able to send it yet (in other words, cannot send it
within the current time unit). Process Q may have to delay for a number of time units,
by means of a (sequence of) tick action(s). This is possible using the new method, be-
cause process P can delay (can perform a tock self-loop). Now, the moment process Q
is able to send the message, communication will take place immediately, even though
both the send and the receive action are delayable, because two tock actions are not
allowed to synchronise.

This, however, does not always coincide with maximal progress. Let us introduce a
third process R, which wants to delay at the moment P and Q can communicate; then
the latter two processes again have the possibility to perform either the communica-
tion or the synchronised tick, not preferring one above the other. Maximal progress
can be fully enforced however by either post-processing the linearised system, or by
dealing with it at the state space level, either on-the-fly or afterwards. These different
approaches are described in the upcoming section. They may at the moment give the
impression that the usage of tock is unnecessary; however, in Chapter 5, we further ex-
tend the functionality of tock such that it becomes an essential part of our mechanism.

In our approach we will use a special data type T, which, as Timer in the approach
of Blom et al. (2003) and Ioustinova (2004), functions as the type for timers. The data
type T, however, has the same structure as Z, and the same typical functions, such
as equality, apply on it. The inclusion of negative time values is not needed in this
chapter, but will be essential in Chapter 5.
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3.3.1 Maximal Progress

Timed systems often use a concept called maximal progress. It allows actions to have
priority over the passage of time, as, for instance, explained by Baeten and Middelburg
(2002), Nicollin and Sifakis (1991), and Ulidowski and Yuen (1997). The application of
this technique differs between languages. Baeten and Middelburg (2002), for instance,
define it as an operator, applicable on processes, giving actions from a given set H prior-
ity over time. In χt, on the other hand, a similar concept called urgent communication is
always applied globally on a system, giving all actions priority (Van Beek et al., 2005).
While maximal progress for a single process can certainly be imagined for µCRL with
tick actions, here we focus on the possibility to achieve maximal progress on a µCRL
specification as a whole. Therefore, in our approach, we choose a form between the ones
used by Baeten and Middelburg (2002) and Van Beek et al. (2005); maximal progress
can be applied once, globally on a specification M. It is, however, not mandatory, and it
applies for a given subset of actions H ⊆ A \ {tick, tock, tock′, tick′} (clock actions can, of
course, not be elements of H). The challenge here is that a global view of the system is
needed; if, for instance, communication between two system components can occur, it
should have priority over the passage of time. However, if this communication cannot
yet take place, a corresponding send or receive action which is enabled within either of
these system components should be delayable. This cannot be decided at the level of
a system component, since it involves the conditions of other system components, i.e.
it involves the interaction between system components. Therefore, we need to apply a
global maximal progress once the whole system has already been defined.

There are a number of ways to achieve global maximal progress. We present three
approaches here.

Transformation of an LPE First of all, we can enforce a prioritisation of actions
within a µCRL specification after the linearisation of that specification. Once a spec-
ification is linearised, we have a single process X making up the specification M, in
which all possible communications appear as single actions. At that stage, it becomes
possible to transform X such that maximal progress is enforced. Say that the finite
index set I = IN ∪ IC with IN ∩ IC = ;, IN being the set of indices of all actions in
X which are neither tick nor tock actions (i.e. they are ‘normal’ actions) and IC be-
ing the set of indices of all actions in X which are either tick or tock actions (i.e. they
are ‘clock’ actions). Furthermore, given the set of actions to prioritise H, we say that
IH = {i ∈ IN | ai ∈ H}. Figure 3.3 shows how to achieve a transformation of an LPE X
(in the form given in Definition 4), such that maximal progress holds in it. In X , there
are no tock actions, since these are encapsulated.

This approach achieves maximal progress for a system by transforming the LPE.
As the LPE resulting from linearising a µCRL specification is usually quite large and
complex, this transformation can be rather difficult in practice. Next, we describe how
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X (d : D) =∑
i∈IN

∑
e i :Di

ai( f i(d, e i))·X (g i(d, e i)) / hi(d, e i) . δ+∑
i∈IC

∑
e i :Di

tick·X (g i(d, e i)) / hi(d, e i) ∧¬ ∨
j∈IH

h j(d, e i). δ

Figure 3.3: An LPE X with maximal progress

we can achieve maximal progress by transforming a state space.

A maximal progress state space reduction tool We observe that globally applied
maximal progress can be straightforwardly enforced on a state space. There, a sys-
tem is already considered as a whole, and it turns out that maximal progress can be
applied on a state by state basis. At first, this approach may seem unconventional,
since traditionally, maximal progress is added to a timed language through an opera-
tor. We point out, however, that conceptually, maximal progress has a lot in common
with partial order reduction (Peled et al., 1996), many forms of which could in fact also
be achieved with an extra operator; but in that field, it is custom to embed it in state
space generation.

The benefit of having a specific maximal progress reduction tool is that the existing
state space generation toolset can remain as is. In Figure 3.4, it is shown how maximal
progress can be achieved in a state space; at each state s, outgoing tick transitions are
only allowed if there are no outgoing non-tick transitions; therefore, if there are out-
going non-tick transitions, all possible outgoing tick transitions must be pruned away.
The maximal progress reduction of a state space is formally defined in Definition 7.
There, s →∗

T s′ denotes that s′ is reachable from s through the set of transitions T,

i.e. there are s0, . . . , sn ∈ S and `0, . . . , `n+1 ∈ A , with n ≥ 0, such that s
`0−→ s0 ∈ T,

si
`i+1−→ si+1 ∈ T for 0 ≤ i ≤ n − 1, and sn

`n+1−→ s′ ∈ T.

Definition 7 (Maximal progress reduction of a state space). Given a state space
M = (S ,A ,T ,I ), we call M ′ = (S ′,A ′,T ′,I ′) the maximal progress reduced form of
M iff with T̂ = {(s,`, s′) ∈ T | ` 6= tick}∪ {(s, tick, s′) ∈ T | ¬∃` ∈ H, s′′ ∈ S .(s,`, s′′) ∈ T }
we have

1. A ′ = A ;

2. I ′ = I ;

3. S ′ = {s ∈ S | ∃s′ ∈ I .s′ →∗
T̂

s};
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Allowed Prune

tick tick

Allowed

``

Figure 3.4: Applying maximal progress on a state space

4. T ′ = {(s,`, s′) ∈ T̂ | s ∈ S ′ ∧ s′ ∈ S ′}.

In requirement 3 of Definition 7, we do not simply state S ′ = S in order to avoid
the inclusion of states that have become unreachable through transitions which do not
violate maximal progress.

If so desired, maximal progress can now be dealt with using a specialised tool. The
drawback of this approach, however, is that it means that the whole state space, includ-
ing all undesired behaviour violating maximal progress, must be generated before the
reduction can be done. In practice, if we deal with large problems, the undesired por-
tion of the state space can be very big. To avoid generating all this extra behaviour, we
can move to a third possibility to enforce maximal progress: on-the-fly pruning while
generating the state space.

On-the-fly pruning of the state space As maximal progress can be applied in a
state space on a state by state basis, it is very well possible to design a specialised state
space generation algorithm which applies maximal progress on-the-fly. This approach
avoids generating unreachable parts of the state space.

Algorithm 6 shows a breadth-first search with maximal progress. It cuts away unde-
sired parts of the state space, i.e. those which are reached through unnecessary delays.
The connection between a specification M and this algorithm is achieved through lin-
earising M to a single LPE X . The initial set I is derived from X and I, and further-
more, X is used to find successor states (since the set of successors of a process X (d)
can be obtained by determining enM(X (d)).

3.4 The Translation Scheme
In the current section we present a scheme for the translation of χt specifications to
µCRL specifications. Here, a χt specification is mapped to a µCRL specification and
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Algorithm 6 Maximal progress breadth-first state space generation
Require: M = (S , A , T , I ), H ⊆ A \ {tick, tock, tock′, tick′}
Ensure: true

i ← 0
Li ← I

while Li 6= ; do
Li+1 ← ;
for all s ∈ Li do

if H ∩ {` ∈ A | ∃s′ ∈ S .s `−→ s′} = ; then
Li+1 ← Li+1 ∪ {s′ ∈ S | ∃` ∈ A .s `−→ s′}

else
Li+1 ← Li+1 ∪ {s′ ∈ S | ∃` ∈ A .s `−→ s′ ∧ ` 6= tick}

end if
end for
i ← i + 1
Li ← Li \

⋃i−1
j=0 L j

end while
return true

a χt process is mapped to an LPE. We start by extending the definition of an LPE, to
include successful termination.

3.4.1 Linear Process Equations
In this chapter we use a slightly extended version of the LPE definition as stated in
Chapter 2. Here, an LPE is of the form as defined in Definition 8.

Definition 8 (LPE with successful termination). A linear process equation with
successful termination is of the following form:

X (d : D) = ∑
i∈I

∑
e i :Di

ai( f i(d, e i))·X (g i(d, e i))/ hi(d, e i). δ+∑
i∈I ′

∑
e i :D′

i

a′
i( f ′i (d, e i))·p(g′

i(d, e i)) / h′
i(d, e i). δ

where I, I ′ are finite index sets, D,Di,D′
i,Dai and Da′

i
are data types, ai, a′

i ∈ A∪ {τ,δ},
ai :Dai , a′

i :Da′
i
, f i :D×Di →Dai , f ′i :D×D′

i →Da′
i
, g i :D×Di →D, g′

i :D×D′
i →D,

hi : D×Di → B and h′
i : D×D′

i → B.

The extension to Definition 4 is the usage of
p

, which introduces successful termi-
nation. The notation

p
(g′

i(d, ei)) should be read as “the process enters state g′
i(d, e i)

48



3.4 The Translation Scheme

after which it successfully terminates” (the process has reached an end state).3

In this chapter, we present a translation from χt processes to µCRL LPEs with suc-
cessful termination. The translation is given as a function T : χt → µCRL by induction
on the term structure of the χt process, where T takes a χt process as input and gives
an LPE with successful termination as output.

In general, when translating a χt process p to an LPE, the variables si in the scope
operator of p (if used) should be translated to parameters of the LPE (in other words,
should become part of the data parameter d :D). Local channels of p also appear in its
scope, but these should not be included in the LPE. Instead, they will be represented
on a global level in the µCRL specification (see the upcoming section).

In both χt and µCRL one can use data types. For every data type in χt, one can easily
define a corresponding abstract data type in µCRL.

3.4.2 A χt Specification

The parallel composition operator and the encapsulation operator are here placed in
one section, since both of them are used in a particular way within a µCRL specifica-
tion. More specifically, in the µCRL toolset, these operators are only allowed to be used
in the initialisation line. What follows are guidelines to translate these operators and
which assumptions are made during the remainder of this chapter.

Let us consider the definition of a χt specification again, with p = p0 || . . . || pn,
n ≥ 0. The variables si declared in a χt specification are shared among the pi. These
cannot be translated in a straightforward fashion, since µCRL does not have shared
variables. It is possible however to achieve the same results by having all the processes
working with these variables maintain their own local copies of these variables and
using broadcasts whenever an assignment takes place. More on this in Section 3.4.13.

Each channel a which is declared in a χt specification should be translated to a send
action sa, a corresponding receive action ra, and a corresponding communication action
ca, with sa, ra, ca ∈A of the µCRL specification M. Furthermore, we need (sa,ra,ca)∈C.

As already stated, the initialisation predicate i consists of statements of the form
si = e i. For µCRL, these initialisations need to appear in I. In order to keep track of the
initialisations, we construct a set V while translating, containing pairs of (translated)
variable names and their values (si, e i). Next, we describe how to construct I. In
practice, this is done as the final step in translating a χt specification. Once I needs to
be constructed, we consult the initialisation set V for the correct initial values of the
variables to be set in I.

In the remainder of this chapter, we restrict the use of parallel composition to the

3We are aware of the fact that such an extension calls for a new structural operational semantics and a new
set of axioms. These can be created by extending the structural operational semantics and the axioms
presented by Groote and Ponse (1995) and Groote and Reniers (2001). Why we refrain from doing so here
is explained in Section 4.8.
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top level of a specification. In other words, looking at the definition of a χt specification,
we say that p is of the form p0 || . . . || pn with n ≥ 0 and the pi being processes without
parallel composition. This is not a harsh restriction, since there exists a χt lineariser
(created by Theunissen (2006)) which can remove nested parallel composition from
the pi. Moreover, in case studies nested parallelism is hardly ever encountered. The
usage of the parallel composition operator at the top level of a χt specification can
be translated in a straightforward fashion. Recall I of a µCRL specification M to be
∂H(X0(d0) || . . . || Xm(dm)). We translate the pi directly to X i(di) using the translation
function T. Now, we have the following:

I = ∂H(T(p0) |T| . . . |T| T(pn))

with H = {tock}∪ {sa, ra | (sa, ra, ca) ∈ C}. Consider that T(pi) = X i(di). Once the pi are
translated, the initial values of the di can be obtained from V . Variables not appearing
in V are set to a default value.

The encapsulation operator of χt (∂A) is implicitly used at the top level of a χt spec-
ification, applied on a given set of actions A. It can be translated by using the encap-
sulation operator of µCRL (∂H), making the set H equal to the set A. Also, the urgent
communication operator is used at the top level of a specification. For more on this
operator, see Section 3.3.1.

3.4.3 Atomic Processes

The multi-assignment process In µCRL, assignments take place by using recur-
sion or calling a new process in which the new value of the changed variable is given
as a parameter. Therefore, process xn := en is translated to (i.e. T(xn := en) is equal to)
X (d : D) = τ·p(d[e1 /x1 , . . . ,en /xn ]), in which

p
(d[e1 /x1 , . . . ,en /xn ]) means that you end up

in a state where the values e1, . . . , en have been substituted for the variables x1, . . . , xn,
respectively, while the other variables in the state remain unchanged.

The skip process The process skip performs the internal action τ. This can be
translated into an LPE by using the τ action. The translation T(skip) then becomes
X (d : D) = τ·p(d).

The send process In µCRL, channels are not available as a concept, like they are
in χt. Instead, a similar functionality can be obtained by defining actions and having
them synchronise with each other. Traditionally, sending a command like e.g. test can
be done by using an action stest (the s stands for send). This command can be received
by another process with the action rtest, where the r means receive. The actions stest
and rtest must be defined in the specification, together with a communication rule,
saying that a send over the test ‘channel’ together with a receive over this ‘channel’
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Table 3.1: Translation of send processes
χt term p µCRL LPE T(p)

h ! en X (d :D) = sh(e1, . . . , en)·p(d) + tock·X (d)
h !! en X (d :D) = sh(e1, . . . , en)·p(d)

h ! X (d :D) = sh·p(d) + tock·X (d)
h !! X (d :D) = sh·p(d)

leads to a communication (an action called ctest). It is important that when describing
the initial situation one encapsulates the send and receive actions in order to force
communication between the two.

Taking into account that a send process h ! en should be delayable, T(h ! en) equals
X (d : D) = sh(e1, . . . , en)·p(d) + tock·X (d) with e i ∈ Di and sh : D1 × . . . ×Dn being the
action of sending something over the channel h. The tock alternative is used to express
delayability.

All variants of the χt send process can be found in Table 3.1. Each of them is ac-
companied by a µCRL translation. The translations should be evident, given that all
variants of the basic send process h ! en can only differ in delayability and/or the send-
ing of data.

In χt, communications have priority over the passage of time. This behaviour is
enforced by using the urgent communication operator implicitly. Having translated a
χt specification, it is therefore necessary to process the translation in the way specified
in Section 3.3.1.

The receive process As mentioned in the previous paragraph, µCRL does not work
with channels, but for this, one can define send and receive actions and force them to
communicate. Receive actions traditionally begin with the letter r.

Therefore, for process h ? xn, T(h ? xn) equals

X (d : D) = ∑
y1:D1

, · · · ,
∑

yn:Dn

(rh(y1, . . . , yn)·p(d[y1 /x1 , . . . ,yn /xn ])) + tock·X (d)

with Di being the type of the variables xi and yi, for all i (1 ≤ i ≤ n). As in the trans-
lation of the send processes, the tock alternative is used to express delayability.

All variants of the χt receive process can be found in Table 3.2. Each of them is
accompanied by a µCRL translation. The translations should be evident, given that
all variants of the basic receive process h ? e can only differ in delayability and/or the
receiving of data.

Concerning communications having priority over the passage of time, a remark sim-
ilar to the one in the previous paragraph holds for the receive process.
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Table 3.2: Translation of receive processes
χt term p µCRL LPE T(p)

h ? en X (d :D) = ∑
y1:D1 · · ·

∑
yn:Dn (rh(y1, . . . , yn)·p(d[y1 /x1 , . . . ,yn /xn ]))

+tock·X (d)
h ?? en X (d :D) = ∑

y1:D1 · · ·
∑

yn:Dn (rh(y1, . . . , yn)·p(d[y1 /x1 , . . . ,yn /xn ]))
h ? X (d :D) = rh·p(d) + tock·X (d)
h ?? X (d :D) = rh·p(d)

The delay process The translation of the delay process ∆t is highly dependent on
the timing mechanism used here in µCRL. Therefore the reader should be aware of
this timing mechanism as described in Section 3.3. Note that while χt uses continuous
time, this timing mechanism only considers discrete time. Therefore, only the “discrete
time part” of χt can be translated.

If we restrict the possible values of t in ∆t to the natural numbers, then T(∆t) is as
follows, where t0 and t1 are timers:

X (d : D, t0 : T, t1 : T) = tick·X (d, t0, t1 − 1) / t1 > 0 . δ+ τ·p(d, t0, t1)/ t1 = 0 . δ

We cannot set the initial values of t0 and t1 in process X . We have to do that in I.
Therefore, we add (t0, t) and (t1, t) to V , thereby storing that both variables t0 and
t1 initially have value t. Timer t0 is used to be able to reset timer t1 to its initial
value, if so desired. This actually occurs in case repetition is present in a process (see
Section 3.4.9).

3.4.4 Delay Operator

When discussing the translation of χt operators in the upcoming sections, two LPEs P
and Q are used:

P(d : D) = ∑
i∈I

∑
e i :Di

ai( fPi (d, e i))·P(gPi (d, e i)) / hPi (d, e i) . δ+∑
i∈I ′

∑
e i∈D′

i

a′
i( f ′Pi

(d, e i))·p(g′
Pi

(d, e i)) / h′
Pi

(d, e i) . δ

Q(d′ : D′) = ∑
j∈J

∑
e j :D j

a j( fQ j (d
′, e j))·Q(gQ j (d

′, e j)) / hQ j (d
′, e j) . δ+∑

j∈J′

∑
e j :D′

j

a′
j( f ′Q j

(d′, e j))·p(g′
Q j

(d′, e j)) / h′
Q j

(d′, e j) . δ
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We avoid name clashes of variables in d and d′ when it is necessary to combine the two
LPEs.

Consider a process ∆t(p) with the LPE P = T(p). Then T(∆t(p)) is defined as in
Figure 3.5, where t0 and t1 are timers.

X (d : D, t0 : T, t1 : T) =
tick·X (d, t0, t1 − 1)/ t1 > 0 . δ+∑
i∈I

∑
e i :Di

ai( fPi (d, e i))·X (gPi (e i), t0, t1)/ hPi (d, e i) ∧ t1 = 0 . δ+∑
i∈I ′

∑
e i :D′

i

ai( f ′Pi
(d, e i))·p(g′

Pi
(d, e i), t0, t1)/ h′

Pi
(d, e i) ∧ t1 = 0 . δ

Figure 3.5: Translation of ∆t(p)

Basically the following things have been done to combine the delay and the LPE P:

1. The counters t0 and t1 have been introduced. They are used in the same way as
they are in the delay process. We add (t0, t) and (t1, t) to the initialisation set V .

2. The guards of the lines that originate from LPE P have been extended with the
boolean expression t = 0.

3.4.5 Delay Enabling Operator
Assume we have a process [p] with the LPE P = T(p). Then T([p]) is defined as in
Figure 3.6.

X (n :N, d : D) =∑
i∈I

∑
e i :Di

ai( fPi (d, e i))·X (1, gPi (d, e i))/ hPi (d, e i) . δ+∑
i∈I ′

∑
e i :D′

i

ai( f ′Pi
(d, e i))·p(0, g′

Pi
(d, e i)) / h′

Pi
(d, e i) . δ+

tock·X (n, d) / n = 0. δ

Figure 3.6: Translation of [p]

A counter n has been introduced. It has type N, but in practise n ∈ {0, 1}. This
counter is set to 0 before executing X ((n, 0) is added to the initialisation set V ) and
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is used here to initially allow the LPE to delay. As soon as an action originally from
the LPE P has been executed, and if after this execution an end state has not been
reached, counter n is set to 1, resulting in the added tock action being disabled.

3.4.6 Guard Operator

Consider a process b → p with b being a boolean expression. Say LPE P = T(p). As
mentioned earlier, we say that the finite index set I = IN ∪ IC with IN ∩ IC = ;, IN
being the set of indices of actions in P which are neither tick nor tock actions (i.e. they
are ‘normal’ actions) and IC being the set of indices of actions in P which are either
tick or tock actions (i.e. they are ‘clock’ actions). For I ′ we do not have to do a similar
thing since I ′C will always be empty. A process never terminates after executing a tick
or tock action; after a tick action there is always eventually a normal action (see the
translations of the delay process and the delay operator) and tock actions only occur in
self-loops.

Now T(b → p) is defined as stated in Figure 3.7.

X (n :N, d : D) =∑
i∈IN

∑
e i :Di

ai( fPi (d, e i))·X (1, gPi (d, e i)) / hPi (d, e i) ∧ (n = 1 ∨ b). δ+∑
i∈IC

∑
e i :Di

ai·X (n, gPi (d, e i)) / hPi (d, e i) ∧ (n = 1 ∨ b). δ+∑
i∈I ′

∑
e i :D′

i

ai( f ′Pi
(d, e i))·p(0, g′

Pi
(d, e i))/ h′

Pi
(d, e i) ∧ (n = 1 ∨ b) . δ+

tock·X (n, d) / n = 0 ∧¬b . δ

Figure 3.7: Translation of b → p

Basically the following things have been done to combine the boolean expression b
and the LPE P:

1. A counter n has been introduced. It has typeN, but in reachable states n ∈ {0, 1}.
This counter is initially 0 ((n, 0) is added to V ) and is used here to regulate that
only initially the value of b is important.

2. Notice the difference between the first and the second line: Instead of being set
to 1 the counter n is unchanged. This is very important when n = 0, since this
means that the value of the boolean expression b remains important in the next
time unit.

54



3.4 The Translation Scheme

3. In the third line n is reset to 0. Why this is done can be read in Section 3.4.9 on
the repetition operator.

4. In the fourth line it is expressed that if b does not hold and no ‘normal’ action
has been executed yet (i.e. n = 0) this process can delay one time unit without
changing the current state.

5. In all lines the guard has been expanded with equations concerning n and b to
express that one may only start executing ’normal’ actions if b holds.

3.4.7 Sequential Composition Operator

Assume we have the χt process p; q with the LPE P = T(p) and the LPE Q = T(q).
Now we define T(p; q) as in Figure 3.8. A counter n has been introduced to regulate

X (n :N, d : D, d′ : D′) =∑
i∈I

∑
e i :Di

ai( fPi (d, e i))·X (0, gPi (d, e i), d′) / hPi (d, e i) ∧ n = 0. δ+∑
i∈I ′

∑
e i∈D′

i

ai( f ′Pi
(d, e i))·X (1, g′

Pi
(d, e i), d′)/ h′

Pi
(d, e i) ∧ n = 0 . δ+

∑
j∈J

∑
e j :D j

a j( fQ j (d
′, e j))·X (1, d, gQ j (d

′, e j)) / hQ j (d
′, e j) ∧ n = 1. δ+

∑
j∈J′

∑
e j :D′

j

a j( f ′Q j
(d′, e j))·p(0, d, g′

Q j
(d′, e j)) / h′

Q j
(d′, e j) ∧ n = 1 . δ

Figure 3.8: Translation of p; q

the order of execution. Initially this counter has value 0 ((n, 0) is added to V ), thereby
enabling the execution of the actions originally from the LPE P. At those points where
P terminates successfully, n is set to 1, disabling the execution of actions from P and
enabling the execution of actions from Q.

3.4.8 Alternative Composition Operator

In this section we give a translation of the χt process p [] q, which non-deterministically
chooses between the processes p and q. At first glance providing a translation for this
does not seem to be more difficult than providing one for the sequential composition.
This, however, turns out to be untrue, due to the timing mechanism of χt; if both
alternatives p and q can delay, then they delay together and no choice is made. If only
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one alternative can delay and furthermore no actions can be executed at all, then there
is a deadlock. This constitutes strong time determinism.

Say we have the χt process p [] q with the LPE P = T(p) and the LPE Q = T(q).
Furthermore we say that the finite index set I = IN ∪ IC (similar to Section 3.4.6).
Finally, we say that IC = IC1 ∪ IC2 with IC1 ∩ IC2 = ;, IC1 being the set of indices of
occurrences of tick in P and IC2 being the set of indices of occurrences of tock in P. In
a similar way we define J = JN ∪ JC and JC = JC1 ∪ JC2. Now we define T(p [] q) as
shown in Figure 3.9.

X (n :N, d :D, d′ :D′) =∑
i∈IN

∑
e i :Di

ai( fPi (d, e i))·X (1, gPi (d, e i), d′) / hPi (d, e i) ∧ (n = 0 ∨ n = 1) . δ+
∑

i∈IC

∑
e i :Di

ai( fPi (d, e i))·X (n, gPi (d, e i), d′) / hPi (d, e i) ∧ n = 1. δ+
∑
i∈I′

∑
e i :D′

i

ai( f ′Pi
(d, e i))·

p
(0, g′Pi

(d, e i), d′) / h′
Pi

(d, e i) ∧ (n = 0 ∨ n = 1) . δ+

∑
j∈JN

∑
e j :D j

a j( fQ j (d
′, e j))·X (2, d, gQ j (d

′, e j)) / hQ j (d
′, e j) ∧ (n = 0 ∨ n = 2) . δ+

∑
j∈JC

∑
e j :D j

a j( fQ j (d
′, e j))·X (n, d, gQ j (d

′, e j)) / hQ j (d
′, e j) ∧ n = 2 . δ+

∑
j∈J′

∑
e j :D′

j

a j( f ′Q j
(d′, e j))·

p
(0, d, g′Q j

(d′, e j)) / h′
Q j

(d′, e j) ∧ (n = 0 ∨ n = 2) . δ+

∑
i∈IC1

∑
j∈JC2

∑
e i :Di

∑
e j :D j

tick·X (n, gPi (d, e i), gQ j (d
′, e j)) / hPi (d, e i) ∧ hQ j (d

′, e j) ∧ n = 0 . δ+
∑

i∈IC2

∑
j∈JC1

∑
e i :Di

∑
e j :D j

tick·X (n, gPi (d, e i), gQ j (d
′, e j))

/hPi (d, e i) ∧ hQ j (d
′, e j) ∧ n = 0 . δ+∑

i∈IC1

∑
j∈JC1

∑
e i :Di

∑
e j :D j

tick·X (n, gPi (d, e i), gQ j (d
′, e j))

/hPi (d, e i) ∧ hQ j (d
′, e i) ∧ n = 0 . δ+∑

i∈IC2

∑
j∈JC2

∑
e i :Di

∑
e j :D j

tock·X (n, d, d′) / hPi (d, e) ∧ hQ j (d
′, e) ∧ n = 0. δ

Figure 3.9: Translation of p [] q

Basically the following things have been done to combine the LPEs P and Q:

1. A counter n has been introduced. It has type N, but in reachable states n ∈
{0, 1, 2}. Initially this counter has value 0 ((n, 0) is added to V ).

2. In the first line we find the ‘normal’ actions that originally are not at the end of
process P (i.e. P does not terminate after performing one of these actions). Since
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n initially equals 0, some of these actions can be performed in the beginning of
executing X (where hPi (d, e i) holds).

3. In the second line we find all occurrences of tick and tock in LPE P. It is very
important to note that the usage of n in the guard (only considering n = 1) leads
to guards which are always false in cases where tick and tock actions are enabled
in the beginning of executing P. This is because initially n does not equal 1, but
0 and after that, when n does equal 1, hPi (d) does not hold. This results in tick
and tock occurrences at the beginning of P (in terms of execution order) being
effectively removed from process X .

4. In the third line we find the ‘normal’ actions as we did in the first line, only after
executing these actions P originally terminates. As we see here, X terminates as
well.

5. In the fourth, fifth and sixth line we find situations similar to the first, second
and third line respectively, only now they concern actions from process Q.

6. In line seven we combine all occurrences of tick in process P with all occurrences
of tock in process Q. Together, these form tick occurrences in X , where the new
state is defined by using the two functions gPi and gQ j and the guard is the
conjunction of the guards of the occurrences being combined together with the
expression n = 0. This last expression n = 0 effectively makes all guards equal
to F, except in those cases where both the tick and the tock occurrence are at the
beginning (execution-wise) of P and Q, respectively. The reason for this is similar
to the one given for the second line.

7. In the same way as is done in the previous line, the remaining lines combine tock
occurrences in P with tick occurrences in Q, tick occurrences in P and Q and tock
occurrences in P and Q respectively.

So in line two and five the tick and tock occurrences from the beginning of P and Q are
practically removed, only to appear in a combined form in lines seven, eight and nine.
This reflects what happens in the χt process p [] q, where p and q delay together if they
can both delay and no delay will happen if one of them cannot.

3.4.9 Repetition Operator
When executing the χt process ∗p, the process p gets executed in sequence infinitely
often. This construction needs to be translated using recursion.

Say we have a χt process ∗p where the LPE P = T(p). Now we define T(∗p) as
in Figure 3.10. In the LPE the termination (

p
) has been replaced by X , resulting in

executing X from the beginning again every time X has executed the final action in
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X (d : D) =∑
i∈I

∑
e i∈Di

ai( fPi (d, e i))·X (gPi (d, e i)) / hPi (d, e i). δ+∑
i∈I ′

∑
e i∈D′

i

ai( f ′Pi
(d, e i))·X (reset(g′

Pi
(d, e i))) / h′

Pi
(d, e i) . δ

Figure 3.10: Translation of ∗p

the LPE. When repeating the execution the LPE automatically begins with the first
action, which is ensured by the translation of p (note that in all translations of the
operators, counters get their initial value back at termination). However, note that the
new state, when the process starts repeating, is subject to the function reset : D→ D.
We define this function as follows, but first note that the state of a process as presented
in this chapter is referred to as d and that it is of the form d′ : D, (t0 : T, t1 : T)

−−−−−−−−−−−→
with

(t0 : T, t1 : T)
−−−−−−−−−−−→

a vector of pairs (t0 : T, t1 : T). The function reset :D→D is now defined
as:

reset(d, (t0, t1)
−−−−→

) = d, (t0, t0)
−−−−→

This function is applied to ensure that timers are reset to their initial value. Although
timers are often already reset at the termination of a process (see the translations of
the other processes), in an alternative composition it may occur that not all timers are
reset if this function is not applied.

3.4.10 Guarded Repetition Operator

Say we have the χt process ∗b : p with the LPE P = T(p) and b is translated. Now we
define T(∗b : p) as presented in Figure 3.11.

Basically the following things have been done to get the process X :

1. A counter n has been introduced. It has type N but in reachable states n ∈ {0, 1}.
Initially this counter has value 0 ((n, 0) is added to V ).

2. In the first line, the process can do a τ action if the boolean expression b evaluates
to T. After this, the actions of LPE P can be executed.

3. In the second line, P(gPi (d)) is replaced by X (1, gPi (d)).

4. In the third line,
p

(g′
Pi

(d)) is replaced by X (0, reset(g′
Pi

(d, e i))). The function
reset : D→ D is as described in Section 3.4.9.
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X (n :N, d : D) =
τ·X (1, d)/ n = 0 ∧ b . δ+∑
i∈I

∑
e i :Di

ai( fPi (d, e i))·X (n, gPi (d, e i)) / hPi (d, e i) ∧ n = 1. δ+∑
i∈I ′

∑
e i :D′

i

ai( f ′Pi
(d, e i))·X (0, reset(g′

Pi
(d, e i))) / h′

Pi
(d, e i) ∧ n = 1. δ+

τ·p(n, d)/ n = 0 ∧¬b . δ

Figure 3.11: Translation of ∗b : p

5. The fourth line allows the process to finish execution. Once the guard is false
when trying to begin executing the actions of the original P again, the process
should finish with a τ step.

3.4.11 Scope Operator

The process algebra µCRL does not have a scope operator, but the functionality of this
can be found implicitly in the algebra. Note that in the χt process |[ s | p ]|, the state
s is used to define local programming variables, local channels, an initialisation pred-
icate and local recursion definitions. So in a way, a state is a quadruple consisting of
variables, channels, initialisations and recursion definitions. First of all, in µCRL, the
programming variables of a process can be found in its parameter d. For practical rea-
sons, we rename local variables, if necessary, to ensure that they are globally uniquely
named. Local channels are not considered in this chapter; we assume that p does not
contain parallel composition, hence local channels are useless. Translation of the ini-
tialisations should, like the initialisation predicate of a χt specification (Section 3.4.2),
be dealt with in I. Hence, we add the appropriate tuples of variable names and their
values to V . Finally, recursion definitions in s should be directly applied on p, i.e. p
should be rewritten, such that it incorporates the recursion definitions. Concluding, s
is captured in µCRL by the process definition T(p), its recursion parameters, and the
initialisation of them in I. These techniques together translate the functionality of the
scope operator.

3.4.12 Urgent Communication Operator

Finally, the urgent communication operator achieves globally applied maximal progress
for all actions in χt specifications (see Section 3.3.1). In Section 3.3.1, we described
three methods to deal with maximal progress for µCRL with tick actions. Suffice it to
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say here, that when, for instance, using on-the-fly state space generation with maximal
progress, as presented in Algorithm 6, the action set H must contain all communication
actions of the specification.

3.4.13 Shared Variables
In χt, processes in a specification can share variables defined at the top level of the
specification; if one process changes the value of such a variable, the other processes
may be affected by this. In µCRL there are no shared variables, but it is possible to get
similar results.

Say two χt processes p and q share a variable named x. We translate process p
to process T(p) and process q to T(q). Both processes maintain a local copy of the
(translated) variable x. The processes can read the value of their local copy at all times,
but if one of them changes the value of its copy the other one should be aware of this
(and change the value of its own copy of x likewise). To make this possible in µCRL,
a new action assignx ∈ A is introduced, which is called by a process if it changes the
value of x. As a parameter the new value should be given. This action communicates
with another action updatex ∈ A, which can be executed by the other process at all
times. This last thing is very important, since an assignment should proceed as soon
at it is invoked. Once the other process can communicate via updatex it receives the
new value for x and assigns this to its local copy.

In case there are multiple µCRL processes which have to share x, once an assignx
action has communicated with an updatex action the resulting action communicates
immediately with the updatex action of another process, such that in the end all pro-
cesses are aware of the assignment. More specifically, for every x in a set of shared
variables S, we define assignx, assignx′, updatex, updatex′ ∈ A and (assignx, updatex,
assignx′), (updatex, updatex, updatex ′) ∈ C. The approach is similar to the time ap-
proach as described in Section 3.3. Again, the primed actions are used for intermediate
synchronisation results, and we define an extended parallel composition operator |TS|,
which deals with both time and shared variables. The definition of |TS| depends on the
set of shared variables S in M. We define it as follows:

P |TS| Q , ρ f (∂H(P || Q))

with f = {tick′ → tick, tock′ → tock} ∪ {assignx′ → assignx, updatex′ → updatex | x ∈ S}
and H = {tick, tock} ∪ {assignx, updatex | x ∈ S}

3.4.14 On the Correctness of the Translation Scheme
We remark here that there is no correctness proof of the translation scheme. This is
addressed in more detail in Section 4.8, which provides the conclusions for both this
and the subsequent chapter. Here we note that the creation of a correctness proof was
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outside of the scope of the work at the time of designing the translation scheme, and
that it may be considered as future work. In line with this, the structural operational
semantics and the set of axioms of µCRL has also not been formally extended to deal
with successful termination.
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Chapter 4

Modelling and Verifying Timed
Systems

Youth would be an ideal state if it came
later in life.

(H.H. Asquith)

I
N THIS CHAPTER WE PROVIDE some examples of applying the translation
scheme from χt to µCRL explained in Chapter 3 on concrete cases. First,
we present a small χt specification P, which consists of two processes in
parallel. Next we look at an industrial system called a turntable, which we

have translated in order to verify a given set of properties.

4.1 A Small χt System

Consider the following χt specification P:

〈 chan a !? : bool

| |[ disc i : nat , i = 2

| ∗( i ≥ 1 → ∆3.0; a ! false; i := i + 1

[] i ≥ 2 → a ! true; i := i − 1 )]|
|| |[ disc b : bool

| ∗( ∆2.0; a ? b )]|
〉

Next we translate this specification to a µCRL specification M. After that we linearise
the translation using the µCRL toolset and introduce urgent communication.
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We start by noting that the only data types used are the ones for the natural numbers
and the booleans. For µCRL this means thatN,B ∈ D. Since these are standard we do
not display their definitions here.

Now we detect the channels used and define appropriate actions for them in µCRL.
In the χt specification we see the channel a. For this we define the actions sa, ra, ca ∈A

with sa, ra, ca: B. Here sa stands for sending a value over channel a, while ra is used
for receiving a value and ca represents communication over the channel. Furthermore,
we define (sa, ra, ca), (ra, sa, ca) ∈ C.

We observe that P first of all consists of two processes in parallel composition. We
label these p0 and p1. Concerning process p0, we know how to translate the individual
actions. Using a single counter, for readability purposes, we can place the actions in
the right structure (following the translation scheme we would end up with a list of
counters, but here we use only one counter, which can range over all natural numbers).
Furthermore we see two guards placed in an alternative composition. Finally the whole
construction is subject to the repetition operator. Translating all this (and simplifying
it by removing those actions which will never be executed due to their guards never
being true) we get process X0 as displayed in Figure 4.1.

X0(i :N, n :N, t0 : T, t1 : T) =
tick·X0(i, n, t0, t1 − 1) / t1 > 0 ∧ n = 0 ∧ i ≥ 1 . δ+
τ·X0(i, 1, t0, t0) / t1 = 0 ∧ n = 0 ∧ i ≥ 1 . δ+
sa(F)·X0(i, 2, t0, t1) / n = 1 . δ+
tock·X0(i, n, t0, t1)/ n = 1 . δ+
τ·X0(i + 1, 0, t0, t0) / n = 2. δ+
sa(T)·X0(i, 3, t0, t1)/ n = 0 ∧ i ≥ 2. δ+
τ·X0(i − 1, 0, t0, t0) / n = 3. δ+
tock·X0(i, n, t0, t1)/ i < 1 ∧ n = 0 . δ

Figure 4.1: Translation of the process p0

Finally we translate p1. This is a very small process which is translated to the LPE
given in Figure 4.2. The translation is completed when we create I:

I = ∂{sa,ra,tock}X0(2, 0, 3, 3) |T| X1(F, 0, 2, 2)

Notice that we encapsulate tock here, which results in the fact that the synchronisation
of a number of tock actions (without any tick action) will not lead to an action in the
system.
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X1(b : B, n :N, t0 : T, t1 : T) =
tick·X1(b, n, t0, t1 − 1) / t1 > 0 ∧ n = 0 . δ+
τ·X1(b, 1, t0, t0) / t1 = 0 ∧ n = 0. δ+∑
b̂:B

ra(b̂)·X1(b̂, 0, t0, t0) / n = 1. δ+

tock·X1(b, n, t0, t1)/ n = 1 . δ

Figure 4.2: Translation of the process p1

Now that this translation is finished, we move on to linearise and post-process it to
introduce urgent communication. After linearisation we have LPE X as presented in
Figure 4.3, where the original parameters n, t0 and t1 of LPE p1 have been renamed
to n′, t′0 and t′1 in LPE X to avoid name clashes. Post-processing LPE X for urgent

X (i :N, n :N, t0 : T, t1 : T, b : B, n′ :N, t′0 : T, t′1 : T) =
tick·X (i, n, t0, t1 − 1, b, n′, t′0, t′1 − 1, b) / t1 > 0 ∧ n = 0 ∧ i ≥ 1 ∧ t′1 > 0 ∧ n′ = 0 . δ+
tick·X (i, n, t0, t1 − 1, b, n′, t′0, t′1) / t1 > 0 ∧ n = 0 ∧ i ≥ 1 ∧ n′ = 1 . δ+
tick·X (i, n, t0, t1, b, n′, t′0, t′1 − 1) / ((i < 1 ∧ n = 0) ∨ n = 1) ∧ t′1 > 0 ∧ n′ = 0 . δ+
ca(T)·X (i, 3, t0, t1, T, 0, t′0, t′0)/ n = 0 ∧ i ≥ 2 ∧ n′ = 1 . δ+
ca(F)·X (i, 2, t0, t1, F, 0, t′0, t′0) / n = 1 ∧ n′ = 1. δ+
τ·X (i, n, t0, t1, b, 1, t′0, t′0) / t′1 = 0 ∧ n′ = 0. δ+
τ·X (i − 1, 0, t0, t0, b, n′, t′0, t′1)/ n = 3 . δ+
τ·X (i + 1, 0, t0, t0, b, n′, t′0, t′1)/ n = 2 . δ+
τ·X (i, 1, t0, t0, b, n′, t′0, t′1) / t1 = 0 ∧ n = 0 ∧ i ≥ 1 . δ

Figure 4.3: Linearisation of ∂{sa,ra,tock}X0(i, n, t0, t1) |T| X1(b, n, t0, t1)

communication leads to extended guards of the three lines beginning with tick. More
specifically, the guards of these lines are extended with an extra conjunct, which is the
negation of a disjunction of the guards of all the other lines (lines 4 to 9). In lines 1
and 3 this does not lead to new behaviour; when the original guards of lines 1 and 3
are true, the extra conjunct is always true as well, because in that case not one guard
from lines 4 to 9 holds. In line 2 however, this is different; when the original guard
of line 2 holds, the guard of line 4 may hold as well. For readability purposes, we will
not show the fully post-processed LPE X here. We only add an extra conjunct to line 2,
for reasons stated above. Now we conclude by providing the final LPE X in Figure 4.4,
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which is a translation of the χt specification P with urgent communication. In the
linearised specification, we have I = X (2, 0, 3, 3, F, 0, 2, 2).

X (i :N, n :N, t0 : T, t1 : T, b : B, n′ :N, t′0 : T, t′1 : T) =
tick·X (i, n, t0, t1 − 1, b, n′, t′0, t′1 − 1) / t1 > 0 ∧ n = 0 ∧ i ≥ 1 ∧ t′1 > 0 ∧ n′ = 0 . δ+
tick·X (i, n, t0, t1 − 1, b, n′, t′0, t′1 − 1)

/t1 > 0 ∧ n = 0 ∧ i ≥ 1 ∧ n′ = 1 ∧¬(n = 0 ∧ i ≥ 2 ∧ n′ = 1). δ+
tick·X (i, n, t0, t1, b, n′, t′0, t′1 − 1) / ((i < 1 ∧ n = 0) ∨ n = 1) ∧ t′1 > 0 ∧ n′ = 0 . δ+
ca(T)·X (i, 3, t0, t1, T, 0, t′0, t′0) / n = 0 ∧ i ≥ 2 ∧ n′ = 1 . δ+
ca(F)·X (i, 2, t0, t1, F, 0, t′0, t′0) / n = 1 ∧ n′ = 1 . δ+
τ·X (i, n, t0, t1, b, 1, t′0, t′0) / t′1 = 0 ∧ n′ = 0. δ+
τ·X (i − 1, 0, t0, t0, b, n′, t′0, t′1)/ n = 3 . δ+
τ·X (i + 1, 0, t0, t0, b, n′, t′0, t′1)/ n = 2 . δ+
τ·X (i, 1, t0, t0, b, n′, t′0, t′1) / t1 = 0 ∧ n = 0 ∧ i ≥ 1 . δ

Figure 4.4: LPE X with urgent communication

4.2 The Turntable System
The turntable system is an example of a real-life manufacturing system representing
the application domain of (real-time) control research. It has appeared in the work of
e.g. Bos and Kleijn (2001, 2002) and Hofkamp and Van Rooy (2003).

The turntable system consists of a round turntable, a clamp, a drill and a testing
device (Figure 4.5). The turntable transports products to the drill and the testing
device. The drill drills holes in the products. After drilling a hole the products are
delivered to the tester, where the depth of the hole is measured, since it is possible that
drilling went wrong. To control the turntable system, sensors and actuators are used.
A sensor detects a physical phenomenon, and changes its state. The controller reads
the state of the sensor, and sends output to actuators. The actuators translate output
from the controller to a physical change in the machine.

The turntable has four slots that can hold a product. Each slot can hold at most
one product and can be in input, drill, test or output position. There are three sensors
attached to the turntable: the sensor s1 at the input position (to detect if a product
has been added by the environment), the sensor s3 in the output position (to detect if a
product has been removed by the environment) and the sensor s2 that detects whether
the turntable has completed the turn.

The drilling module consists of the drill and the clamp. Every product should be
locked before drilling and unlocked afterwards. To detect whether the clamp is locked
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Figure 4.5: The turntable system

or not two sensors are used (c1 and c2 respectively). The drill also has two sensors
to detect whether the drill is in its up (d1) or down (d2) position. These sensors are
located above the surface of the turntable, so it is not possible to say whether the
product has been drilled successfully or not.

In the testing position there are two sensors to detect whether the tester has reached
its up (t1) or down (t2) position. If the tester has reached its down position the test
result of the product is good and if the sensor at the down position did not send a
signal during a certain amount of time the test result of the product is bad.

The turntable control system consists of the main controller, turntable controller,
drill controller, and tester controller. The main controller supervises the other con-
trollers and the environment. It stores current information about products and opera-
tions being performed and based on this information it issues commands to the other
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controllers and the environment to start operations. When operations are completed
the main controller updates the information about the products.

The turntable controller gets signals from the turntable sensors and passes them to
the main controller. It also starts rotation of the turntable at the command of the main
controller.

The drill controller supervises the drill and the clamp. It switches the drill on/off
and commands to lock/unlock the clamp or to start or stop drilling. The drill controller
also gets signals from the drill and clamp sensors.

The test controller sends a signal to the tester to start the operation. Then it waits
for a signal from the sensor at the down position. If the hole is not deep enough, the
sensor is not activated and the current product should be rejected.

The operation-routing sequence of each product is as follows: add a product to the
input position, make a turn (now the product is in the drilling position), lock the clamp,
switch on the drill, drill, switch off the drill, unlock the clamp, make another turn (now
the product is in the test position), test, and make a turn again (the product is in the
removing position).

No product can be added if the adding slot is not empty. No drilling, testing or
removing can be performed if the corresponding slot is empty. The turntable can treat
up to four products at the same time, that means that the operations can be done in
parallel.

Design rules and assumptions Creating the specification, we only consider “good
weather” behaviour, i.e. the assumption is that the system works without faults and
there is no product loss. The initial state is defined as follows: all slots are empty and
no operation is started.

For reasons of simplicity, we decide to concentrate on the control system. That means
that we do not model material flow as this information can be obtained from the infor-
mation stored by the main controller.

We assume that the main controller sends messages to the environment to allow
adding and removing of products and the environment informs the main controller
when the operations are completed. The environment can skip the adding or removing
operations. A product can be removed from the removing position only if it has been
drilled properly. If a product has a good test result and it has not been removed, it
should not be drilled and tested again. If a product has a bad test result it must be
drilled and tested again. That means that information on the adding and removing of
products is only necessary after the rotation of the turntable.

When the other sensors change their states, the control system must be notified
immediately. For instance, if the clamp sensor does not report that the clamp is locked,
the drill cannot start drilling. Therefore, the turntable sensor states are checked by
the control system just before a turn, while the other sensors inform the control system
about their state changes immediately.
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We also assume that the order of starting and ending of the adding, drilling, testing
and removing operations is not known in advance.

The execution of each turntable operation requires a certain amount of time. Be-
cause the duration of the turntable operations has not been defined anywhere, we have
decided to use the delays which have been defined in other turntable specifications,
like the one of Bos and Kleijn (2002). We assume that the environment needs 2 time
units to perform adding or removing of a product. The clamp needs 2 time units to lock
or unlock a product. The drilling operation takes 3 time units and returning the drill
to its up position takes 2 time units. Testing and returning the tester to its initial (up)
position require 2 time units each.

Verification properties Traditionally, verification properties have been classified
into safety and liveness properties. Safety is usually defined as a set of properties that
the system may not violate, while liveness is defined as the set of properties that the
system must satisfy (Holzmann, 2004). Safety, then, defines that something bad will
never happen, and liveness defines that eventually something good will happen. It can
be argued what kind of property the absence of deadlock is, but here it is considered a
liveness property, due to the fact that a deadlock situation trivially satisfies all safety
properties, but does not satisfy deadlock freedom (Godefroid and Wolper, 1991).

Given those assumptions we want to verify the following properties:

1. The system does not contain a deadlock, i.e. it cannot come to a state from which
it cannot continue operating (liveness).

2. If drilling (testing, adding or removing) is started then it is also finished and the
turntable does not rotate in the meantime (liveness and safety).

3. If the product has a bad test result then the product remains on the table and is
drilled again (liveness).

4. If the product has a good test result then the remover will be called to remove
the product (liveness).

5. No drilling (testing or removing) takes place if there is no product in the slot and
no adding is performed if there is a product in the slot (safety).

6. Every added product is drilled in the next rotation (liveness).

7. Every product eventually leaves the table (liveness).

8. When a product is added it takes between 25 and 39 time units to get its test
result (liveness).
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Property 7 is a liveness property that requires a fairness principle, which makes this
property the most complicated one.

First, a product can be removed only if it has a good test result. However, the
remover can always decide not to remove and the tester can always generate bad
test results. Theoretically, this can happen, because the choices whether the product
will be removed and whether the test result of the product is good or bad are non-
deterministic. In order to verify this property we must put some notion of fairness to
the verification process, i.e. exclude unfair paths, in which a product yields a bad test
result infinitely often.

Second, since there are at most four products on the table, it can happen that one of
the products stays on the table while the other ones are drilled properly and removed.
In order to verify that every product will eventually be removed we must identify them
in some way. The most common solution is to give colors to the products, for instance,
red and white, and change the adder such that it adds (non-deterministically) zero or
more white products, then one red, and then again zero or more white ones. We want to
make sure that if a red product is added then a red one will leave the table eventually.
Another solution would be to assign unique identifiers to products or use some other
way to distinguish them, but one should be aware of the fact that an introduction of
unique identifiers often leads to a large increase of the resulting state space.

The fairness constraints can be expressed syntactically in linear temporal logic (LTL),
but not in branching temporal logic (like CTL).1 In µ-calculus, fairness properties can
be expressed very efficiently, as shown by Mateescu and Sighireanu (2003).

The last property (so-called bounded liveness) also requires identification of the prod-
ucts. First, we calculate manually the time interval within which a test result of a
product is known based on the assumptions. After that we check this interval auto-
matically.

4.3 The Turntable Specification in χt

The turntable system architecture is depicted in Figure 4.6. The mechanical compo-
nents are represented by means of the processes Tester, DrillSwitch, DrillMove, Clamp
and Table. These components are controlled by switching commands: the command
cDrillSwitch switches the drill on/off, cDrillMove instructs the drill to start or stop
drilling, cClampSwitch instructs the clamp to lock or unlock the product, and cTester-
Move instructs the tester to start or stop testing. The other signals used are cTurn
(which commands the turntable to start turning) and cAdd, cRemove (which inform
the environment that it can perform adding or removing operations respectively). As
already mentioned, the sensors are implemented in several ways (more explanation is
given in the descriptions of the corresponding processes).

1For more on temporal logics, see e.g. Clarke et al. (1999).
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The control system specification consists of the main controller, the drill and clamp
controller and the tester controller, which are modelled by means of the processes
MainControl, DrillControl and TesterControl respectively. The processes EnvAdd and
EnvRemove represent the environment.
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Figure 4.6: The turntable specification architecture

The architecture presented in Figure 4.6 is modelled with the χt specification called
Turntable, which is as shown in Figure 4.7.

Next, we explain all processes appearing in Turntable in detail. Of each process, a
description is given, followed by the χt code that models the component.

The Table process In the Table process (Figure 4.8) we work with variables added
and removed, in order to keep track of adding and removing actions undertaken in
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〈 chan cAdd !?, cRemove !?, cAdded !?, cRemoved !? : bool ,

cClampSwitch !?, cDrillSwitch !? : void , cLocked !?, cDrillSwitched !? : bool ,

cDrillMove !?, cTurn !? : void , cDrillMoved !? : bool , cTurned !? : void ,

cTesterMove !?, cTest !? : void , cTesterMoved !?, cTested !? : bool ,

cDrill !?, cDrilled !?, cEnvAdded !?, cEnvRemoved !? : void

| Table || Clamp || DrillSwitch || DrillMove || Tester || MainControl
|| DrillControl || TesterControl || EnvAdd || EnvRemove
〉

Figure 4.7: The χt turntable specification

the current position of the table. Once the Table process receives the message that a
product has been added (or removed) it sets the added variable (or removed variable) to
true. The value of these variables can be sent via channels cAdded and cRemoved. As
can be seen later, the MainControl process regularly issues requests via these channels.
Besides that, MainControl keeps track of all four slots and all their possible states (in
total 5 per slot). When Table gets the signal cTurn it performs a delay to represent
the turning of the table. Reading and updating are ‘atomic’ and instantaneous actions.
The control system is modelled in such a way that it is not possible to perform those
actions in parallel. This allows us to use alternative composition instead of parallel
composition, resulting in a reduction of the state space.

Table = |[ disc added, removed : nat

, added = false, removed = false

| ∗( cEnvAdded ?; added = true

[] cEnvRemoved ?; removed = true

[] cAdded ! added
[] cRemoved ! removed
[] cTurn ?; ∆4.0; added := false; removed := false; cTurned !

)

]|

Figure 4.8: The χt process Table
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The Clamp process The clamp process (Figure 4.9) has one actuator that is used to
switch it on/off (cClampSwitch). The clamp also has a sensor to detect whether it is
locked or unlocked. When the state of the sensor changes, the process Clamp reports
to the drill control system via the channel cLocked.

Clamp = |[ disc clamp_on : bool

, clamp_on = false

| ∗( cClampSwitch ?

; ( clamp_on → clamp_on := false

[] ¬clamp_on → clamp_on := true

)

; ∆2.0; cLocked ! clamp_on
)

]|

Figure 4.9: The χt process Clamp

The Drill processes The drill is controlled by two independent actuators. One of the
actuators is used to switch the drill on/off (cDrillSwitch). The other one (cDrillMove)
instructs the drill to start drilling or to return in its initial (up) position. The states of
the sensors are detected through the channels cDrillSwitched and cDrillMoved. The
commands are handled independently, therefore we model these functionalities in two
independent processes, DrillSwitch and DrillMove (Figures 4.10 and 4.11).

The Tester process The tester is controlled by one actuator, cTesterMove, which is
used to start or stop testing. It has two sensors. One of them is used to detect a
test result of a product, the other one detects whether the tester is in its initial (up)
position. Possible test results are modelled by non-deterministic choice. When the
test result of a product is good the process Tester (Figure 4.12) sends a signal via the
channel cTesterMoved. Otherwise, it does not send any message. Of course, one could
imagine modelling it differently, namely having the tester either send a success or a
failure message, but the approach chosen here better reflects the real system.

The MainControl process The MainControl process (Figure 4.13) keeps track of
the table slots and operates the other controllers. We use four local variables (p0,
p1, p2, p3) to describe the state of every slot. The variable values range from 0 to 4
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DrillSwitch = |[ disc drill_on : bool

, drill_on = false

| ∗( cDrillSwitch ?

; ( drill_on → drill_on := false

[] ¬drill_on → drill_on := true

)

; ∆2.0; cDrillSwitched ! drill_on
)

]|

Figure 4.10: The χt process DrillSwitch

(0 means that there is no product in the slot, 1 - there is a product in the slot and
it is not drilled, 2 - a product has been drilled, 3 - a product has been tested and
has a bad test result, and 4 - a product has been tested and has a good test result).
First, the MainControl process checks the states of the slots and starts corresponding
processes (adding, drilling, testing and removing). The operations (cAdd, cDrill, cTest
and cRemove) are started according to the following rules:

• The environment is allowed to add a product if there is no product in the slot.

• Drilling can be performed if there is a product in the slot and it has not been
drilled yet or it has a bad test result.

• Testing is allowed if there is a product in the slot and it has been drilled.

• The environment is allowed to remove a product if there is a product in the slot
and it has a good test result.

If these operations have been started the MainControl process waits until they are
completed (cAdded, cRemoved, cTested, cDrilled). After that, it gives the command to
the process Table to read the states of the sensors at the adding and removing slots and
gets their current states. If their states have been changed (i.e. products have been
added or removed), MainControl updates the information about current slot states.
Then, it sends the command to turn the turntable (cTurn) to Table and waits until
the turn is completed (cTurned). After this, the loop is repeated. In the real system
the states of the sensors at adding and removing positions are automatically updated
during the turn. To achieve this in the specification we send new states of the turntable
sensors over the channel cTurn. In our specification, MainControl sends the value
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DrillMove = |[ disc drill_down : bool

, drill_down = false

| ∗( cDrillMove ?

; ( drill_down → drill_down := false; ∆2.0

[] ¬drill_down → drill_down := true; ∆3.0

)

; cDrillMoved ! drill_down
)

]|

Figure 4.11: The χt process DrillMove

of the sensors after the turn over the channel cTurn (the information is coded as an
integer in following way: p = 0 means that there is no product in the adding and
removing positions, p = 1 means that there is no product in the adding position and
there is a product in the removing slot, p = 2 means that there is a product in the
adding position and there is no product in the removing position, p = 3 means that
there are products in both slots). Another approach to update the sensor states is to
duplicate the information about all slots in the Table process (Bos and Kleijn, 2002).
This approach allows one to separate the physical and control systems more easily and
more simply but leads to a larger state space.

The DrillControl process The process DrillControl (Figure 4.14) gets the command
to start drilling from the MainControl process over the channel cDrill. When this hap-
pens, it sends a signal to lock the clamp (via cClampSwitch) and waits for the reply
from the clamp sensor (via cLocked). When the clamp is locked DrillControl uses the
other switching command (via cDrillSwitch) to turn on the drill and waits for the con-
firmation (via cDrillSwitched). Next, it gives a signal to start drilling (via cDrillMove),
waits for confirmation from the sensor (via cDrillMoved), sends a signal to return the
drill to its initial (up) position (via cDrillMove), and waits for confirmation from the sen-
sor (via cDrillMoved). After that, DrillControl switches the drill off (via cDrillSwitch),
and waits for confirmation (via cDrillSwitched). Next, DrillControl unlocks the clamp
(via cClampSwitch), waits for the signal from the clamp sensor (via cLocked) and re-
ports to MainControl that drilling is completed (via cDrilled). Note that if during the
procedure an unexpected reply is given by another process, DrillControl facilitates a
livelock.
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Tester =
|[ disc tester_down : bool

, tester_down = false

| ∗( cTesterMove ?

; ( tester_down → tester_down := false; ∆2.0; cTesterMoved ! tester_down
[] ¬tester_down → tester_down := true; ∆2.0; cTesterMoved ! tester_down
[] ¬tester_down → tester_down := true; ∆2.0

)

)

]|

Figure 4.12: The χt process Tester

The TesterControl process TesterControl (Figure 4.15) gets a command to perform
testing from MainControl (via cTest) and moves the tester down (via cTesterMove). To
perform the testing operation, Tester needs 2 time units. If the tester has reached
its down position within 2 time units, the test result of the product is good, but if
the sensor does not react in 2 time units, the test result of the product is bad. The
TesterControl process, however, waits for the signal from Tester for 3 time units instead
of 2. The reason for this is that if Tester and TesterControl delay for the same amount
of time, there is a possibility that TesterControl would make its choice before Tester.
So, in order to ensure that Tester always makes its choice before TesterControl the
latter delays longer. Now, if Tester makes a choice within 2 time units, TesterControl
has no choice anymore. TesterControl stores the test result, moves the tester up (via
cTesterMove), and sends the test result to MainControl over the channel cTested. Note
that if during the procedure an unexpected reply is given by the tester, TesterControl
facilitates a livelock.

The Environment processes There are two environment processes in the specifi-
cation (Figures 4.16 and 4.17): one for adding and one for removing products. They
get appropriate signals from MainControl to add or remove a product (via cAdd and
cRemove). Once an environment process has decided to add or remove a product (it can
also ignore a request), it sends the appropriate message to the Table process through
the channels cAdded and cRemoved.
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MainControl = |[ disc p1, p2, p3, p4, ps : nat , m : bool

, p1 = 0, p2 = 0, p3 = 0, p4 = 0, ps = 0, m = false

| ∗( ( p1 = 0 → cAdd ! true [] p1 6= 0 → skip )

; ( p4 = 3 → cRemove ! true [] p4 6= 3 → skip )

; ( p2 = 1 → cDrill [] p2 6= 1 → skip )

; ( p3 = 2 → cTest; cTested ? m
; ( ¬m → p3 := 1 [] m → p3 := 3 )

[] p3 6= 2 → skip )

; ( p2 = 1 → cDrilled ?; p2 := 2 [] p2 6= 1 → skip )

; cAdd ! false; cRemove ! false

; cAdded ? m; ( m → p1 := 1 [] ¬m → skip )

; cRemoved ? m; ( m → p4 := 0 [] ¬m → skip )

; cTurn !; ps := p4; p4 := p3; p3 := p2; p2 := p1; p1 := ps
; cTurned ?

)

]|

Figure 4.13: The χt process MainControl

4.4 The Turntable Specification in µCRL

In the next few paragraphs we look at the µCRL specification of the turntable which
resulted from translating the original χt specification. Instead of explicitly providing
all LPE definitions though, we look at a representative number of them. For instance,
the χt processes EnvAdd and EnvRemove are structurally so much alike that we omit
the latter one. Translating the turntable specification was done using an implemented
automatic translator using the scheme described in Section 3.4. However, for readabil-
ity purposes, we limit the number of process counters in a process to one, such that this
one counter n, which ranges over the natural numbers, takes over the functionality of
the entire list of counters resulting from the translation scheme. Furthermore, we omit
an alternative in a resulting LPE if its condition obviously never holds.

The definition of actions needed to translate the χt channels is not given here. Suffice
it to say that each channel shown in Figure 4.6 is translated according to the scheme
to an action triple, accompanied by an appropriate communication rule.
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DrillControl = |[ disc b : bool

, b = false

| ∗( cDrill ?; cClampSwitch !; cLocked ? b
; b → cDrillSwitch !; cDrillSwitched ? b
; b → cDrillMove !; cDrillMoved ? b
; b → cDrillMove !; cDrillMoved ? b
; ¬b → cDrillSwitch !; cDrillSwitched ? b
; ¬b → cClampSwitch !; cLocked ? b
; ¬b → cDrilled !

)

]|

Figure 4.14: The χt process DrillControl

The Table process The first process we look at is the Table process. Figure 4.18
shows the µCRL specification of the corresponding LPE TABLE. In I, the process TA-
BLE is called with the process counter n equal to 0. Therefore the program can start
execution only by performing one of the actions for which the accompanying guard
includes the disjunct n = 0. The table initially has several alternative options:

• It can receive the message that the environment has received a new product or
that a product has been removed. This will change the state in the obvious way.

• It can send the information whether a product has been added to position 1 and
whether a product has been removed from position 4.

• It can receive the request to make a turn. Turning takes four time units, which
is set in I by calling TABLE there with both t0 and t1 equal to 4.

• The lines beginning with τ are in fact translations of χ assignment actions.

• The tock alternative ensures the delayability of all send and receive actions.

Finally, note that the main loop in the process is achieved by resetting n to 0 at the
appropriate moments, and that at those times t1 is reset to its initial value t0.

The Clamp process The χt process Clamp is translated to the LPE CLAMP dis-
played in Figure 4.19. Compared to the LPE TABLE, here we see the translation of
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TesterControl = |[ disc t, test_result : bool

, t = false, test_result = false

| ∗( cTest ?; cTesterMove !

; ( cTesterMoved ? t
; t → test_result := true

[]∆3.0; test_result := false

)

; cTesterMove !; cTesterMoved ? t
; ¬t → cTested ! test_result
)

]|

Figure 4.15: The χt process TesterControl

some χt guards. Their conditions are incorporated into the conditions of the correspond-
ing µCRL actions. Note that although an individual guard construction can delay if its
condition does not hold, the two guard constructions here together in alternative com-
position cannot delay, since they negate each other. This dealt with in the translation
by the translation of alternative composition.

Due to having structures almost identical to the one of CLAMP, the LPEs DRILL-
SWITCH, DRILLMOVE, ENVADD and ENVREMOVE, which are the translations of
the χt processes DrillSwitch, DrillMove, EnvAdd and EnvRemove, respectively, are
skipped in our discussion.

The Tester process The χt Tester process represents the test device on the turntable.
Figure 4.20 presents it in its translated form as the LPE TESTER. In the LPE TESTER,
we see an example of several delays being present and how this is dealt with using pairs
of timers.

The DrillControl process The χt DrillControl process is the process that controls
the overall order of execution concerning the usage of the clamp and the drill. The
LPE DCONTROL is the translation of this process, presented in Figure 4.21. The
DrillControl process runs through a specific sequence of actions which is dealt with in
the LPE by the usage of process counter n. Receive actions are here equipped with a
boolean parameter, therefore summations over the boolean domain are added to allow
the reception of both T and F. Finally, note that the delayability alternative is always
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EnvAdd = |[ disc add_allowed : bool

, add_allowed = true

| ∗( cAdd ? add_allowed
; ( add_allowed → cEnvAdded !

[] skip

)

)

]|

Figure 4.16: The χt process EnvAdd

EnvRemove = |[ disc remove_allowed : bool

, remove_allowed = true

| ∗( cRemove ? remove_allowed
; ( remove_allowed → cEnvRemoved !

[] skip

)

)

]|

Figure 4.17: The χt process EnvRemove

enabled; this is due to the fact that no actions other than send and receive actions are
present. It also facilitates livelocks in situations where a received boolean value is not
as expected.

The TesterControl process The χt TesterControl process controls the testing proce-
dure. The LPE TCONTROL, as shown in Figure 4.22, is the translation of this process.
In this process we identify a time-out construction; when the action rcTesterMoved is
enabled, a delay of t1 time units is also enabled. However, once this delay is fully fin-
ished, a τ action can be fired, disabling the rcTesterMoved possibility. Depending on
whether a time-out happens or not, variable test_result is set to F or T. Again, the tock
alternative ensures livelocks whenever t has an unexpected value.
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TABLE(n :N, added : B, removed : B, t0 : T, t1 : T) =
rcEnvAdded·TABLE(1, added, removed, t0, t1) C n = 0 B δ+
τ·TABLE(0, T, removed, t0, t0) C n = 1 B δ+
rcEnvRemoved·TABLE(2, added, removed, t0, t1) C n = 0 B δ+
τ·TABLE(0, added, T, t0, t0) C n = 2 B δ+
scAdded(added)·TABLE(0, added, removed, t0, t0) C n = 0 B δ+
scRemoved(removed)·TABLE(0, added, removed, t0, t0) C n = 0 B δ+
rcTurn·TABLE(3, added, removed, t0, t1) C n = 0 B δ+
tick·TABLE(n, added, removed, t0, t1 − 1)/ n = 3 ∧ t1 > 0 . δ+
τ·TABLE(4, added, removed, t0, t1)/ n = 3 ∧ t1 = 0 . δ+
τ·TABLE(5, F, removed, t0, t1) C n = 4 B δ+
τ·TABLE(6, added, F, t0, t1) C n = 5 B δ+
scTurned·TABLE(0, added, removed, t0, t0) / n = 6. δ+
tock·TABLE(n, added, removed, t0, t1) / n = 0 ∨ n = 6. δ

Figure 4.18: The µCRL process TABLE

The MainControl process Finally the most important and complicated χt process
is the MainControl process. It is translated to the LPE presented in Figure 4.23, called
MCONTROL.
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CLAMP(n :N, clamp_on : B, t0 : T, t1 : T) =
rcClampSwitch·CLAMP(1, clamp_on, t0, t1) C n = 0 B δ+
τ·CLAMP(2, F, t0, t1) C n = 1 ∧ clamp_on B δ+
τ·CLAMP(2, T, t0, t1) C n = 1 ∧¬clamp_on B δ+
tick·CLAMP(n, clamp_on, t0, t1 − 1) / n = 2 ∧ t1 > 0 . δ+
τ·CLAMP(3, clamp_on, t0, t1) / n = 2 ∧ t1 = 0. δ+
scLocked(clamp_on)·CLAMP(0, clamp_on, t0, t0) C n = 3 B δ+
tock·CLAMP(n, clamp_on, t0, t1) C n = 0 ∨ n = 3 B δ

Figure 4.19: The µCRL process CLAMP

TESTER(n :N, tester_down : B, t00 : T, t01 : T, t10 : T, t11 : T, t20 : T, t21 : T) =
rcTesterMove·TESTER(1, tester_down, t00, t01, t10, t11, t20, t21) C n = 0 B δ+
τ·TESTER(2, F, t00, t01, t10, t11, t20, t21) C n = 1 ∧ tester_down B δ+
τ·TESTER(3, T, t00, t01, t10, t11, t20, t21) C n = 1 ∧¬tester_down B δ+
τ·TESTER(4, T, t00, t01, t10, t11, t20, t21) C n = 1 ∧¬tester_down B δ+
tick·TESTER(n, tester_down, t00, t01 − 1, t10, t11, t20, t21) / n = 2 ∧ t01 > 0 . δ+
τ·TESTER(5, tester_down, t00, t01, t10, t11, t20, t21) / n = 2 ∧ t01 = 0 . δ+
tick·TESTER(n, tester_down, t00, t01, t10, t11 − 1, t20, t21) / n = 3 ∧ t11 > 0 . δ+
τ·TESTER(6, tester_down, t00, t01, t10, t11, t20, t21) / n = 3 ∧ t11 = 0 . δ+
tick·TESTER(n, tester_down, t00, t01, t10, t11, t20, t21 − 1) / n = 4 ∧ t21 > 0 . δ+
τ·TESTER(0, tester_down, t00, t00, t10, t10, t20, t20) / n = 4 ∧ t21 = 0 . δ+
scTesterMoved(tester_down)·TESTER(0, tester_down, t00, t00, t10, t10, t20, t20) C n = 5 . δ+
scTesterMoved(tester_down)·TESTER(0, tester_down, t00, t00, t10, t10, t20, t20) C n = 6 . δ+
tock·TESTER(n, tester_down, t00, t01, t10, t11, t20, t21) C n = 0 ∨ n = 5 ∨ n = 6 B δ

Figure 4.20: The µCRL process TESTER
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DCONTROL(n :N, b : B) =
rcDrill·DCONTROL(1, b) C n = 0 B δ+
scClampSwitch·DCONTROL(2, b) C n = 1 B δ+∑
b̂:B

rcLocked(b̂)·DCONTROL(3, b̂) C n = 2 B δ+

scDrillSwitch·DCONTROL(4, b) C n = 3 ∧ b B δ+∑
b̂:B

rcDrillSwitched(b̂)·DCONTROL(5, b̂) C n = 4 B δ+

scDrillMove·DCONTROL(6, b) C n = 5 ∧ b B δ+∑
b̂:B

rcDrillMoved(b̂)·DCONTROL(7, b̂) C n = 6 B δ+

scDrillMove·DCONTROL(8, b) C n = 7 ∧ b B δ+∑
b̂:B

rcDrillMoved(b̂)·DCONTROL(9, b̂) C n = 8 B δ+

scDrillSwitch·DCONTROL(10, b) C n = 9 ∧¬b B δ+∑
b̂:B

rcDrillSwitched(b̂)·DCONTROL(11, b̂) C n = 10 B δ+

scClampSwitch·DCONTROL(12, b) C n = 11 ∧¬b B δ+∑
b̂:B

rcLocked(b̂)·DCONTROL(13, b̂) C n = 12 B δ+

scDrilled·DCONTROL(0, b) C n = 13 ∧¬b B δ+
tock·DCONTROL(n, b)

Figure 4.21: The µCRL process DCONTROL
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TCONTROL(n :N, t : B, test_result : B, t0 : T, t1 : T) =
rcTest·TCONTROL(1, t, test_result, t0, t1) C n = 0 B δ+
scTesterMove·TCONTROL(2, t, test_result, t0, t1) C n = 1 B δ+∑
b̂:B

rcTesterMoved(b̂)·TCONTROL(3, b̂, test_result, t0, t1) C n = 2 B δ+

tick·TCONTROL(n, t, test_result, t0, t1 − 1) C n = 2 ∧ t1 > 0 B δ+
τ·TCONTROL(4, t, test_result, t0, t1) C n = 2 ∧ t1 = 0 B δ+
τ·TCONTROL(5, t, T, t0, t1) C n = 3 ∧ t B δ+
τ·TCONTROL(5, t, F, t0, t1) C n = 4 . δ+
scTesterMove·TCONTROL(6, t, test_result, t0, t1) C n = 5 B δ+∑
b̂:B

rcTesterMoved(b̂)·TCONTROL(7, b̂, test_result, t0, t1) C n = 6 B δ+

scTested(test_result)·TCONTROL(0, t, test_result, t0, t0) C n = 7 ∧¬t B δ+
tock·TCONTROL(n, t, test_result, t0, t1) C n ≤ 1 ∨ (n = 3 ∧¬t) ∨ n ≥ 5 B δ

Figure 4.22: The µCRL process TCONTROL
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MCONTROL(n :N, p1 :N, p2 :N, p3 :N, p4 :N, ps :N, m : B) =
scAdd(T)·MCONTROL(1, p1, p2, p3, p4, ps, m) C n = 0 ∧ p1 = 0 B δ+
τ·MCONTROL(1, p1, p2, p3, p4, ps, m) C n = 0 ∧ p1 6= 0 B δ+
scRemove(T)·MCONTROL(2, p1, p2, p3, p4, ps, m) C n = 1 ∧ p4 = 3 B δ+
τ·MCONTROL(2, p1, p2, p3, p4, ps, m) C n = 1 ∧ p4 6= 3 B δ+
scDrill·MCONTROL(3, p1, p2, p3, p4, ps, m) C n = 2 ∧ p2 = 1 B δ+
τ·MCONTROL(3, p1, p2, p3, p4, ps, m) C n = 2 ∧ p2 6= 1 B δ+
scTest·MCONTROL(4, p1, p2, p3, p4, ps, m) C n = 3 ∧ p3 = 2 B δ+
τ·MCONTROL(6, p1, p2, p3, p4, ps, m) C n = 3 ∧ p3 6= 2 B δ+∑
b̂:B

rcTested(b̂)·MCONTROL(5, p1, p2, p3, p4, ps, b̂) C n = 4 B δ+

τ·MCONTROL(6, p1, p2, 1, p4, ps, m) C n = 5 ∧¬m B δ+
τ·MCONTROL(6, p1, p2, 3, p4, ps, m) C n = 5 ∧ m B δ+
rcDrilled·MCONTROL(7, p1, p2, p3, p4, ps, m) C n = 6 ∧ p2 = 1 B δ+
τ·MCONTROL(8, p1, p2, p3, p4, ps, m) C n = 6 ∧ p2 6= 1 B δ+
τ·MCONTROL(8, p1, 2, p3, p4, ps, m) C n = 7 B δ+
scAdd(F)·MCONTROL(9, p1, p2, p3, p4, ps, m) C n = 8 B δ+
scRemove(F)·MCONTROL(10, p1, p2, p3, p4, ps, m) C n = 9 B δ+∑
b̂:B

rcAdded(b̂)·MCONTROL(11, p1, p2, p3, p4, ps, b̂) C n = 10 B δ+

τ·MCONTROL(12, 1, p2, p3, p4, ps, m) C n = 11 ∧ m B δ+
τ·MCONTROL(12, p1, p2, p3, p4, ps, m) C n = 11 ∧¬m B δ+∑
b̂:B

rcRemoved(b̂)·MCONTROL(13, p1, p2, p3, p4, ps, b̂) C n = 12 B δ+

τ·MCONTROL(14, p1, p2, p3, 0, ps, m) C n = 13 ∧ m B δ+
τ·MCONTROL(14, p1, p2, p3, p4, ps, m) C n = 13 ∧¬m B δ+
scTurn·MCONTROL(15, p1, p2, p3, p4, ps, m) C n = 14 B δ+
τ·MCONTROL(16, p1, p2, p3, p4, p4, m) C n = 15 B δ+
τ·MCONTROL(17, p1, p2, p3, p3, ps, m) C n = 16 B δ+
τ·MCONTROL(18, p1, p2, p2, p4, ps, m) C n = 17 B δ+
τ·MCONTROL(19, p1, p1, p3, p4, ps, m) C n = 18 B δ+
τ·MCONTROL(20, ps, p2, p3, p4, ps, m) C n = 19 B δ+
rcTurned·MCONTROL(0, p1, p2, p3, p4, ps, m) C n = 20 B δ+
tock·MCONTROL(n, p1, p2, p3, p4, ps, m)

C (n = 0 ∧ p1 = 0) ∨ (n = 1 ∧ p4 = 3) ∨ (n = 2 ∧ p2 = 1) ∨ (n = 3 ∧ p3 = 2)

∨ n = 4 ∨ (n = 6 ∧ p2 = 1) ∨ 8 ≤ n ≤ 10 ∨ n = 12 ∨ n = 14 ∨ n = 20 B δ

Figure 4.23: The µCRL process MCONTROL
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The only part which might need additional explanation is the delayability alterna-
tive; since in the χt process, most of the communication actions have a skip action as
an alternative, we observe that these guarded communication actions are not delayable
if their guards do not hold (remember that in χt the strong time determinism princi-
ple holds and that skip is undelayable). Therefore, in the delayability alternative, the
guards of these actions are explicitly stated here.

The initialisation Now that all the processes have been translated, all that remains
is the construction of I. It is as follows:

∂H(TABLE(0, F, F, 4, 4) |T| CLAMP(0, F, 2, 2) |T| DRILLSWITCH(0, F, 2, 2)

|T| DRILLMOVE(0, F, 2, 2, 3, 3)) |T| TESTER(0, F, 2, 2, 2, 2, 2, 2)

|T| DCONTROL(0, F) |T| TCONTROL(0, F, F, 3, 3)

|T| MCONTROL(0, 0, 0, 0, 0, 0, F) |T| ENVADD(0, T)

|T| ENVREMOVE(0, T))

In I, the set H contains all send and receive actions of the specification, and tock to
block partial delays of the whole system.

4.5 Verifying the Properties
From the µCRL specification a state space can be generated using the µCRL toolset.
This state space can then be analysed with the verification tool CADP. Using this
tool, one can express properties in the regular alternation-free logic µ-calculus (see
Section 2.3). These properties can be verified on the state space generated from the
specification. The CADP tool, together with µ-calculus, was used for the verification of
the properties of the turntable specification.

The state space Having translated the χt specification, the state space of the µCRL
specification was generated using the µCRL toolset. This took about 20 seconds, re-
sulting in a state space of 70,324 states and 119,306 transitions, which contained 72
deadlocks. This state space, however, still contained undesired system behaviour due
to the lack of maximal progress. For instance, deadlocks resulted from the time-out
construction in the TCONTROL process. Without maximal progress, the Tester pro-
cess may be fully ignored by TCONTROL, even though it is ready to communicate. If
it is ignored it cannot participate in later communications, resulting in deadlocks. Ap-
plying maximal progress using the state space reduction tool resulted in a state space
of 24,496 states and 41,494 transitions. After reduction modulo branching bisimula-
tion (Van Glabbeek and Weijland, 1996b) we ended up with a state space consisting of
8,919 states and 12,871 transitions. Table 4.1 shows the results mentioned. We also
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experienced that the order in which maximal progress and reduction modulo branching
bisimilation are applied does not influence the final result.

Table 4.1: State spaces of the µCRL turntable specification
PPPPPPPPSize

Type
Initial max. prog. max. prog. + red.

# States 70,324 24,496 8,919
# Transitions 119,306 41,494 12,871

Verifying properties Using the state space obtained after applying maximal progress
and reduction modulo branching bisimilation, we can start verifying system properties
expressed in µ-calculus. Here we look again at the properties initially given in Sec-
tion 4.2.

1. The system does not contain a deadlock. The absence of deadlock was veri-
fied in the CADP tool, which has this functionality built-in.

2. If drilling (testing, adding or removing) is started then it is also finished.
The turntable does not rotate in the meantime. This property is checked in
two steps. First we check the liveness property “if drilling is started then it is
also finished” by using this formula:

[T∗.ccDrill] µX .(〈T〉 T ∧ [¬ccDrilled] X )

Then the safety property “it never occurs during drilling that the turntable ro-
tates” is checked with this formula:

[T∗.ccDrill.¬ccDrilled∗.ccTurn] F

3. If the product has a bad test result it remains on the table and is drilled
again (when it comes to the drilling position). This property is checked in
two steps. The first formula is used to check, that it never occurs that a product
with a bad test result is removed from the table after one turn of the table:

[T∗.ccTested(F).¬ccTurn∗.ccTurn.¬ccTurn∗.ccEnvRemoved] F

It expresses that in no execution path of the state space a failed test of a product
(ccTested(F)) is followed (after having done one rotation) by the removal of that
product.
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In the second formula it is checked that it never occurs that a product with a bad
test result is not drilled again after three rotations:

[T∗.ccTested(F).¬ccTurn∗.ccTurn.¬ccTurn∗.ccTurn.

¬ccTurn∗.ccTurn.¬ccDrill∗.ccTurn] F

4. If the product has a good test result then the remover will be called to
remove the product. In other words, it will never happen that for a product
with a good test result the remover is not called to remove the product. This is
represented in µ-calculus by the formula:

[T∗.ccTested(T).¬ccTurn∗.ccTurn.¬ccRemove(T)∗.ccTurn] F

5. No drilling (testing or removing) takes place if there is no product in
the slot and no adding can be performed if there is a product in the slot.
Because of the usage of the regular alternation-free µ-calculus one can only verify
action-based properties, but state-based properties can in general be checked in
an action-based way by first changing the specification slightly, as shown by De
Nicola and Vaandrager (1995). In essence, what happens is that if you want to
check the value of parameter x of process X you extend the specification of X
such that it can always perform a special action with x as a parameter which
does not have a real effect on the system. More specifically, after executing this
action the process returns to the state where it was when starting the action, i.e.
the process performs a self-loop. Although this does not have an effect on the
behaviour of the system, it does provide the ability to see the value of x at any
given time in the state space, since all states are now equipped with a self-loop
of this action with the value of x visible as a parameter.

In this case, one of the subprocesses of the main control has been equipped with a
self-loop executing the action inslot2, which tells whether a product is currently
in slot 2 or not. Now we can state in µ-calculus:

[T∗.inslot2(F).ccDrill] F

This expresses that you can never encounter an inslot2(F) action (there is no
product in slot 2) just before ccDrill.

In a similar way one can equip MCONTROL with a self-loop containing the action
inslot1, which provides info on whether slot 1 contains a product or not. Then we
can express in µ-calculus the property that no adding can be performed if there
is a product in slot 1:

[T∗.inslot1(T).ccAdd(T)] F
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6. Every added product is drilled in the next rotation. In other words, it never
occurs that an added product is not drilled in the next rotation. In µ-calculus this
leads to:

[T∗.ccEnvAdded.¬ccTurn∗.ccTurn.¬ccDrill∗.ccTurn] F

7. Every product eventually leaves the table. This is a fairness property in
the sense that the reachability of the action cEnvRemoved is checked in fair ex-
ecution sequences. In µ-calculus the notion of “fair reachability of predicates”
is used for fairness, as already stated in Chapter 4.5. To prove this property,
the specification needs to be slightly changed so it supports coloured products;
a product can be either red or white. By adding a boolean parameter for each
position of the table to the parameter list of MCONTROL, this process can keep
track of the colours of products, where T represents red and F represents white.
In addition to that the ENVADD process is extended such that it ensures that
it will constantly add white products except for at most one instance, in which
it adds a red product. This red product can now easily be tracked through the
turntable device. Using this changed specification, it is possible to prove the fair-
ness property. The extension however, leads to an increase of the state space size,
as Table 4.2 shows.

Table 4.2: State spaces of the µCRL turntable specification with coloured products
PPPPPPPPSize

Type
Initial reduced red. + max. prog.

# States 761,495 278,768 101,467
# Transitions 1,297,469 450,428 146,183

As an intermediate property, first we prove that in an execution sequence one
can never encounter more than one red product:

[T∗.ccEnvAdded(T).T∗.ccEnvAdded(T)] F

Next, using this transformed specification, one can express the desired property
as follows:

[T∗.ccEnvAdded(T).¬ccEnvRemoved(T)∗] 〈T∗.ccEnvRemoved(T)〉 T

This states that once a ccEnvAdded(T) action is encountered it is always possible
to execute the action ccEnvRemoved(T) down the line.
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8. When a product is added it takes between 25 and 39 time units to get
its test result. This property is checked by using the specification with coloured
products, since we need to track a single product to know how many time units
it takes to get from having been added to having been tested. This specification
is changed such that the actions ccEnvAdded and ccTested provide us the infor-
mation (as an argument) what the colour is of the product that has been added
or tested respectively. In µ-calculus we can then write a number of formulas.

First of all, we check the lower-bound of 25 time units. We express in µ-calculus
that all traces do not contain n tick transitions or less as follows, where the nota-
tion Rn is not actual µ-calculus notation, but expresses that R is written n times
in sequence:

[T∗.ccEnvAdded(T).¬tick∗.((T | ε).¬tick∗)n.

(ccTested(T,T) | ccTested(F,T))] F

The construction ((T | ε).¬tick∗)n allows up to n tick actions to appear in a trace.
This is because (T | ε) accepts zero or one action, whatever its label.

When n = 25, we get a counter-example containing exactly 25 tick transitions.
Then, when we check the property with n = 24, we are told it holds. This tells us
that 25 time units is indeed the lower-bound.

Similarly, we investigate the upper-bound, using the following µ-calculus for-
mula:

¬〈T∗.ccEnvAdded(T).(¬(tick | ccTested(T,T) | ccTested(F,T))∗.tick)n.

¬(ccTested(T,T) | ccTested(F,T))∗.(ccTested(T,T) | ccTested(F,T))〉 T

Here, if we use n = 39, we get a counter-example containing exactly 39 tick tran-
sitions. If we check the property with n = 40, we are told it holds. Therefore, 39
time units is the upper-bound.

4.6 Results and Comparisons
In this section we present three tables to give an impression of the level of difficulty
concerning different aspects on translating the χt specification and verifying its prop-
erties. Bortnik et al. (2005a) not only translated a (somewhat different) χt specification
of the turntable to a µCRL specification, but also to a PROMELA specification (the input
for the SPIN model checker) and a specification consisting of timed automata (the input
for the UPPAAL model checker). We discuss their conclusions here, since it provides a
good insight into how these three modelling techniques relate to each other. For more
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on the other translations, see the original paper by Bortnik et al. (2005a). The trans-
lation scheme from χt to PROMELA used there is described by Trčka (2006) and the
translation scheme from χt to timed automata for UPPAAL is provided by Bortnik et al.
(2005b). We do not present the sizes of the state spaces of the other two specifications
here, due to the fact that no conclusions can be derived from such a comparison; the
way in which e.g. the µCRL toolset and SPIN count states is entirely different. A com-
parison of state spaces generated by these two tools concerning another case study can
be found in Section 10.3.

Tables 4.3 and 4.4 use a grading system which should be read as follows:

• 0: Impossible. Due to differences between the two modelling languages or the
limitations of the temporal logic it is impossible to do this.

• 1: Difficult. For Table 4.3, translation is not straightforward but can be done
using special techniques; for Table 4.4, verification cannot be done straightaway,
it involves changing the specification a lot.

• 2: Needs some work. For Table 4.3, translation is not completely straightfor-
ward, but it does not require special techniques; for Table 4.4, only slight changes
in the specification are needed to verify this property.

• 3: Easy. Translation or verification can be done straightaway.

Table 4.3 tells us how difficult it is to translate certain χt constructions in our case
study (possibilities not mentioned here do not pose problems for any of the transla-
tions). Both translating to PROMELA and µCRL can be difficult under some circum-
stances, but translating to UPPAAL on the other hand never gets really difficult in our
case. We added experience with translating shared variables and nested parallelism
in this table, since at that time, we considered a χt specification which contained them.
Shared variables were treated as described in Section 3.4.13, while nested parallelism,
i.e. parallel composition inside a process, was translated to µCRL by introducing extra
synchronisation actions. These results tell us that, at least concerning the turntable
specification, UPPAAL is the best choice when selecting a language based on the diffi-
culty to translate to this language.

Table 4.4 finally shows how difficult it is to express and verify the properties of the
turntable using the tools. In this table, for each property (using the numbering pre-
sented earlier) the type (safety, liveness, liveness + safety, liveness + fairness, liveness
+ time) is given. What stands out is that property 7 is difficult or even impossible to
verify in either tool. Property 8 is very hard to verify in SPIN due to the fact that time
is hard to be referred to when expressing properties. In UPPAAL and CADP verifying
this property still needs some work. This is not due to problems with time, but because
in order to prove the property at least some products need to be uniquely identifiable.
Overall we conclude that CADP provides the least number of problems concerning the
verification of the properties.
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Table 4.3: Comparison of translation problems
````````````Language

Problems
Assignments Delays Guards

Nested
parallelism

Shared
variables

PROMELA 3 2 1 1 3
µCRL 2 1 3 2 1

UPPAAL timed aut. 3 3 3 2 3

Table 4.4: Comparison of the verification
XXXXXXXXXXTool

Property
1(l) 2(l+s) 3(l) 4(l) 5(s) 6(l) 7(l+f) 8(l+t)

SPIN 3 2 2 2 3 2 1 1
CADP (µCRL) 3 3 3 3 2 3 1 2

UPPAAL 3 3 3 2 3 3 0 2

All three formalisms are suitable for the analysis of systems that are originally mod-
elled in χt. When translating, we discovered that certain statements have straightfor-
ward translations in one language while they do not in another. For example, assign-
ments exist in the same way in χt, PROMELA and UPPAAL, while in µCRL they are
represented differently. In addition, some χt constructs like, for example, the parallel
composition operator with shared variables inside the process definition, are very hard
to achieve in any of the target languages.

To reason about the values of variables (state values) in CADP (using regular, alter-
nation-free µ-calculus) one must extend the specification with additional actions that
make these values visible. The linear temporal logic, built in SPIN, and the timed
computation tree logic, built in UPPAAL, are more appropriate when reasoning about
states than the regular, alternation-free µ-calculus used in CADP, even though the lat-
ter is more powerful. Action-based properties could be verified in SPIN as well, by the
trace-assertion mechanism. In UPPAAL proving such properties can be done using test
automata or a decoration technique. When it comes to the fairness principle, µ-calculus
and SPIN can express it in a very effective way while in UPPAAL the use of the fairness
principle is impossible.

Finally, the graphical user interface makes modelling and verifying in UPPAAL more
comfortable than in µCRL. We also find XSPIN, a graphical user interface for SPIN,
very useful.
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4.7 Related Work

• Bos and Kleijn (2001) describe one of the first attempts to verify a specification
written in an earlier version of χ by manual translation to DTPROMELA and ap-
plying the model checker DTSPIN is described. It dealt with a specification of an
industrial system and had three objectives. The first objective was to investigate
the ability to verify translated χ specifications with the model checker DTSPIN.
The second objective was to find out whether there are opportunities to automati-
cally translate χ specifications into DTPROMELA. Finally, the third objective was
to verify formally some properties of a manufacturing system specification.

• In an article by Usenko (2002b), SPIN and µCRL are compared using the HAVi
leader election protocol. Concerning the generation of a state space for a specifi-
cation of this protocol, it was concluded that SPIN generates states faster, but the
resulting state space has more states. On the other hand, according to the arti-
cle, the state space generation capabilities of SPIN and the µCRL toolset cannot
be compared due to the differences in the underlying languages. Furthermore,
the results may be misleading, so the author tells us, due to the fact that the
PROMELA code was derived from the µCRL code instead of from the informal de-
scription. The article ends by saying that a better comparison may be achieved
using much smaller case studies.

• The article by Jensen et al. (1996) is on comparing SPIN and UPPAAL using a
collision avoidance protocol as a case study. In the paper it is indicated that it
is possible to model real-time systems and their broadcast behavior in UPPAAL

and it cannot be done in SPIN. The kind of properties expressible in the UPPAAL

requirement specification language are restricted to invariance and possibility
properties. It is possible to verify bounded liveness properties in UPPAAL, though
they need to be expressed as separate test automata.

• Garavel and Hermanns (2002) present a practical methodology for studying the
performance of a concurrent system, starting from an already verified functional
specification of this system. They do not design a new formalism, but instead
reuse a non-stochastic process algebra called LOTOS, which they adapt to the
stochastic framework. The CADP toolset is used for the minimisation of state
spaces, resulting in Markov chains. These Markov chains can then be used as
input for the TIPPTOOL, in order to find answers for performance questions.

• Mateescu (2006) provides two LOTOS specifications of the turntable system, one
with a sequential and one with a parallel main controller. For both, the state
space is generated and minimised. The two resulting state spaces are compared
and visualisation techniques are applied on the smallest state space, the one with
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the sequential main controller, to get more insight into the system. Finally, a list
of properties is checked using CADP.

• The article by Trčka (2006) discusses the general translation from χt to PROMELA

in more detail.

• In Bortnik et al. (2005b), a general translation scheme from χt to timed automata
for UPPAAL is described.

4.8 Conclusions
In the last two chapters, we presented a scheme to translate χt specifications to µCRL
specifications, and applied it in practice. In this section, we comment on the lessons
learned during the design and use of this scheme.

First of all, in creating the scheme, most complications arose due to the fact that
χt is a timed language, and µCRL is not. For instance, when considering the alterna-
tive composition operator of χt, the basic (untimed) concept can be straightforwardly
translated, since µCRL also has alternative composition. But when timing behaviour
of an alternative composition in χt is analysed, one notices that it is hard to mimic this
behaviour in a general way using tick actions in µCRL; whether a χt process term p [] q
can delay or not depends first of all on whether both p and q can delay or not. And
whether p (and q) can delay or not depends again on the structure of p (and q).

Second of all, it should be stressed, that specifications resulting from automatic
translation usually are not as intuitive as ones specified by hand. Since χt and µCRL
are different languages, naturally the structures of specifications written in χt and
µCRL differ slightly, even when describing the same system behaviour. Thus, when
enforcing the structure of a χt specification on a µCRL specification, the latter becomes
different from usual µCRL specifications. A small example of these differences in struc-
ture is the way by which values are assigned to variables; in χt, this can be done by
means of the assignment action, while in µCRL there is no action associated with it.
Instead, as variables are parameters of a recursion equation, they receive new values
whenever the equation is recursively called. However, in order to mimic the seman-
tics of χt, in a µCRL specification resulting from the translation of a χt specification,
the τ action is always fired whenever an assignment takes place. Another example is
the usage of (often many) counters in µCRL specifications resulting from translation.
These are largely needed due to the inclusion of time actions; a sequential composition
in a χt specification cannot be translated to a sequential composition in µCRL. This
is because delayability of actions is achieved in µCRL using tock self-loops. If we con-
sider a χt process term a; b where both a and b are delayable, then a translation to
X = a·b·p + tock·X does not suffice, since after firing a, the tock alternative is gone;
more specifically, we have X a−→ X ′, where X ′ = b·p, hence b is not delayable here.
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Looking at the experiments of the current chapter, our main conclusion concerning
the verification of specifications via a translation step to another formalism, is that
it can be very useful for checking action-based properties. Since both the original χt
specification and the translation express the same behaviour, a state space resulting
from the translation contains all possible traces of the χt specification. Hence, when
a trace to a bad state is found, usually it is not necessary to consult the translation;
instead, one can directly relate the trace to the original χt specification. Since the
automatic translation is often hard to interpret, it is highly desirable for a modeller
not having to read it.

We are aware of the fact that there is no correctness proof of the translation scheme
included in the work. The main reason for this is that the research reported in Chap-
ter 3 has first of all been done to get some insight into the relation between timed and
untimed process algebras. Once we had designed the scheme, we tested it on a num-
ber of case studies. These experiments showed the applicability of the scheme, and its
correctness in these specific cases. To prove the correctness of the scheme in general
was outside of the scope of the work at the time; instead, the main lessons learned in
the whole process led to a first design of a scheme to achieve discrete relative timing in
the untimed µCRL, which would be more compatible with the structure of µCRL speci-
fications, and therefore, would still allow the intuitive usage of µCRL’s operators. This
scheme is presented in Chapter 5. A correctness proof of the translation scheme may,
of course, still be considered as possible future work. Because of the absence of a cor-
rectness proof here, we have also not provided a new structural operational semantics
and a new set of axioms for µCRL with successful termination.
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Chapter 5

Achieving Discrete Relative Timing
with Untimed Process Algebra

El hoy fugaz es tenue y es eterno;
Otro Cielo no esperes, ni otro In�erno.

(Jorge Luis Borges)

M
ODEL CHECKING HAS PROVEN to be very useful in finding bugs in em-
bedded system specifications. µCRL, for instance, has been used to verify
properties of many systems and protocols. Many cases, however, are time-
critical, meaning that time should also play a role in specifications of those

systems, in order to be able to check relevant properties. Over the years, the inclusion
of time in modelling languages has been shown to be complex, both on a theoretical
and on a practical level. As can be found in the literature, in theory, subjects like the
extension of modelling languages with time (Baeten, 2003; Baeten and Middelburg,
2002; Nicollin and Sifakis, 1991; Ulidowski and Yuen, 1997) and the design of rela-
tions between systems such as timed branching bisimilarity1 (see, e.g., Fokkink et al.
(2005) and Van der Zwaag (2002)) are very complicated, and at times difficult to get,
and prove, correct. On the practical side, as mentioned earlier in Chapter 1, a major
problem in model checking is the state space explosion problem, meaning that a linear
growth of the number of processes placed in parallel in a specification leads to an ex-
ponential growth of the resulting state space, and adding time to a specification makes
this problem even more difficult.

As already mentioned in Section 3.3, in the past, based on the modelling language
µCRL, a timed language, called timed µCRL, has been developed by Groote (1997). For
practical reasons, one of which is the aforementioned tendency of state spaces to be
infinite, there are currently no tools for that language yet.

Also in Section 3.3, we saw that another approach can be taken. Blom et al. (2003)

1For more on this subject, see Part III of this thesis.
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and Ioustinova (2004) investigated how to model time in regular, untimed µCRL, which
would enable modellers to use the fully developed and highly optimised µCRL toolset
when dealing with timed systems. Moreover, existing relations between systems, such
as branching bisimilarity, can then be checked on timed systems. What they finally
presented was a framework, a recipe, to express processes involving some notion of
time. It is very important that a modeller follows this recipe faithfully, otherwise un-
wanted and bizarre timing behaviour might occur, such as the violation of principles
like time determinism (Baeten and Middelburg, 2002) and maximal progress (Baeten
and Middelburg, 2002).2 We will take a closer look at these principles later on in this
chapter. Besides that, a delay of one time unit corresponds directly with one transi-
tion in the system, resulting in large sequences of delays whenever a big time jump
has to be made. One can imagine the inconvenience of this when confronted with a
specification containing large delays.

In Chapters 3 and 4, we saw how this recipe is used as an inspiration for a transla-
tion scheme from the timed language χt to µCRL. By this, it is again shown that time
can be modelled using an untimed modelling language, but in some cases, most notably
when using alternative composition, it leads to complex process terms. The complex-
ity of the resulting process is not so problematic, since it is the result of an automatic
translation, but a high complexity cannot be demanded when a modeller has to create
the term directly.

The work on modelling time by Blom et al. (2003) and Ioustinova (2004) and the
translation scheme used in Chapters 3 and 4 inspired us to investigate the possibilities
of modelling time in an untimed process algebra, such that:

1. The resulting timing mechanism makes sense, i.e. principles such as time deter-
minism and maximal progress hold.

2. The modeller can use the process algebra as freely as when modelling untimed
systems.

3. Arbitrarily big time jumps can be made in a single transition, provided that the
system cannot fire any action during the time interval.

4. The existing tools can be applied on the timed systems, i.e. relations, such as
branching bisimilarity, and properties, expressed using temporal logics, can be
checked.

The creation of this chapter was a back and forth of designing a timing mechanism
on the one hand and trying to model it in µCRL on the other. On a number of occasions
the mechanism had to be changed somewhat due to the limitations of modelling, while
still making sure that the mechanism remained reasonable from the perspective of the
theory of timed systems.
2Maximal progress has already been described earlier in this thesis in Section 3.3.1.

98



5.1 A Timing Mechanism for µCRL

In this chapter, we start with a discussion on the timing mechanism we wish to
have, leading to, as we call it, the extended language µCRLtick. The language µCRLtick

differs from, as we call it, ‘µCRL with tick actions’ (described in Section 3.3) in the
following facts: First of all, when using µCRL with tick actions, a modeller needs to
ensure that each system component in a specification must be in one of the two forms
described in Figures 3.1 and 3.2, but this requirement is absent for µCRLtick, which
tends to make µCRLtick specifications more readable than µCRL specifications with
tick-actions (some examples of this are shown in Section 5.3). Second of all, µCRLtick

allows time transitions which jump ahead in time further than one time unit, while
µCRL with tick-actions does not have this feature.

Next, we explain how the timing mechanism is achieved for a µCRLtick specification
through the transformation to a µCRL specification. The correctness proofs can be
found in Appendix A. Finally, we show some examples, briefly discuss related work,
and provide a conclusion, in which we also describe possible extensions.

Contributions We propose a way to achieve time through modelling in an untimed
process algebra. Contrary to earlier attempts, we focus on ease of modelling and time
jumps of arbitrary size, the latter since it often practically leads to smaller state spaces.
We achieve this by the introduction of a timed extension of the algebra and a transfor-
mation to the original. Through doing so, this chapter offers more insight into the
relation between untimed and timed process algebras.

5.1 A Timing Mechanism for µCRL

5.1.1 The Concepts
For timed process algebras, usually a number of time properties hold (see e.g. Baeten
(2003), Baeten and Middelburg (2002), Van Beek et al. (2005), Nicollin and Sifakis
(1991), Ulidowski and Yuen (1997)). Which hold and which do not differs from one
process algebra to another. By only adding time actions to µCRL, we do not achieve
all necessary properties. Because of this, we introduce an extension of µCRL, called
µCRLtick. The idea is that in the end, a µCRLtick specification can be transformed into
a µCRL specification.

Nicollin and Sifakis (1991) provide a list of main points in which timing mechanisms
can differ from one another. We list these properties here and explain our choices.
The choices depend both on whether the properties would be achievable through our
approach or not, and whether it makes sense in relation to existing literature. By doing
so, this section sketches the main setting of subsequent sections.

• Time determinism. The progress of time should be deterministic. This property
is essential (see e.g. Nicollin and Sifakis (1991)). It has the largest influence on
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alternative composition; if two alternatives can delay, then they delay together.
A further distinction can be made between strong choice and weak choice. In
strong choice an undelayable alternative prevents all delays in the alternative
composition, in weak choice it does not and the passage of time can therefore
result in making a choice. We choose weak choice for our mechanism, since it
more naturally fits in our approach (for an explanation and consideration of the
alternative, see Section 5.6 or Baeten (2003)).

• Time additivity. If a process can delay t + t′ time units, then it can delay for
t and then for t′ time units. The behaviour of these two cases is the same. This
property very often holds in a timing mechanism, but not in ours. Since we
achieve time steps through regular action steps, as we will see later, two delays
in sequence result in at least two steps, while one delay might be done in one
step. It may seem a serious lack of our mechanism, but there are timed languages
known to lack time additivity in certain situations, such as χt, in the case where
one uses the ∆t construction for a delay of t time units. As a positive note, not
having time additivity allows us to use standard bisimilarity for the comparison
of systems.

• Deadlock-freeness. Time can always pass, even though nothing else can be
done. This practically allows for livelocks instead of deadlocks. This property
holds in our mechanism. Besides that, in line with Baeten and Middelburg (2002)
and Baeten (2003), we are able to introduce an undelayable deadlock (see Sec-
tion 5.6).

• Action urgency. Often referred to as maximal progress, it allows actions to
have priority over the passage of time. Already in Section 3.3.1, our version of
it is explained, which is a mix of the ones described by Baeten and Middelburg
(2002) and Van Beek et al. (2005).

• Persistency. The passage of time cannot suppress the ability to perform an
action. As in many timed process algebras, also in our case, this property does
not hold, due to weak time determinism.

• Finite variability and bounded variability. Also known as non-Zenoness, i.e.
in every time unit only a finite number of actions can occur. Nicollin and Sifakis
(1991) report that only in the process algebra TCSP these properties hold. In our
mechanism they do not.

• Bounded Control. There exists a time period d, such that the enabled set of
actions of a process only changes in time, if the delay is bigger than or equal to d.
In a discrete time domain this automatically holds, therefore also in our setting
(take d = 1).
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Furthermore, we extend our usage of time in another way. In Chapter 3, time was
modelled using tick and tock actions. The latter was used to make actions delayable.
In this chapter, the time action tock is also used to perform partial delays, i.e. parts of
specified delays, as a major extension introduced in this chapter is to allow time jumps
of more than one time unit to be performed in a single transition. This is modelled by
parameterising tick with a delay duration.

In the next section, a transformation procedure is presented, which transforms a
µCRLtick specification MT to a µCRL specification M, in which practically the chosen
set of time properties is achieved.

5.1.2 The Axioms and Transition Rules

We will present some axioms and transition rules, which we would like to hold in our
timed setting in order to achieve the mechanism chosen in the previous section. In
Appendix A, we prove that they indeed hold in our setting.

Table 5.1: Extra axioms of µCRLtick

tick(n) = δ if n < 0 DRT1
tick(n)·x + tick(n)·y = tick(n)·(x + y) DRT2

In Tables 5.1 and 5.2, the additional axioms and transition rules are listed for the
special clock actions tick, tock, and ring, which make discrete relative timing possible
in our setting, the latter being an action which indicates that at least one delay is
finishing.3 Actually, in µCRLtick, only tick is available as an action when modelling, the
other two only appear in resulting transitions. The tick action is used to model delays
(rules 1, 2, 5 to 7, 23, 24, 26), tock indicates the delayability of actions and partial
delays (rules 1, 3, 4, 6 to 8, 23 to 26), and ring represents the finishing of at least one
delay (rules 5, 9 to 22). Besides that, we identify sets AU , AD , and AC in relation
to the action set AT of a µCRLtick specification, with AT ∪ {τ, δ} = AU ∪ AD ∪ {tick},
tick ∉ AU ∪ AD , AU ∩ AD = ;, τ ∈ AU , δ ∈ AD , and AC = {tick, tock, ring}. Now, AU
constitutes the urgent or undelayable actions, while AD contains all delayable actions.
An enabled urgent action is an action, which will be disabled once a delay is fired (rule
4). An enabled delayable action, on the other hand, is an action, which, in principle,
can also be fired in a later time unit, i.e. can be postponed (rule 3). Note that we
consider τ to be urgent, and δ to be delayable (which is essential for the deadlock-
freeness property). The set AC constitutes the set of clock actions, which forms the

3We chose here not to incorporate the successful termination constant ε. Alternative approaches where
timed process algebras include this constant are presented by e.g. Baeten and Reniers (2000) and Baeten
(2003).
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Table 5.2: Extra transition rules of µCRLtick

1
m, n > 0

tick(m + n) tock(n)−→ tick(m)
2

m > 0

tick(m) tick(m)−→ tick(0)
3

m > 0 a ∈ AD

a tock(m)−→ a

4
m > 0 a ∈ AU

a tock(m)−→ δ

5

tick(0)
ring−→p 6

x tick(m)−→ x′ y tick(m)∨tock(m)−→ y′

x + y tick(m)−→ x′ + y′

7
x tick(m)∨tock(m)−→ x′ y tick(m)−→ y′

x + y tick(m)−→ x′ + y′
8

x tock(m)−→ x′ y tock(m)−→ y′

x + y tock(m)−→ x′ + y′

9
x

ring−→ x′ y
ring−→ y′

x + y
ring−→ x′ + y′

10
x

ring−→p
y

ring−→ y′

x + y
ring−→ y′

11
x

ring−→ x′ y
ring−→p

x + y
ring−→ x′

12
x

ring−→p
y

ring−→p

x + y
ring−→p 13

x
ring−→ x′ y 6ring−→
x + y

ring−→ x′
14

x
ring−→p

y 6ring−→
x + y

ring−→p

15
x 6ring−→ y

ring−→ y′

x + y
ring−→ y′

16
x 6ring−→ y

ring−→p

x + y
ring−→p

17
x

ring−→ x′

x || y
ring−→ x′ || y

18
x

ring−→p

x || y
ring−→ y

19
y

ring−→ y′

x || y
ring−→ x || y′

20
y

ring−→p

x || y
ring−→ x

21
x

ring−→ x′

x·y ring−→ x′·y
22

x
ring−→p

x·y ring−→ y

23
x tick(m)−→ x′ y tick(m)∨tock(m)−→ y′

x || y tick(m)−→ x′ || y′
24

x tick(m)∨tock(m)−→ x′ y tick(m)−→ y′

x || y tick(m)−→ x′ || y′

25
x tock(m)−→ x′ y tock(m)−→ y′

x || y tock(m)−→ x′ || y′
26

a ∈ {tick, tock} x a(m)−→ x′

x·y a(m)−→ x′·y
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action basis for achieving discrete relative timing in µCRL. In fact, all axioms and
transition rules in Tables 5.1 and 5.2 involve actions from AC , while the axioms and
transition rules inherited from µCRL (see Chapter 2) should be seen as applicable to
all actions not in AC . Note that the tick action is considered to be an element of AT, in
other words, it can be used in µCRLtick specifications, while tock and ring are not.

We composed the tables by examining the rules of BPAdrt
_ -ID and ACPdrt (Baeten

and Middelburg, 2002), which are the Basic Process Algebra extended with discrete
relative timing by means of a delay operator, and the Algebra of Communicating Pro-
cesses extended with discrete relative timing, respectively, and comparing them with
the existing, untimed axioms and transition rules of µCRL, as described by Groote and
Ponse (1995) (for these, also see Chapter 2). In Table 5.1, DRT1 says that a negative
delay constitutes a deadlock. DRT2 is related to the previously mentioned time deter-
minism principle, in that it says that the passage of time is deterministic. In Table 5.2,
rules 1 and 2 reflect the fact that a delay can be performed (partially). Rules 3 and
4 say that delayable actions can delay and undelayable actions are disabled after a
delay, respectively. Rule 5 indicates that a delay of length 0 terminates with a ring ac-
tion. Rules 6, 7 and 8 ensure the time determinism principle. The additional transition
rules for the ring action are stated in rules 9 to 22. Rules 23, 24 and 25 express time
progress for parallel composition. Finally, in rule 26, the delayability of a sequential
composition is explained.

These axioms and transition rules imply weak time determinism, no time additivity,
no persistency, no finite or bounded variability and bounded control. As said before,
that these axioms and transition rules indeed yield these properties for µCRLtick is
proven in Appendix A.

Concerning maximal progress, Algorithm 6 shows a breadth-first search with maxi-
mal progress. We observe that ring ∈ H, where H is the set of actions to apply maximal
progress on, allows for nice constructions, such as a time-out (see Section 5.3).

5.2 Transforming a µCRLtick Model

5.2.1 Requirements and approach
The basic idea of achieving discrete relative timing in this chapter, is that a modeller
can create a µCRLtick specification MT, which will then be transformed into a µCRL
specification M, in which the presented set of timing properties automatically holds.
The definition of a µCRLtick specification fully coincides with the definition of a µCRL
specification, i.e. Definition 1, extended with some additional conditions. Though the
goal is to require as little as possible of MT, some conditions are inevitable.

The Input Specification An input specification MT = (DT,FT,AT,CT,PT, IT) is of
the form described by Definition 1, where in addition, the following holds:
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• Besides the usual domains N and B, we have a time domain T. Since we need
a discrete and totally ordered time domain, and for practical reasons, negative
values are needed, the structure of the domain can be a copy of Z.

• Similarly, there are functions using T, based on the usual functions using Z,
in F. Later on, we assume the presence of an if-then-else construct, written as
b → x, y, with b : B and x, y : T, where T → x, y , x and F → x, y , y.

• tick ∈AT with tick :T, which the modeller can use to model delays of t time units.
Furthermore, sets AU and AD can be identified.

• tick is not involved in any rule of C.

• In PT, for all X ∈ PT, there are no enumerations over T. Why this would cause
problems will be explained later. Furthermore, on top of the axioms and tran-
sitions rules of µCRL for actions in AT \ {tick}, the axioms and transition rules
presented in Figures 5.1 and 5.2 hold for all actions in AT.

The Transformation In this section, we describe how MT, which meets the given
requirements, can be transformed into a specification M in which the desired timing
properties are preserved. The majority of the work, of course, is performed on PT.

We create a specification M = (D,F,A,C,P, I), by first obtaining the following, given
specification MT:

• D = DT.

• F = FT ∪ {θ : (B ×N)u → T}. The function θ is given a vector bi, ni
−−−−→

and returns
the smallest ni for which bi evaluates to T and ni > 0. The upper-bound u on
the size of the vector should be chosen sufficiently high, as it will imply that
not more than u syntactical occurrences of tick are allowed in each process. For
practical reasons, we fix a sufficiently large constant c (it should be greater than
the largest single delay step in MT)4 and say, that θ(bi, ni

−−−−→
) = c iff for all (bi, ni),

bi = F ∨ ni ≤ 0 evaluates to T or the vector size is 0. In the remainder of this
chapter, we write θ when u = 0, and m (for any m ∈ T) whenever it is clear that
θ(bi, ni
−−−−→

) = m.

• A = AT ∪ {ring, tock, tock′, tick′}, where the actions tock′ and tick′ are used for
intermediate results of communication. For more on this, see the following de-
scription of C and I.

4The constant c serves here as an upper-bound to the size of a time jump that a system can perform. Note
that appropriate values for both u and c, given a specification MT, can be derived statically from MT.
The value of u can be derived from the number of occurrences of the tick action in processes in PT, and
the value of c must be greater than or equal to t, where t is the biggest element of T for which tick(t)
occurs in a process in PT.
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5.2 Transforming a µCRLtick Model

• C = CT∪ {(tick, tock, tick′), (tock, tick, tick′), (tick, tick, tick′), (tock, tock, tock′)}.

Next, we describe how to obtain I. This is done by changing IT to the following:

∂H∪{tock}(TX0(d0) |T| . . . |T| TXm(dm))

Here, the TX i ∈ P are translations of the corresponding X i ∈ PT (we return to this
later), and the special operator |T| is defined as already mentioned in Section 3.3:

P |T| Q , ρ{tick′→tick,tock′→tock}(∂{tick,tock}(P || Q))

First, in P || Q, all tick and tock actions are forced to communicate. As can be seen in
the rules of C, if at least one tick action is involved in communication, the result is tick′.
After that, all resulting tick′ and tock′ are renamed to tick and tock. Commutativity and
associativity of |T| can be argued in a similar fashion as commutativity and associativity
of | {tick} | (see Section 3.3). It should be stressed, that the final encapsulation of tock
actions in I ensures that the system as a whole will only perform a delay if at least one
process performs a complete delay, i.e. a tick-step.

Finally, we explain how to obtain P. Each X ∈ PT is of the LPE form of Definition 4.
We divide I as follows: I = IU ∪ ID ∪ IC , where i ∈ IU iff ai ∈ AU , i ∈ ID iff ai ∈ AD

and i ∈ IC iff ai = tick.
Now, for each X ∈ PT in IT, we create TX ∈ P as presented in Figure 5.1. The

vector xic
−→ consists of all xi ’s for which i ∈ IC . Similar definitions apply for f ic (d, e ic )

−−−−−−−→

and hic (d, e ic )
−−−−−−−−→

. For clarity reasons, we write f i, gi and hi for f i(d, e i), g i(d, e i) and
hi(d, e i), respectively.

TX (d : D) =∑
i∈I\IC

∑
e i :Di

ai(f i)·TX i(gi)/ hi . δ+

ring·TX̂ (d) / F ∨ ∨
i∈IC

(f i = 0 ∧ hi). δ+

tick(θ(hic , f ic

−−−−−→
))·TX ′(d, hic → f ic − θ(hic , f ic

−−−−−→
), f ic

−−−−−−−−−−−−−−−−−−−−−−−→
)/ θ(hic , f ic

−−−−−→
) 6= c . δ+∑

t∈T
tock(t)·TX ′(d, hic → f ic − t, f ic

−−−−−−−−−−−−−−→
)/ 0 < t < θ(hic , f ic

−−−−−→
) . δ

Figure 5.1: The µCRL LPE TX , derived from the µCRLtick process X

At this point, an explanation is in order. In the first line of TX (d :D), essentially all
the ‘lines’ of X (d :D) dealing with actions other than tick, are adopted without change.
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The second line contains a ring action, which is fired whenever at least one delay com-
pletely finishes. Note that the guard checks whether there are any tick actions in X
enabled with a parameter equal to 0. This effectively transforms possible occurrences
of delays of length 0 in X to ring. This is similar to χt, where finished delay actions
are followed by τ, except that here, ring can represent the finishing of multiple delays
simultaneously. Having fired a ring action, the process TX̂ is called, which will be de-
scribed next. In the third line, a single tick alternative is added to the process, which
has θ(hic , f ic

−−−−−→
) as its argument, in other words, the minimal non-zero argument of all

tick ∈ enA(X (d0)), for any d0 ∈D. After that, TX ′ is called, the definition of which will
be presented later. Suffice it to say at this point that, besides d :D, it is equipped with
arguments of type T, each getting the initial value f ic − θ(hic , f ic

−−−−−→
), if hic holds, and

f ic , if not. The intuition is that these arguments will be used to model timers, used for
each tick action appearing in X . If the tick action in TX is fired, all ‘enabled’ timers (i.e.
timers corresponding to enabled tick actions) must be decreased by the right amount.
Finally, the fourth line contains a number of tock alternatives, ranging from tock(1) to
tock(θ(hic , f ic

−−−−−→
) − 1). These alternatives allow partial delays to happen, and actually

make delayable actions delayable. When one of these is fired, the enabled timers are
updated accordingly.

Process TX̂ is the transformation of X̂ , which is as shown in Figure 5.2, where e.g.
ai

j indicates a j originating from X i.

X̂ (d : D) = ∑
i∈IC

∑
j∈IXi

∑
ei

j∈Di
j

ai
j( f i

j (gi, ei
j))·X i

j(gi
j(gi, ei

j)) / hi
j(gi, ei

j) ∧ f i = 0 ∧ hi . δ

Figure 5.2: The µCRLtick LPE X̂ , derived from the µCRLtick process X

In words, X̂ consists of the alternative composition of all actions from processes X i
with i ∈ IC . Furthermore, the conditions ensure, that only actions following finished
delays can be enabled. This process is transformed into TX̂ , in order to ensure the
desired timing properties.

The process TX ′ is also derived from X . It is as displayed in Figure 5.3.
In the first line of TX ′, all delayable actions of X appear unchanged. In the second

line, as in TX , a ring action is placed, to indicate the finishing of delays. Note that here,
it is checked, whether the corresponding timers cti have expired. In the third line, as
in TX , a tick alternative is offered, but also here, instead of working with the f i ’s, the
current values of the timers are used. Finally, in the fourth line, the tock alternatives
are displayed, also working with the timers instead of the f i ’s.

Finally, we have process TX̂ ′, which is the transformation of X̂ ′ (and similar to TX̂ ),
as presented in Figure 5.4.
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TX ′(d : D, ctic : T
−−−−−→

) =∑
i∈ID

∑
e i :Di

ai(f i)·TX i(gi) / hi . δ+

ring·TX̂ ′(d, ctic
−→) / F ∨ ∨

i∈IC

(cti = 0 ∧ hi) . δ+

tick(θ(hic , ctic

−−−−−−→
))·TX ′(d, hic → ctic − θ(hic , ctic

−−−−−−→
), ctic

−−−−−−−−−−−−−−−−−−−−−−−−→
)/ θ(hic , ctic

−−−−−−→
) 6= c. δ+∑

t∈T
tock(t)·TX ′(d, hic → ctic − t, ctic

−−−−−−−−−−−−−−−→
) / 0 < t < θ(hic , ctic

−−−−−−→
). δ

Figure 5.3: The µCRL LPE TX ′, derived from the µCRLtick process X

X̂ ′(d : D, ctic : T
−−−−−→

) =∑
i∈IC

∑
j∈IXi

∑
ei

j :D
i
j

ai
j( f i

j (gi, ei
j))·X i

j(gi
j(gi, ei

j))/ hi
j(gi, ei

j) ∧ cti = 0 ∧ hi . δ

Figure 5.4: The µCRLtick LPE X̂ ′, derived from the µCRLtick process X

In this manner, every encountered process X leads to TX , TX̂ , TX ′, TX̂ ′. All the
resulting processes together form P.

At this point, we return to the earlier mentioned restriction, that enumerations over
T are not allowed in MT. One might question the necessity for a µCRLtick process such
as X = ∑

t∈T tick(t), since partial delays are already achieved in a different way. Note
that the transformation cannot deal with it properly, since the θ-function cannot be
applied.

5.3 Examples

5.3.1 A Watchdog Timer
Ioustinova (2004) presents a watchdog timer as an example of using the timing mech-
anism of Blom et al. (2003) and Ioustinova (2004). As the construction of a watchdog
timer is very common in timed systems, this is a nice example to show the applicability
of the mechanism. It should watch whether an assigned component works properly,
using two channels to communicate. On the first channel, an ok message must be re-
ceived from the component every m time units. The moment a time-out occurs, in other

107



Chapter 5 Achieving Discrete Relative Timing with Untimed Process Algebra

words, ok is not received within m time units, an alarm message is sent over channel
2. Ioustinova (2004) presents the µCRL specification for this as in Figure 5.5, where
Timer is the data type used for timers, the initialisation line is started with init, and
the meaning of the functions and actions used should be clear from the context.

A(t : Timer, m :N) =
expire·B(reset(t), m)/ expired(t) . δ+
tick·A(t − 1, m)/¬expired(t) . δ+
recv(ok)·A(set(t, m), m)

B(t : Timer, m :N) = send(alarm)·A(set(t, m), m)

init A(on(5), 5)

Figure 5.5: A watchdog timer in µCRL

The same watchdog timer can be specified with µCRLtick in a much more readable
way. For a ∈ AU , we write a.

A = tick(5)·send(alarm)·A + recv(ok)·A

This leads to the µCRL processes presented in Figure 5.6. For readability purposes,
we removed alternatives with conditions which do not hold, and filled in results of the
θ-function directly, where possible.

T A = recv(ok)·T A+
tick(5)·T A′(0) + ∑

t∈T
tock(t)·T A′(5 − t) / 0 < t < 5 . δ

T A′(ct0 : T) = recv(ok)·T A+
ring·T Â′ / ct0 = 0 . δ+ tick(ct0)·T A′(0) / ct0 6= 0 . δ+∑
t∈T

tock(t)·T A′(ct0 − t) / 0 < t < θ(T, ct0) . δ

T Â′ = send(alarm)·T A + ∑
t∈T

tock(t)·T Â′′ / 0 < t < c. δ

T Â′′ = ∑
t∈T

tock(t)·T Â′′ / 0 < t < c . δ

Figure 5.6: The µCRLtick process A transformed
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Note that in order to make this work as desired, maximal progress needs to be ap-
plied for ring and for recv and send, or, when the watchdog timer is part of a bigger
system, for the eventual communication action (e.g. say, that (recv, send, com) ∈ CT).
Then, tick alternatives to the actions are pruned away during state space generation.
If, however, the component cannot send a message yet, due to delaying, the watch-
dog timer can wait by firing a tick or tock action, and subsequently keep track of the
number of time units, until the time-out is reached, at which point the ring action be-
comes enabled, which must be fired before any further progress of time, due to maximal
progress.

5.3.2 A Dish Washing Cluster
An old χt example is a dish washing cluster, as illustrated in Figure 5.7.

a
b

c

d

e
G W

D1

D2

E

Figure 5.7: A dish washing cluster

A generator G supplies up to 14 plates, which are washed in sequence by W . Two
driers D1 and D2 dry the plates concurrently, and finally, E removes the plates from
the system. In Figure 5.8, we show how these processes are defined in µCRLtick, where
for each channel a, sa and ra represent sending and receiving over the channel, respec-
tively, and (sa, ra, ca) ∈ CT. It shows that the language is very suitable for specifying a
system like this. The system leads to a state space of 940 states and 1,732 transitions
without maximal progress, which can be generated in 0.9 seconds, and of 193 states
and 193 transitions including maximal progress, which shows the practicality of our
approach. The usage of the |T| operator in I and the communication rules considering
time actions in C ensure that the specified delays are always performed in as few steps
as possible, i.e. time intervals in which no process can perform a normal action are
jumped in a single transition.

5.3.3 The Turntable Revisited
We take another look at the turntable case of Chapter 4. We are very well able to
model the turntable in µCRLtick if we do not try to mimic the timing mechanism used
in the original χt specification. The main difference in behaviour lies in the fact that χt

109



Chapter 5 Achieving Discrete Relative Timing with Untimed Process Algebra

PT = {G(n :N) = sa·G(n + 1) / n < 14 . δ,

W = ra·tick(15)·(sb + sc)·W ,

D1 = rb·tick(25)·sd·D1,

D2 = rc·tick(25)·se·D2,

E = (rd + re)·E}

IT = ∂{sa,ra,sb,rb,sc,rc,sd,rd,se,re}(G(0) || W || D1 || D2 || E)

Figure 5.8: A µCRLtick specification of a dish washing cluster

applies strong choice, while µCRLtick applies weak choice. We display some µCRLtick

processes, modelling parts of the turntable model, in Figures 5.9, 5.10 and 5.11, merely
to give an idea of modelling in µCRLtick. We do not perform any model checking here. It
should be emphasised that, when compared to the LPEs TABLE, TESTER and DCON-
TROL presented in Section 4.4, the µCRLtick processes are more elegant.

TABLE(added : B, removed : B) =
rcEnvAdded·TABLE(T, removed) +
rcEnvRemoved·TABLE(added, T) +
scAdded(added)·TABLE(added, removed) +
scRemoved(removed)·TABLE(added, removed) +
rcTurn·tick(4)·scTurned·TABLE(F, F)

Figure 5.9: The µCRLtick process TABLE

5.3.4 The PAR Protocol

Finally, let us specify and verify a well-known protocol. We choose to look at the so-
called Positive Acknowledgement with Retransmission (PAR) protocol (see e.g. Tanen-
baum (1989, Section 4.3.3)), since it is small but representative for timed systems, and
it has been considered multiple times already in the literature, for instance by Baeten
et al. (2002), Ioustinova (2004), and Reniers and Van Weerdenburg (2007), thereby
facilitating comparisons.

110



5.3 Examples

TESTER(tester_down : B) =
rcTesterMove·tick(2)·scTesterMoved(F)·TESTER(F) C tester_down B
tick(2)·(scTesterMoved(T)·TESTER(T) + τ·TESTER(T))

Figure 5.10: The µCRLtick process TESTER

DCONTROL =
rcDrill·scClampSwitch·∑
b̂:B

rcLocked(b̂)·(scDrillSwitch C b̂ B δ)·∑
b̂:B

rcDrillSwitched(b̂)·(scDrillMove C b̂ B δ)·∑
b̂:B

rcDrillMoved(b̂)·(scDrillMove C b̂ B δ)·∑
b̂:B

rcDrillMoved(b̂)·(scDrillSwitch C ¬b̂ B δ)·∑
b̂:B

rcDrillSwitched(b̂)·(scClampSwitch C ¬b̂ B δ)·∑
b̂:B

rcLocked(b̂)·(scDrilled C ¬b̂ B δ)·DCONTROL

Figure 5.11: The µCRLtick process DCONTROL

The diagram in Figure 5.12 shows a simple version of the PAR protocol, as studied by
e.g. Baeten et al. (2002). A sender process S receives messages at input port 1, which it
has to forward to process R through the unreliable channel K . Since K is unreliable, it
has to be acknowledged by R that it indeed receives these messages, which it does by
sending a signal over the (also unreliable) channel L. The main principle of the protocol
is that S labels the messages with an alternating bit, in order to avoid duplicate output
of a message at port 2 of process R. After sending a message, which takes tS time units,
S waits for another t′S time units before it decides that the message was not received
by R. If it receives an acknowledgement from R before it times out, it will wait for a
new message from port 1 and change the value of the alternating bit, otherwise it will
resend the message. Process R checks the bit labelling of incoming messages, which
takes tR time units; if this label is as expected, it outputs the message through port 2.
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In any case, it produces and sends an acknowledgement signal via L, which takes t′R
time units. Finally, channels K and L take tK and tL time units to pass along messages,
respectively.

S

K

L

R

3 4

5 6

tK

tL
tS , t′S tR , t′R

1 2

Figure 5.12: Diagram for the PAR protocol

We model the system as a µCRLtick specification MT, and consider messages to be
natural numbers. In MT, we define DT = {N,B}, FT = {=:N×N→B,=:B×B→B,¬ :
B→B}, AT = {r1, s1, c1, r2, s2, c2, r3, s3, c3, r4, s4, c4, r5, s5, c5, r6, s6, c6, error, tick} with
r i, si, ci being actions for communication via port i, and error indicating the loss of a
message on a channel. Furthermore, we have (r i, si, ci) ∈ CT, for all i ∈ {1, 2, 3, 4, 5, 6},
and PT and IT as presented in Figure 5.13 with E being an environment process de-
livering messages to S. We do not enforce communication via port 2, thereby allowing
the system to be open on that side.

PT = {E = s1(1)·E,

S(b : B) = ∑
d:N

r1(d)·tick(tS)·SF(d, b),

SF(d :N, b : B) = s3(d, b)·(tick(t′S)·SF(d, b) + r5·S(¬b)),

R(b : B) = ∑
d:N

r4(d, b)·tick(tR)·s2(d)·tick(t′R)·s6·R(¬b)

+ ∑
d:N

r4(d,¬b)·tick(t′R)·s6·R(b),

K = ∑
d:N

∑
b:B

r3(d, b)·tick(tK )·(s4(d, b) + error)·K ,

L = r6·tick(tL)·(s5 + error)·L}

IT = ∂{r1,s1,r3,s3,r4,s4,r5,s5,r6,s6}(E || S(F) || K || L || R(F))

Figure 5.13: A µCRLtick specification of the PAR protocol

Note the time-out mechanism in process SF; if an acknowledgement is received via
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port 5 within t′S time units, the sender can start waiting for the next message to be
sent. Otherwise, it needs to resend the current message. We refrain here from showing
the µCRL specification resulting from the transformation of MT. Suffice it to say, that
we transformed MT, and experimented with the delay constants tS , t′S , tR , t′R , tK ,
and tL. As remarked by Baeten et al. (2002), the protocol should only be correct if t′S >
tK + tR + t′R + tL holds. If it does not hold, premature time-outs will occur in process SF.
First we make sure that this condition holds; we set tS = tR = tK = tL = 2, t′R = 1, and
t′S = 8. With this setting, the resulting state space before the enforcement of maximal
progress has 158 states and 234 transitions. Having applied maximal progress, the
final state space contains 64 states and 72 transitions. Using CADP, we observe that
it does not contain any deadlocks, and that the protocol is correct here, i.e. two actions
c3(1, T) (or c3(1, F)) do not occur in a trace without an occurrence of either error or
c3(1, F) (c3(1, T)) between them. We specified this property in the following µ-calculus
formula (likewise, it is possible to check for consecutive c3(1, F) actions):

[T∗.c3(1,T).(¬(error | c3(1,F)))∗.c3(1,T)] F

Next, we set t′S = 4. The resulting state space without maximal progress incorpo-
rates 3,132 states and 6,546 transitions, while the one with maximal progress has 686
states and 1,106 transitions. The state space with maximal progress contains no dead-
lock states, but the correctness property does not hold, in other words, at times SF
prematurely concludes that it needs to resend a message.

5.4 Verification of Timing Properties

Now that we can model timed systems using µCRLtick, we would also like to express
timing properties in order to check if they hold in these systems. For this, we use
the approach as explained by Ioustinova (2004), but slightly modify it such that it
works with parameterised tick actions. Ioustinova (2004) first extends the regular
LTL temporal logic with time, after which a transformation is provided to LTL with
tick actions. Here, we display the definition of regular LTL with time, after which we
explain how the transformation is achieved and how ours differs from the one given by
Ioustinova (2004).

The extension of regular LTL with time by Ioustinova (2004) is constructed by adding
the possibility to express timing constraints. A timing constraint is of the form ≥ t, ≤ t,
= t, where t is a non-negative integer constant. Such a timing constraint is referred to
as tc.

Definition 9 (Syntax of regular LTL with time (Ioustinova, 2004)).

φ ::= T ¬φ φ1 ∨ φ2 φ1U(r)tcφ2
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where tc is a timing constraint and r stands for a regular expression that does not
mention the action tick. We use F, ∧ and =⇒ as derived operators in the usual way,
and define 〈r〉tcφ = TU(r)tcφ, [r]tcφ = ¬〈r〉tc¬φ.

Next, properties expressed in regular LTL with time should be transformed into reg-
ular LTL properties with tick actions. One approach for this uses the observation by
Hopcroft et al. (2001) that regular expressions and deterministic finite automata have
the same expressive power and can be translated into each other. Let Ar be the deter-
ministic finite automaton obtained by the translation of a regular expression r. This
automaton exactly recognises the set of strings for which r holds. Ioustinova (2004)
provides a translation of timing constraints into deterministic finite automata. Hav-
ing a deterministic finite automaton corresponding with a regular expression Ar and a
deterministic finite automaton corresponding with a timing constraint, the product of
these two recognises all interleavings of strings recognised by these two automata. We
first provide the formal definition of deterministic finite automata and the set of strings
they recognise. Finally, in Lemma 1, we redefine the translation of timing constraints
such that parameterised tick actions are used.

Definition 10 (Deterministic finite automaton (DFA)). A deterministic finite au-
tomaton (DFA) A is a quintuple (S,Σ,T,s0,F), where

• S is a set of states;

• Σ is a set of labels;

• T : S × Σ→ S is a transition function;

• s0 is an initial state;

• F ⊆ S is a set of final states.

The set of strings recognised by A is given by L(A) = {α1 . . .αn | ∃s1, . . . , sn ∈ S ∧ sn ∈
F ∧∀ j = 0, . . . , n − 1.(s j,α j+1, s j+1) ∈ T}.

Lemma 1. For each timing constraint tc there is a DFA Atc containing tick actions
(with tick : T) recognising it.

Proof. The DFA recognising timing constraints can be constructed as follows:

A≤t = ({0,1, . . . , t+1}, {tick(1), . . . , tick(c)}, {(t+1, tick(t′), t+1), (i, tick(t′),min{i+ t′, t+1}) |
i = 0, . . . , t ∧ t′ = 1, . . . ,c}, {0}, {0, 1, . . . , t}).
A=t = ({0,1, . . . , t+1}, {tick(1), . . . , tick(c)}, {(t+1, tick(t′), t+1), (i, tick(t′),min{i+ t′, t+1}) |
i = 0, . . . , t ∧ t′ = 1, . . . ,c}, {0}, {t}).
A≥t = ({0,1, . . . , t}, {tick(1), . . . , tick(c)}, {(t, tick(t′), t), (i, tick(t′),min{i+ t′, t}) | i = 0, . . . , t−
1 ∧ t′ = 1, . . . ,c}, {0}, {t}).
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For Lemma 1, remember that c is our practical upperbound to the number of time
units jumped in a single time transition. This means that no tick(t) can occur in a
µCRLtick state space with t > c.

Besides the translation of timing constraints to DFA, the verification approach pre-
sented by Ioustinova (2004) can be reused for µCRLtick state spaces. Therefore, we
refer the reader to that work for more details.

5.5 Related Work
There are many papers on extending a specific process algebra with time. Here, we
focus on papers on the basic timing concepts and comparisons of timing mechanisms.
Nicollin and Sifakis (1991) discuss and compare a range of timing mechanisms accord-
ing to a list of time properties (mentioned in this chapter in Section 5.1); additional
axioms and transition rules are provided for a number of process algebras, and extra
operators are introduced. Baeten and Middelburg (2002) extend both the Basic Pro-
cess Algebra (BPA) (Bergstra and Klop, 1984a) and ACP (Bergstra and Klop, 1984b)
with a range of different timing mechanisms. Some of the time properties are fur-
ther elaborated on by Baeten (2003). A general framework for designing timed process
languages is proposed by Ulidowski and Yuen (1997). The idea in these papers is to
embed untimed into timed process algebra; in a sense one could say that we take an
opposite approach, namely embedding timed into untimed process algebra, by means
of a transformation procedure.

5.6 Conclusions and Extensions
We proposed an extension of µCRL, called µCRLtick, which can practically be achieved,
by transforming µCRLtick models to µCRL models, such that the desired time prop-
erties still hold. We built on the work in Chapter 3 by emphasising ease of use and
allowing time jumps of arbitrary length in a single transition. The toolset can directly
be used for the verification of properties of µCRLtick models, provided that it either in-
cludes an extra state space generation algorithm or a reduction tool providing maximal
progress, as described in Section 3.3.1.

The setting allows for several extensions, of which we name a few here. For in-
stance, Baeten (2003) and Baeten and Middelburg (2002) mention a current time unit
time-stop δ, which, in contrast to the standard deadlock, does not allow the passage

of time. This could be added to µCRLtick by adding an extra action in AT and in the
transformation ensure that no delays can be performed whenever this action, by then
translated to deadlock, is enabled. The communication mechanism can be left as is.
Baeten and Middelburg (2002) also mention relative time-out, which places an upper-
limit to the number of time units allowed to pass in the processes subjected to it. At
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least a system-wide version of it is achievable in our setting by including a process
R(c : T) = ∑

t∈T tock(t)·R(c − t) / c > 0 ∧ 0 < t ≤ c . δ in P (after transformation), and
placing R with a given upper-limit in parallel with the system.

Here, we chose a specific timing mechanism, most suitable for our transformation.
There are, nevertheless, other mechanisms possible. Now we briefly go into how other
decisions would affect the transformation. For instance, instead of weak choice, we
could choose for strong choice. Then, it must be ensured in all processes that no de-
lays are enabled whenever an urgent action is, which might result in very extensive
conditions for the time actions. Another decision would be to interpret deadlock as a
time-stop as opposed to a livelock, as mentioned by Baeten and Middelburg (2002) and
Baeten (2003). Then the deadlock relates to the time-stop as described earlier.
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Part II

Directed Quantitative Model
Checking

IN WHICH AN OVERVIEW OF SEARCHES IS PRESENTED, A PARTICULAR SEARCH IS

EXTENDED IN SEVERAL DIRECTIONS, A DISTRIBUTED SETTING IS CONSIDERED, AND

SCHEDULING EXPERIMENTS ARE CONDUCTED

This part is based on the work of Aljazzar et al. (2007), Torabi Dashti and Wijs (2007), Wijs and Lisser

(2007), and Wijs et al. (2005)





Chapter 6

State Space Searches for Directed
Model Checking

Jedes Fragen ist ein Suchen. Jedes
Suchen hat seine vorgängige Direktion
aus dem Gesuchten her. Fragen ist
erkennendes Suchen des Seienden in
seinem Daÿ-und Sosein.

(M. Heidegger)

6.1 Introduction

S
TATE SPACE EXPLOSION IS STILL the main problem in the area of model
checking. Model checking has proven to be very useful in lots of cases,
but just as easily, one can find system models which yield enormous state
spaces, that is, if they can in practice be generated at all. Abstracting away

from unnecessary details can sometimes simplify the model and shrink the state space,
but one cannot do this at leisure, as it should still be possible to verify the desired
properties. Other possibilities are to use better tools, or faster computers with more
memory, or to move to a distributed setting. But even then, there are very real limits
as to what can be achieved.

Because of this, research is being done to efficiently explore state spaces to find
deadlocks fast, particularly using Artificial Intelligence (AI) heuristic techniques, such
as A∗ (Edelkamp et al., 2004; Hart et al., 1968) and genetic algorithms (Godefroid
and Khurshid, 2002). This approach is referred to as directed model checking (DMC)
by Edelkamp et al. (2004). It has resulted in a whole scala of state space searches,
where each search has its own unique way of searching a state space. Although most
searches in this spectrum are used for so-called qualitative model checking, techniques
like beam search (e.g. see Bisiani (1992)) can be applied for quantitative model checking
as well, in particular to solve scheduling problems.
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Model checking traditionally concerns modelling systems and checking properties,
which either hold or not, in other words, the checks can be answered with either “yes”
or “no”. In more recent years, however, the awareness has grown that often other kinds
of analyses, which cannot be answered in such a manner, are equally important. For
these analyses, one is usually interested in some measurements, such as the through-
put or efficiency of a particular system. Markov Chains, for instance, have shown to be
useful when one needs to do performance analysis of a system (e.g. Bolch et al. (2006)).
Although not common yet, sometimes scheduling problems are also addressed using
model checking techniques, for instance by Behrmann et al. (2001a), Niebert et al.
(2000), and Ruys (2003), since model checkers are usually equipped with highly expres-
sive languages, making it possible to specify complex industrial scheduling questions.
Comparing the two kinds of property checks, one could label traditional model checking
as qualitative model checking, and the latter one as quantitative model checking (Huth
and Kwiatkowska, 1997).

In this chapter, we give an overview of the spectrum of directed model checking
search algorithms. In no way do we claim that our presentation covers the whole spec-
trum; we do, however, deal with the most frequently appearing techniques in this field,
focussing in our presentation on the connections that can be drawn between the indi-
vidual searches. As a help to the reader, the final section of this chapter contains a
glossary of notions used in the upcoming sections.

In the following chapter, we limit ourselves to model checking techniques for schedul-
ing. There, we take a very practical standpoint, describing, for a number of popular
model checkers, how to model scheduling problems in general, and listing some of the
available search techniques.

In Chapters 8 and 9, we limit our scope even further, by dealing with a specific
search algorithm useful for scheduling, namely beam search. In Chapter 8, we extend
two versions of this search to make them more effective for arbitrary state spaces. After
that, in Chapter 9, we adapt the extensions to work in a distributed setting.

Finally, in Chapter 10, we discuss a number of experiments conducted, including an
industrial case study, using a range of search algorithms.

6.2 Best-first Search
Let us again consider the breadth-first search algorithm presented in Chapter 2. We
change it slightly to Algorithm 7, by explicitly checking for the reachability of goal
states. Whenever such a state is encountered, we stop the search by invoking the
generation function GeneratePath, which returns a trace leading from I to this goal
state. If such a goal state does not exist, false is returned.1

1The decision to have Algorithm 7 and subsequent algorithms return false in case no goal state is encoun-
tered is made interpreting goal states as desirable states. Of course, when a goal state represents a bug
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Algorithm 7 Breadth-first search for reachability analysis
Require: M = (S , A , T , I ), goal states G

Ensure: If exists, a trace to a goal state is returned
i ← 0
Li ← I

while Li 6= ; do
Li+1 ← ;
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

Li+1 ← Li+1 ∪ nxtM (s, enM (s))
end for
i ← i + 1
Li ← Li \

⋃i−1
j=0 L j

end while
return false

We can generalise this algorithm by introducing a guiding function f . The function
f is used to determine which states to explore first. To keep things as general as
possible, we leave the definition of f completely open in the current section. As Pearl
(1984) notes: “[For best-first search, f ,] in general, may depend on the description of
[a state], the description of the goal, the information gathered by the search up to that
point, and most important, on any extra knowledge about the problem domain”. In
upcoming sections we look at searches using specific kinds of guiding functions.

A final selection of β states is done with the select function selectβ: 2S → 2S , which
employs a given selection width β ∈N∪ {∞}; let S be a set of states, then selectβ(S) ⊆ S
and | selectβ(S) |≤β. Algorithm 8 shows this generalisation, called best-first search (Rus-
sell and Norvig, 1995). In each round of the algorithm, f is used to select a set of states
Li ⊆ H with minimal f -value, where we identify the set of states H as the search
horizon. This set consists of all the states which have already been visited, but not
yet explored. Concerning the usage of selectβ, we distinguish two cases at this point:
either selectβ selects exactly one state each time it is invoked, i.e. β = 1, or all the
states, i.e. β = ∞. These two options lead to different versions of best-first search, i.e.
an explicit-state version and a set-based version.

Since f is left unspecified for best-first search, many other searches, both complete
and incomplete ones2, can be seen as special instances of best-first search. In fact,

in a system, the proper answer when no goal state is found would be true.
2A search is called complete iff G 6= ; and G is reachable implies that the search will find a trace to a goal

state in G .
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Algorithm 8 Best-first search
Require: M = (S , A , T , I ), guiding function f , selection width β, goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
H ← I

while H 6= ; do
Li ← selectβ({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← H \

⋃i−1
j=0 L j

end while
return false

best-first search is not a concrete way of searching, but a name for a class of searches.
So what are concrete possibilities for f then? To discuss this, we first move to a more
general definition of a state space.

6.3 Weighted State Spaces and Cumulated Costs
Let us revisit the definition of a state space, as given in Chapter 2. We extend this to a
weighted state space in Definition 11.

Definition 11 (Weighted state space). A weighted state space model is a quintuple
M = (S , A , C , T , I ), where S is a set of states, I ⊆ S is a set of initial states, A is a
finite set of action labels, C : A →K, withK a cost domain, is a total function assigning
costs to action labels, and T ⊆ S × A × S is the transition relation.

Given a cost domain K, in a weighted state space, every action in A is associated
with a cost c ∈ K. Such a, totally ordered, cost domain can for instance have the
structure of the natural numbers or the integers, i.e. it can be discrete, or of the reals,
in other words, it can be continuous. We do not consider negative cost values here.
Note that a standard state space can be seen as a weighted state space where for all
` ∈ A , we have C (`) = 1.

Weighted state spaces can typically be used to deal with priced problems, such as
scheduling or planning problems (of which more in Chapter 7). These can be modelled
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as reachability problems, as shown by e.g. Behrmann et al. (2001a), where on top of the
usual question whether a goal state s ∈ G can be reached or not, it is desired to find a
trace to such a goal state with minimal cumulated cost. A first attempt at defining the
cumulated cost of a state s, which matches the one found in most of the literature, is as
follows:

Definition Attempt 1 (Cumulated cost). Given a weighted state space M = (S , A ,
C ,T ,I ), we say that the cumulated cost of state s ∈ S , denoted g(s) (with g : S →K),
equals g(s′) + c iff ∃` ∈ A .s′ `−→ s and C (`) = c. For s ∈ I , g(s) = 0.

One problem with this definition becomes readily apparent, namely that for any
s ∈ S , g(s) need not be unique, since many traces may lead from I to s. More on
this later, but it raises the issue of re-opening of states in directed model checking.
Typically, when generating a state space, and determining g(s) for a state s on-the-fly,
one may discover smaller g(s) along the way. Because of this, there is a need to refer
to the minimal weighted distance d from a set of states S to a set of states S′. This is
defined in Definition 12.

Definition 12 ((Minimal) weighted distance between states). Given a weighted
state space M = (S , A , C , T , I ), a set of states S ⊆ S and a set of states S′ ⊆ S . Say
that there exist s ∈ S, s′ ∈ S′, and s0, . . . , sn ∈ S , with n ≥ 0, such that s

`0−→ s0
`1−→

s1
`2−→ . . .

`n−→ sn
`n+1−→ s′. Now we say that a weighted distance d from S to S′ (along

this trace), equals c0 + . . . + cn+1, with C (`i) = ci for 0 ≤ i ≤ n + 1. Furthermore, this
weighted distance d is called the minimal weighted distance between S and S′, denoted
d(S, S′), iff there do not exist ŝ ∈ S, ŝ′ ∈ S′, and ŝ0, . . . , ŝm ∈ S , with m ≥ 0, such that

ŝ
`′0−→ ŝ0

`′1−→ ŝ1
`′2−→ . . .

`′m−→ ŝm
`′m+1−→ ŝ′, with C (`′i)= c′i for 0≤ i ≤ m+1 and c′0+ . . .+ c′m+1 < d.

In case S′ is not reachable from S, meaning that there are no s ∈ S, s′ ∈ S′ with s →∗ s′,
then d(S, S′) = ∞.

Clearly, if S ∩ S′ 6= ; then d(S, S′) = 0, since there is a state s for which s ∈ S and
s ∈ S′, which has a trace of length 0 to itself.

Now, we return to the notion of cumulated cost. As noted, g(s), as defined in Defini-
tion Attempt 1, is in fact a relation, not per se a function, since g(s) may have several
values, in case there are multiple traces leading from I to s. We observe however that
in on-the-fly searching, g is not merely a relation, but a function which is at times re-
defined, namely each time a state is (re-)opened; at any particular moment during a
search, g is a (partial) function. Explicitly taking on-the-fly searching into account, we
finally define the notion of cumulated cost in Definition 13. There, s →∗

T s′ denotes that
s′ is reachable from s through the set of transitions T, i.e. there are s0, . . . , sn ∈ S and

`0, . . . ,`n+1 ∈ A , with n ≥ 0, such that s
`0−→ s0 ∈ T, si

`i+1−→ si+1 ∈ T for 0 ≤ i ≤ n − 1, and
sn

`n+1−→ s′ ∈ T. Figure 6.1 shows an example of (re-)defining g on-the-fly. We return to
this figure later on.
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Definition 13 (Cumulated cost). Given a weighted state space M = (S ,A ,C ,T ,I ),
we recursively define the cumulated cost of state s ∈ S relative to a given set of transi-
tions T (called the scope), denoted gT (s) (with gT : S →K), as follows:

• g;(s) = 0 if s ∈ I ;

• Given a (partial) function gT and a transition s0
`−→ s1 such that s0 ∈I ∪nxtM (T).

Then:

1. g
T∪{s0

`−→s1}
(s) = gT (s0) + C (`), if s = s1 ∧¬∃s′ ∈ I .s′ →∗

T s;

2. g
T∪{s0

`−→s1}
(s) = min{gT (s), gT (s0) + C (`)}, if s = s1 ∧ ∃s′ ∈ I .s′ →∗

T s;

3. g
T∪{s0

`−→s1}
(s) = gT (s), if ∃s′ ∈ I .s′ →∗

T s ∧ s 6= s1 ∧ (s1 6→∗
T s ∨ (∃s′ ∈ I .s′ →∗

T
s1 ∧ gT (s1) ≤ g

T∪{s0
`−→s1}

(s1)) ∨ s = s0);

4. g
T∪{s0

`−→s1}
(s)=min({gT (s)}∪ {g

T∪{s0
`−→s1}

(ŝ)+ c | ∃`′ ∈A .ŝ `′−→ s ∈ T ∧C (`′)=
c∧ s1 →∗

T ŝ}), if ∃s′ ∈I .s′ →∗
T s∧ s 6= s1∧ s1 →∗

T s∧ (∃s′ ∈I .s′ →∗
T s1∧ gT (s1)>

g
T∪{s0

`−→s1}
(s1)) ∧ s 6= s0.

In an on-the-fly search, initially, we only have the set of initial states I and no
transitions, therefore we can only know the cumulated cost values of all s ∈ I . The g-
values of all other states, in S \I , are undefined. We make this explicit by referring to
the partial function g;. As we search in the state space, new transitions are explored,
leading to new states, i.e. our scope increases in size. Say that we are in round i of
the search, and that our current scope T is increased to T ∪ {s0

`−→ s1}. Then at the
end of the round, we obtain a new cumulated cost function g

T∪{s0
`−→s1}

. Definition 13
distinguishes four cases:

1. A state s is the destination s1 and it was not previously reachable through the
scope T, i.e. it is a newly discovered state. Then g

T∪{s0
`−→s1}

(s) = gT (s0) + C (`).

2. A state s is the destination s1 and it was previously reachable through the scope
T, i.e. we revisit a state and have to consider updating its cumulated cost. Then
g

T∪{s0
`−→s1}

(s) = min{gT (s), gT (s0) + C (`)}.

3. A state s is not the destination s1. In this case, there are two possibilities:

• s is not reachable from s1 through the scope T. Clearly, then g
T∪{s0

`−→s1}
(s)=

gT (s).
• The destination s1 is reachable through the scope T, i.e. gT (s1) is defined,

and its cumulated cost value has not been updated. Then, g
T∪{s0

`−→s1}
(s) =

gT (s).
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• s is the source s0. Then g
T∪{s0

`−→s1}
(s) = gT (s). Even if s0 and s1 are in a

(shared) loop, i.e. s1 →∗
T s0, since we consider non-negative costs, a cumu-

lated cost update for s1 due to s0
`−→ s1 cannot also lead to a cumulated cost

update for s0.

4. A state s is neither the source s0, nor the destination s1, but it is reachable from
s1 through the scope T. Furthermore, the cumulated cost value of s1 has been
updated and gT (s1) is defined. Then the update of the cumulated cost of s1 may
affect the cumulated cost of s. In this case, we need to take the minimum of the
original cumulated cost of s and the updated cumulated cost of each predecessor
ŝ reachable from s1 plus the cost of the transition from ŝ to s.

It follows that for all T ⊂ T , gT : S → S is a partial function. In fact, the only total
function is gT . As we continue searching a state space, and our scope increases, we
‘discover’ the definition of function d (note that gT = d). In most of this thesis, we omit
the scope of the cumulated cost function, as is custom in the literature. Definition 13,
therefore, is mainly here to highlight the practice of discovering the final function g
(i.e. the total function gT ), and, with that, d, on-the-fly.

Next, in Definition 14, we define monotonicity of cumulated cost functions.

Definition 14 (Monotonicity of cumulated cost functions). A cumulated cost
function gT : S → K with scope T ⊆ T is called monotonic iff for all s ∈ S \ I there
exist s′ ∈ S , ` ∈ A with s′ `−→ s ∈ T and g(s) ≥ g(s′).

In words, for every state s in the scope, there exists a predecessor with a cumulated
cost smaller than or equal to gT (s). We cannot claim that all predecessors of s have a
smaller cumulated cost, because g(s) might very well have been updated to a smaller
value at least once during the search, while the g-values of some of its predecessors are
not. An example of this is illustrated in Figure 6.1. At first, on the left of the figure, the
cumulated cost of state s3 is greater than the cumulated cost of state s1. However, the
transition from state s2 to s3 has not been explored yet. When increasing the scope to
T ∪ {s2 −→ s3}, we revisit s3 by expanding s2, and find that its cumulated cost should
be updated. As the cumulated cost of s1 is not updated, since it is neither the source
s0, nor the destination s1, nor is it reachable from s3, gT∪{s2−→s3}(s1) > gT∪{s2−→s3}(s3).

When considering K without negative elements, monotonicity of g follows trivially
from Definition 13.

Now we can define best-first search for weighted state spaces, where, in order to
optimise the computational complexity, we store g(s) with each state s ∈ S . We refer
to such a stored g-value as s.g. By doing so, we can compute g(s) for any s ∈ S by
accessing the stored g-value of (one of) its predecessor(s), and adding the cost of the
fired action to it. For this purpose, we redefine nxtM (s, T) as nxtM (s, T) = {〈s′, s.g +
c〉| s′ ∈ S ∧ ∃` ∈ A . (s `−→ s′ ∈ T ∧ C (`) = c)}. The result is presented in Algorithm 9.
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gT (s3) = 4

111 1

gT (s1) = 3 gT∪{s2−→s3}(s1) = 3 gT∪{s2−→s3}(s2) = 1

gT∪{s2−→s3}(s3) = 2

gT (s2) = 1

Figure 6.1: Monotonicity example

Here, we leave open how the functions f and g relate to each other. Later on, we will
consider possible relationships between f and g.

Algorithm 9 Best-first search for weighted state spaces
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
H ← {〈s, 0〉 | s ∈ I }
while H 6= ; do

Li ← selectβ({〈s, s.g〉 ∈ H | ∀〈s′, s′.g〉 ∈ H . f (s) ≤ f (s′)})
if {s | 〈s, s.g〉 ∈ Li} ∩ G 6= ; then

return GeneratePath({s | 〈s, s.g〉 ∈ Li} ∩ G )
end if
for all 〈s, s.g〉 ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← {〈s, s.g〉 ∈ H | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈ ⋃i−1

j=0 L j ∧¬∃g′ < s.g ∈K.〈s, g′〉 ∈ H }
end while
return false

Note that duplicate detection, in the last line of the algorithm, is now refined to
the removal of states from the search horizon H which have been encountered before
with a lower or equally valued cumulated cost. If, however, in an earlier encounter
the cumulated cost was greater, then the state should be re-opened. Of course, such
a re-opening introduces redundancy in the search, but can often not be avoided if we
wish to preserve cost-optimality. Besides that, duplicate detection considers multiple
appearances of a state in H itself. When this occurs, only the smallest g-value should
be maintained.
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6.4 Uniform-cost Search
Now we come to another practical instance of best-first search. Given a monotonic
cumulated cost function g : S → K, if we say that f = g, then Algorithm 8 denotes
what is referred to by e.g. Korf (1992), Pearl (1984), and Russell and Norvig (1995)
as uniform-cost search, and as lowest-cost-first search by Poole et al. (1998); it is also
known as Dijkstra’s search, from Dijkstra (1959). With the same assumptions, Algo-
rithm 9 represents a computationally optimised version of uniform-cost search. There,
however, the duplicate detection is unnecessarily complicated. This follows from the
following observation concerning uniform-cost search:

Lemma 2. If we consider monotonic g for uniform-cost search, then for any states s, s′ ∈
S , if s is selected by the selectβ function in round i, and s′ is selected by the selectβ
function in round j > i, then necessarily s.g ≤ s′.g. This is true independent of the value
of β.

Since Lemma 2 also holds when s = s′, it follows that in duplicate detection it suffices
to check for earlier encounters of a state, independent of its g-value.

From Lemma 2 it follows that the first time a state s ∈ G is discovered, a trace from
I to s is discovered with g(s) = d(I , {s}). Actually, if it is the very first goal state we
encounter, then g(s) = d(I , G ).

We call the second property cost-optimality, which is defined in Definition 15.

Definition 15 (Cost-optimality of a best-first search). Given a weighted state space
M = (S , A , C , T , I ) and a set of goal states G ⊆ S , we call a best-first search cost-
optimal iff it is ensured that it always returns a trace from I to a goal state s ∈ G with
f (s) = d(I , G ) (unless G = ; or unreachable).

For instance, in general, breadth-first search applied on a weighted state space
(which is represented in Algorithm 9 by choosing an appropriate f , such as f (s) = 0
if s ∈ I , and f (s) = f (s′) + 1, if ∃` ∈ A .s′ `−→ s,3 and furthermore having β = ∞), is
not cost-optimal, unless searching is continued once a trace to a goal state is found
until there are no more states to explore. This is because there is no necessary corre-
lation between the length of a trace and its total weight; so the first time a goal state
is reached does not necessarily mean that a minimal trace to a goal state is found. On
the other hand, in a weighted state space where for all ` ∈ A C (`) = 1, breadth-first
search is cost-optimal.

Finally, depth-first search can be achieved in Algorithm 9 by e.g. determining f on-
the-fly as f (s) = 0, if s ∈ I, and f (s) = f (s′) − 1, if ∃` ∈ A .s′ `−→ s and setting β = 1.

3Note that as with cumulated cost functions, f is technically not a function here, as a state s may receive
different f -values during a search. It is, however, a (partial) function at any specific moment of the
search.
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6.5 Bounded Searches
In the remainder of this chapter, in order to keep things as general and clear as pos-
sible, we abstract away from the specifics to keep track of cumulated costs of states.
For this reason, we adapt Algorithm 8, such that Algorithm 9 can be seen as an in-
stance of it. In order to achieve this, we introduce a new duplicate detection function
DuplicateFree, which performs duplicate detection on a given set of states (possibly ac-
companied by their stored g-values). This can either be the straightforward variant,
i.e. checking for earlier encounters, or the more sophisticated one as presented in Al-
gorithm 9. Furthermore, in the following algorithms we do not write 〈s, s.g〉, but only
s, even when in practice one might need to keep track of s.g. We also take this more
general stance when dealing with the detection of goal states. The result is presented
in Algorithm 10.

Algorithm 10 General Best-first search
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
H ← I

while H 6= ; do
Li ← selectβ({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
H ← H \ Li
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← DuplicateFree(H ,

⋃i−1
j=0 L j)

end while
return false

Next, considering this more general algorithm, we can extend it further by introduc-
ing a guiding upper-bound U . It can be used to prune away parts of the state space
during generation, while still preserving cost-optimality, given that U is indeed an
upper-bound to d(I ,G ). Such an upper-bound makes it practically possible to deal with
reachability problems in infinite state spaces. Algorithm 11 shows best-first search us-
ing a cost upper-bound U . It is important to take U into account each time duplicate
detection is performed, as now we need not only remove states from the search horizon
which have been explored before, but we also should remove states with an f -value
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greater than U . In practice, an algorithm using U is referred to as a cost-bounded
search.

Algorithm 11 Cost-bounded best-first search
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states G ,

cost upper-bound U
Ensure: If found, a trace to a goal state is returned

i ← 0
H ← {s ∈ I | f (s) < U}
while H 6= ; do

Li ← selectβ({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
H ← H \ Li
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← DuplicateFree(H \ {s ∈ H | f (s) ≥ U ,

⋃i−1
j=0 L j})

end while
return false

Common instances of cost-bounded best-first search are cost-bounded breadth-first
search, cost-bounded depth-first search, and cost-bounded uniform-cost search, which
can be obtained from Algorithm 11 in obvious ways. It should be pointed out that in
some searches, in particular cost-bounded depth-first search, a bound on a monotonic g-
function does not work well in the presence of infinite traces where U is never reached
along the way, which is possible, since transitions may have a cost of 0 associated with
them. One can avoid such a situation by also bounding the depth of the search. This
is, for example, used in the model checker SPIN, the details of which are stated in
Section 7.3.3.

As bounding the cost can in a way be seen as pruning in the depth of the state
space, a related technique is to select in each round of the search a subset of states,
thereby setting the width of a state space. In the presented algorithms this possibility
is readily available by allowing β, besides 1 and ∞, to take any natural number as
input. Note that there is an important difference between the two techniques, other
than the dimension they affect; as they are defined currently, cost-bounding really
prunes states, i.e. states are permanently removed from the search, whereas states
which are not selected by selectβ remain in the search horizon and therefore can still
be selected later on in the search. This is done since in the depth pruning can safely
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be performed without compromising cost-optimality, if U ≥ d(I ,G ), while in the width
this is not the case.

There are situations, however, where pruning in the width might be desirable. In
practice, pruning in the width results in searches which require an amount of memory
linear to the maximum search depth. Algorithm 12 includes the possibility to prune
states in the width in each round of the search; by setting the flag WidthPruning we
turn the option on. An example of algorithms using pruning in the width is nearest
neighbour search, also known as Gradient Descent (see e.g. Zhang (1999)), which uses
a cumulated cost function for guiding, i.e. f = g, and a selection width β = 1. It exactly
traverses the trace which follows from always selecting the transition with the least
cost among the outgoing transitions of the current state. It is identified by Zhang
(1999) as a kind of local search, where local search is a type of search which looks for
local optima, i.e. it never looks further ahead along a trace than the next transition(s)
to take.

At this point, it is important to mention a phenomenon, referred to in the litera-
ture as tie-breaking; when, in a given round of a search algorithm, β states need to
be selected, but more than β states have the best f -value, clearly selection needs to
be done based on some other criteria. In practice, this may e.g. depend on the order
of encountering the states. However, being forced to resort to tie-breaking is in gen-
eral undesired, since it degrades the influence of the guiding function. Later on, in
Chapter 8, we consider the avoidance of tie-breaking for a specific search algorithm.

6.6 Iterative and Bound-updating Searches
If we add the possibility, after finishing a search, to update the bounds, i.e. U and/or
β, using e.g. the cumulated cost of a reached goal state or some prespecified inter-
val, and build in the possibility to continue the search using the new bound values,
then we achieve what we in general might call a bound-updating search. If we, after
each update, reset the search, such that we start again with I , then we refer to this
search as an iterative search. These extensions are presented in Algorithm 13. For the
bound-updating, the bound setting function newdepthbound:K×2S ×2S →K and the
bound setting function newwidthbound: N × 2S × 2S → N are used to calculate new
upper-bounds. These functions typically take the current search horizon and the set of
reached goal states into account. Besides that, we can turn on/off the iterative search-
ing, i.e. reset the search completely, by setting the flag IterativeSearch to true/false.
Note that we have replaced the return terms by output terms, in order to express
that by executing these lines, the algorithm does not necessarily exit.

Iterative searches often calculate new bounds for the next iteration during the ex-
ecution of the current iteration, taking states into account, which later on in the
search are possibly pruned away. To express this behaviour, Algorithm 13 uses the
bound storing functions updatedepth and updatewidth. The functions updatedepth :

130



6.6 Iterative and Bound-updating Searches

Algorithm 12 Cost-bounded best-first search with width pruning
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states G ,

cost upper-bound U , flag WidthPruning
Ensure: If found, a trace to a goal state is returned

i ← 0
H ← {s ∈ I | f (s) < U}
while H 6= ; do

Li ← selectβ({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
if WidthPruning then

H ← ;
else

H ← H \ Li
end if
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← DuplicateFree(H \ {s ∈ H | f (s) ≥ U},

⋃i−1
j=0 L j)

end while
return false
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K ×K × 2S × 2S → K and updatewidth : N ×N × 2S × 2S → N store the bounds for
the next iteration in U ′ and β′, respectively. They can e.g. keep track of the minimum
encountered cumulated cost still greater than the current upper-bound, or the maxi-
mum cumulated cost, making the search more greedy in a sense. Another option found
in practice is to have the update functions increase the bounds by fixed intervals.

In particular, if we update U to g(s) whenever we encounter a goal state s, and
we do not reset the search, we achieve so-called Branch-and-Bound (BnB) algorithms,
a technique e.g. described by Kumar (1992). In a similar manner, the possibility to
restart the search and update U and β opens up the possibility to iteratively search
larger and larger spaces. If we perform an iterative search while successively rais-
ing the selection width by some interval, and apply pruning in the width, then we
perform iterative broadening (Ginsberg and Harvey, 1992). In case we successively
raise the upper-bound, however, to the minimal total cost found among visited, but
not expanded, states, we use iterative deepening; for instance, Korf (1985) analyses
depth-first iterative deepening. In Algorithm 13, iterative deepening can be achieved
by defining updatedepth(U ′,U , H , Li ∩ G ) = min{U ′, newdepthbound(U , H , Li ∩ G )},
and newdepthbound(U , H , Li ∩ G ) as follows:

newdepthbound(U , H , Li ∩ G ) =
0, if Li ∩ G 6= ;
min{ f (s) > U | s ∈ H }, otherwise

An important difference between depth-first BnB search and iterative deepening is
that the first search continues from the current point once a goal state has been found,
while in such a situation, the latter stops the current iteration and restarts the search.
The definition of newdepthbound presented above achieves the desired behaviour for
iterative deepening: by setting U to 0 once a goal state has been found (done by the
first appearance of newdepthbound in Algorithm 13), the current iteration will termi-
nate in the next round. As long as no goal state is found, the second appearance of
newdepthbound in Algorithm 13 keeps track of the bound to use in the next iteration,
which is the smallest encountered total cost greater than U , and stores it in U ′. This
value can be used once the current iteration is finished.

Finally, note in the last line of Algorithm 13 that the iterative searches can be
stopped entirely by setting any of the bounds to 0.

6.7 Selecting Extra States

Up to now, we have only considered searches which in each round select the best states
according to the guiding function f . In some cases, a bound is set on the number of
states selected in a round, such that if there are too many best states, some of them
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Algorithm 13 Cost-bounded iterative and bound-updating best-first search
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states

G , cost upper-bound U , flag WidthPruning, bound-setting and updating functions
newdepthbound :K×2S ×2S →K, newwidthbound :N×2S ×2S →N, updatedepth :
K×K×2S ×2S →K, and updatewidth :N×N×2S ×2S →N, flag IterativeSearch

Ensure: If found, a trace to a goal state is returned
Start←true
U ′,β′ ← ∞
repeat

if IterativeSearch or Start then
Start←false
i ← 0
H ← {s ∈ I | f (s) < U}

end if
while H 6= ; do

Li ← selectβ({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
if WidthPruning then

H ← ;
else

H ← H \ Li
end if
if Li ∩ G 6= ; then

output GeneratePath(Li ∩ G )
U ← newdepthbound(U , H , Li ∩ G )
β← newwidthbound(β, H , Li ∩ G )

end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
U ′ ← updatedepth(U ′,U , H , Li ∩ G )
β′ ← updatewidth(β′,β, H , Li ∩ G )
i ← i + 1
H ← DuplicateFree(H \ {s ∈ H | f (s) ≥ U},

⋃i−1
j=0 L j)

end while
output false
U ← U ′
β← β′

until β = 0 ∨U = 0
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will be either postponed or pruned (depending on the pruning setting).
In cases where there are fewer best states than the number allowed by the width

bound, selecting extra states up to the width bound would be an option. These ex-
tra states would then typically be the next-best states. An example of an algorithm
which illustrates this technique perfectly is called k-best-first search (Felner et al.,
2003), therefore we adopt this name here. It practically compensates any inaccura-
cies in f by selecting more than only the best states, whenever the width bound allows
it. Algorithm 14 incorporates this technique, which can be switched on by setting the
flag BestStatesOnly to false.

6.8 Guiding with Heuristics

In the previous sections, given instances of the best-first searches presented always
applied a cumulated cost function g as f . The result of choosing a cumulated cost
function as the guiding function is that in most cases cost-optimality can be guaranteed
(one exception to this being whenever pruning in the width is applied). Though this
guarantee is a very strong point, in practice, state spaces can be so large that these
searches require too much time and memory before they even provide one trace to
a goal state. One of the main reasons for this is that the guiding function does not
consider the future of traces, i.e. it does not try to determine what the structure is of
the not yet discovered part of the state space.

One way to do this is to incorporate a so-called heuristic function. Such a function is
typically used to predict the remaining cost needed to reach from a given state a goal
state. In the literature, a heuristic function is often referred to as h, therefore here
we consider a heuristic or estimation function h : S → K. Most searches employing
heuristics are not cost-optimal, though. Particularly in application areas where also
near-optimal solutions to a problem are satisfactory, we may consider dropping cost-
optimality of a search.

Figure 6.2 shows the typical relation between a cumulated cost function g and a
heuristic function h to solve reachability problems within a weighted state space. A
cumulated cost function reflects a real weighted distance along a trace, starting in I ,
leading to a state s, while a heuristic function provides an estimated weighted distance
between a state s and G . In cases where the history of a state s, i.e. the trace leading
from I to s, plays a role, typically f (s) = g(s) + h(s), in other words, f (s) takes (an
estimation of) the whole weighted distance between I and G via s into account. One
can imagine that with guiding functions like this, the further down we go into a state
space, the more accurate f will be. Where the history is unimportant, we can use
heuristics by e.g. setting f (s) = h(s).

Considering the properties of heuristic functions, first of all, typically h(s) = 0 iff
s ∈ G , since naturally, the distance from a goal state to G is 0. In cases where B 6= ;,i.e.
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Algorithm 14 Cost-bounded iterative and bound-updating k-best-first search
Require: M = (S , A , C , T , I ), guiding function f , selection width β, goal states

G , cost upper-bound U , flag WidthPruning, bound-setting and updating functions
newdepthbound :K×2S ×2S →K, newwidthbound :N×2S ×2S →N, updatedepth :
K×K×2S ×2S →K, and updatewidth :N×N×2S ×2S →N, flag IterativeSearch,
flag BestStatesOnly

Ensure: If found, a trace to a goal state is returned
Start←true
U ′,β′ ← ∞
repeat

if IterativeSearch or Start then
Start←false
i ← 0
H ← {s ∈ I | f (s) < U}

end if
while H 6= ; do

Li = ;
repeat

Li ← Li ∪ selectβ−|Li |({s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)})
H ← H \ Li

until BestStatesOnly or (| Li |= β or H = ;)
if WidthPruning then

H ← ;
end if
if Li ∩ G 6= ; then

output GeneratePath(Li ∩ G )
U ← newdepthbound(U , H , Li ∩ G )
β← newwidthbound(β, H , Li ∩ G )

end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
U ′ ← updatedepth(U ′,U , H , Li ∩ G )
β′ ← updatewidth(β′,β′, H , Li ∩ G )
i ← i + 1
H ← DuplicateFree(H \ {s ∈ H | f (s) ≥ U},

⋃i−1
j=0 L j)

end while
output false
U ← U ′
β← β′

until β = 0 ∨U = 0
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Figure 6.2: Cumulated cost function g and heuristic function h

there are undesired (‘bad’) states present, preferably, if s ∈B then h(s)=∞. If a heuris-
tic function is, to some extent, successful in demotivating searches in the direction of
bad states, then we say that the function incorporates some deadlock avoidance.

Of course, searches using heuristic functions heavily depend on the quality of those
functions; a badly estimating heuristic may result in a bad search. In this thesis,
we do not especially focus on the development of heuristic functions. In the litera-
ture, however, there are numerous examples of techniques to do this, e.g. by Edelkamp
et al. (2001a), Edelkamp et al. (2004), Groce and Visser (2004), and Kupferschmid
et al. (2006). One of these techniques can be called relaxation of the conditions (Pearl,
1984), which yields so-called admissible heuristic functions. Admissibility of a heuris-
tic function, and, related to this, monotonicity of a heuristic function are defined in
Definition 16.

Definition 16 (Admissible and consistent heuristics). A heuristic function h : S →
K is called

• admissible, iff for all s ∈ S , we have h(s) ≤ d(s, G )

• consistent, iff for each s, s′ ∈ S and ` ∈ A such that s `−→ s′ and C (`) = c, we have
h(s) ≤ c + h(s′)

Lemma 3. If a heuristic function h : S →K is consistent, then it is admissible.

Proof. Consider a trace s
`0−→ s0

`1−→ . . .
`n−→ sn with sn ∈ G and C (`i) = ci for 0 ≤ i ≤ n,

such that c0 + . . . + cn = d(s, G ). Since h(s) is consistent, we have h(s) ≤ c0 + h(s0).
Furthermore, since h(s0) ≤ c1 + h(s1), we have h(s) ≤ c0 + c1 + h(s1). In this manner,
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it follows that h(s) ≤ c0 + . . . + cn + h(sn), which means h(s) ≤ c0 + . . . + cn, since by
sn ∈ G , h(sn) = 0. Finally, because c0 + . . . + cn = d(s, G ), we have h(s) ≤ d(s, G ).

Relaxation of the conditions works like this: Typically, one can identify at least one
factor of a problem, which makes it hard to solve. By removing this factor, often a
variant of the problem is obtained, for which a much easier estimation function can
be constructed. Surely, a correct estimation function for such a relaxed version of the
problem constitutes an admissible estimation function for the real problem, i.e. the
estimation function will provide optimistic estimations for the real problem.

Let us consider some examples of heuristic searches. If we consider f (s) = h(s),
do not prune in the width, and set β = 1, then we obtain greedy search, at least as
defined by Russell and Norvig (1995). Curiously, another definition of greedy search
is present in the literature, for instance provided by Zhou and Hansen (2005), which
corresponds with using a guiding function f (s)= g(s)+h(s), pruning in the width, and a
selection width β= 1. To avoid confusion, we dub the second definition heuristic nearest
neighbour search, as it can be seen as a nearest neighbour search with heuristics added
to it.

If we choose f (s) = g(s) + h(s), and apply pruning in the width and the selection of
extra states, then we obtain beam search for weighted state spaces, based on classic
detailed beam search, as presented by e.g. Valente and Alves (2005a).4 In this context,
β, which may be set to any value, is referred to as the beam width. If we have f (s) =
g(s) + h(s), use an admissible estimation function, do not prune in the width, and
only select the best states, then we either achieve A∗ (if β = 1) or set-based A∗ (if
β = ∞) (Hart et al., 1968).

A∗ is cost-optimal, and an important property of A∗, reported by Dechter and Pearl
(1985), is that, when using a consistent estimation function, it expands the minimum
number of states before a goal state is found, compared to all other algorithms which
are cost-optimal, up to tie-breaking. It should be noted that, besides A∗, it is hard to
state anything general about whether the admissibility (or monotonicity) of a heuristic
yields a good performance of a search using this heuristic.

Finally, we can compare admissible estimation functions for a problem as follows:

Definition 17 (Informedness of heuristics (Pearl, 1984)). A heuristic function h2
is said to be more informed than h1 if both are admissible and

∀s ∈ S \ {G ∪ B}.h2(s) > h1(s)

When considering admissible functions, Definition 17 expresses that given a problem
to solve, preferably a heuristic function to help in solving the problem is as accurate as
possible in predicting the actual distance between a given state and a set of goal states.

4The original definition of beam search is much less restrictive concerning the guiding function, requiring
only pruning in the width and the selection of extra states.
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In the upcoming chapters, we specifically focus on applying beam search on state
spaces, since typically, in the literature, it is only applied on highly structured trees. In
Chapter 8, we will see that we can achieve A∗ by extending beam search. Observe the
connection between beam search and the heuristic nearest neighbour search, as given
in the previous paragraph.

6.9 Some Other Search Examples
At this point in the chapter, we briefly present some more examples of (classes of)
searches present in the literature, before we continue with a final extension of our
setting, and the consideration of action-based guiding. The amount of existing searches
(and identified classes of searches) is vast, therefore it should be stressed that this is
by no means a complete list.

General Branch-and-Bound Earlier in this chapter, we described the Branch-and-
Bound technique; however, this technique is often considered to be one example of a
much larger class called Branch-and-Bound (BnB) search. Nau et al. (1984) identify
the class as general BnB and the instance as ordinary BnB. General BnB consists of
all searches for which in each round there is the guarantee of still having at least one
optimal solution in the search horizon, i.e. which are cost-optimal. Nau et al. (1984)
show that A∗ can be seen as an instance of general BnB.

Z Pearl (1984) identifies a type of search comprising a subclass of best-first search,
which he calls Z search. A search is an instance of Z iff its guiding function incorpo-
rates a so-called recursive-weight-computation. An example of such a computation is
calculating the cumulated cost value of a state. Therefore, uniform-cost search is an
instance of Z, as is A∗ (which is in fact an instance of Z∗). Heuristic depth-first search
and greedy search, however, are not. Curiously, note that if we follow the original defi-
nition of beam search, we must conclude that some beam searches are instances of Z,
while others are not.

ε-allowance A BnB technique, which is, like beam search, near-optimal. As de-
scribed by Zhang (1999), it works as regular BnB, but it also takes a lower bound into
account. Whenever a solution is found with a total cost no more than this lower bound
plus a pre-given distance ε, the search stops. In our algorithms such a mechanism
would be included in the newdepthbound function.

T-cut This is, like ε-allowance and beam search, also a near-optimal algorithm (Zhang,
1999). It operates like BnB, but it terminates whenever some additional (resource-
related) bound T is met, which e.g. expresses the maximal number of states to explore.
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Tabu search The already mentioned nearest neighbour search is an example of a
local search, meaning that during the search, only the next transition to take is con-
sidered, not looking at the global picture (i.e. taking the history and the further future
into account). A drawback of local searches is that they tend to get trapped into local
minima; a way to get around this problem is to include a backtracking facility, such
that whenever a solution is found, the search backtracks to an earlier point, and con-
tinues searching in another direction. Tabu search does this, by maintaining a tabu
list, in which parts of the searched space are kept (Zhang, 1999). States present in the
tabu list will never be re-opened. In our algorithms, tabu search can be seen as iter-
ative nearest neighbour, except that an iteration does not necessarily start from I ; it
can start from any (sub)set of previously visited states. The tabu list can be taken into
account in the DuplicateFree function, restricting duplicate detection to states present
in the tabu list.

Randomised searches Randomised searches take certain exploration decisions at
random. E.g. simulated annealing (Zhang, 1999) works in a way comparable with
tabu search, except that both searching and backtracking is done in a random fashion.
Searching is not always done best-first, but at random, and backtracking can be done at
any point, instead of in particular situations. We can incorporate this kind of searches
in our spectrum by allowing random decisions in our algorithms, for instance in the
selectβ function.

IDA∗ and MIDA∗ Iterative Deepening A∗ (Korf, 1985) works as A∗, but uses a to-
tal cost upper-bound value to perform an iterative deepening version of it, updating
the upper-bound for each iteration by a fixed interval. As it is a depth-first search,
its space requirements are, unlike those of A∗, linear to the maximal search depth.
Wah (1991) has analysed how updating the bounds impacts the search overhead; he
describes MIDA∗ as an IDA∗ search, where the bounds are updated dynamically, using
information collected at run-time.

MA∗ On the one hand, A∗ may require a lot of memory, since all the encountered
states need to be kept in memory, and on the other, IDA∗ requires a minimal amount
of memory, but maintains no trace information at all when moving to the next itera-
tion. Chakrabarti et al. (1989) remark that there are searches situated between these
two extremes. They keep track of the number of states expanded so far, and prune
states out of the memory whenever this total number exceeds a pre-given maximum.
Whenever this maximum is set to 0, MA∗ behaves as IDA∗; whenever it is very large,
MA∗ behaves as A∗.
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6.10 Multi-phase Searches

In this section, we propose a final generalisation of our best-first search, that we call
multi-phase best-first search, which gives rise to the idea of compositionality of best-
first searches. This extension is by no means common; in the literature we find some
searches which may be identified as instances of multi-phase best-first search, but
the general form is not described. The three possible instances we found are filtered
beam search (reported, e.g., by Pinedo (1995); Si Ow and Morton (1988); Valente and
Alves (2005c)), A∗

ε , described by Pearl (1984), and heuristic depth-first search (see e.g.
Poole et al. (1998)). Besides the existence of these searches, our proposed extension is
furthermore motivated by the work in Chapter 8, where we consider more instances of
this best-first search and their applicability in practice.

In the extensions of best-first search thus far, it is possible to enable a range of
options, thereby manipulating the way in which the Li are constructed; we have e.g.
a guiding function f , a cost upper-bound U , and a selection width β. A generalisation
would be to allow a list of n guiding functions f1, . . . , fn, a list of cost upper-bounds
U1, . . . ,Un, and a list of selection widths β1, . . . ,βn. The lists could be used to construct
an Li through a number of intermediate phases, such that in practice, we basically
stack search algorithms on top of each other. We will further illustrate this concept
next.

Say we have an n-phase best-first search, with guiding functions f1,...,n, cost upper-
bounds U1,...,n, selection widths β1,...,n, flags WidthPruning1,...,n, BestStatesOnly1,...,n,
and update functions newdepthbound1,...,n and newwidthbound1,...,n. In each round i of
the algorithm, we construct Li from H as follows:

1. In the first phase, we use function f1 to select β1 states from H , either pruning
or not (depending on WidthPruning1), and either selecting only the best states
or not (depending on BestStatesOnly1). The selected states together form the
intermediate search horizon H1. If a goal state is found, a trace from I to this
goal state will be produced.

2. In the second phase, we take H1 and produce the intermediate search horizon
H2 by applying function f2 to select β2 states from H1, either pruning or not
(depending on WidthPruning2), and either selecting only the best states or not
(depending on BestStatesOnly2).

3. . . .

n. In the nth phase, we take the intermediate search horizon Hn−1, and produce
Li by applying function fn to select βn states from Hn−1, either pruning or not
(depending on WidthPruningn), and either selecting only the best states or not
(depending on BestStatesOnlyn).
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By adopting such a multi-phased mechanism, we can compose search algorithms
useful for several reasons. For instance, the aforementioned filtered beam search can
be seen as a two-phase best-first search, where in the first phase states are selected
based on some computationally cheap guiding function, which does not incorporate the
history of the states, while the remaining states are pruned away. In the second phase,
a second selection is performed, and pruning is again applied, using a more precise,
but computationally much more expensive, guiding function. By this approach, we
can avoid evaluating all states in the original search horizon with the computationally
more expensive guiding function.

One can also imagine combining cost-optimal searches. For instance, an n-phase
uniform-cost search could be useful to deal with so-called multi-cost problems, which
are e.g. mentioned by Behrmann et al. (2005) and focussed on by Larsen and Ras-
mussen (2005). As an example, consider the problem of constructing a new building,
where money, time and manpower are the three types of resources to consider. The goal
is to find a way to construct the building, such that the amount of money needed should
absolutely be minimised. Given this condition, the quickest possible solution should be
chosen, and finally, given those two conditions, we should try to minimise the amount
of manpower needed. Such a solution, in the state space of the specification of this
problem represented by a trace, could be found by using a three-phase uniform-cost
search, where f1(s) = g1(s) keeps track of the amount of money spent, f2(s) = g2(s)
reports the time needed thus far, and f3(s) = g3(s) reflects the total amount of man-
power. One can imagine that changing the priorities of these three types of resources
leads to different kinds of solutions, and that changing the order of the phases in the
multi-phase uniform-cost search allows us to deal with these different priorities.

On a side note, it should be pointed out that multi-phase searches raise the interest-
ing question how duplicate detection should be performed, or more specifically, when
to re-open states and when not. For instance, if we open a state s, after computing
both f1(s) and f2(s), and later, we re-encounter s, this time with a lower f1(s) value,
but with a greater f2(s) value, what to do next? Of course, the re-opening policy should
be decided based on the importance of the individual guiding functions.

Algorithm 15 shows our multi-phase best-first search, incorporating all the exten-
sions previously introduced. The concept of this search will reappear in subsequent
chapters when dealing with so-called G-synchronised beam search for general state
spaces. In particular the way in which pruning in the width is performed here should
be taken into account. The chosen policy is that whenever pruning in the width is set
for a phase j, all states in horizon H j−1, which are not selected for the next phase, are
permanently pruned from the overall search horizon (i.e. H0). States selected in phase
j are not removed from H0 at this stage, since these may very well neither be selected
nor pruned away in subsequent phases, in which case we should reconsider them in
the next level of the search. The final selection of the level, though, once phase n has
finished, is removed from the search horizon, since these states are going to be fully

141



Chapter 6 State Space Searches for Directed Model Checking

explored.
Returning to the previously mentioned instances of multi-phase best-first search, as

explained before, filtered beam search applies two different types of beam search in
two phases, subsequently, where in the first phase a computationally cheap guiding
function is used, and the second phase deals with a more thorough selection among
the remaining states. This search is described in more detail in Section 8.3.5, since
we move our attention fully towards beam search in Chapter 8. The A∗

ε search can be
seen as a multi-phase search, where in the first phase, standard (set-based) A∗ with
selection of extra states is used to make an intermediate selection of states. In this
phase, all states need to be selected with an f -value not greater than the minimal f -
value plus a pre-given value ε. In the second phase, f2(s) = h2(s), where h2 expresses
a search effort estimate. The search effort estimate must not be confused with the
estimated remaining cost along a trace; it concerns the remaining computational effort
needed by the search algorithm to find a goal state. This second estimate is used to
make a final selection of states for exploration from the intermediate set of states. This
approach gives rise to the notion of ε-admissibility; an algorithm is ε-admissible iff it is
guaranteed to find a solution not worse than the optimal solution plus ε. This notion is
derived from the notion of admissibility of algorithms, which states that an algorithm
is called admissible iff it is guaranteed to find an optimal solution, i.e. it is cost-optimal.

Finally, heuristic depth-first search is a depth-first search that uses an estimation
function to decide for each s the order in which the successors need to be explored. Note
that the estimation function is used locally per state here. A global way, considering
the whole search horizon, would constitute a search which could be called heuristic
breadth-first search. Heuristic depth-first search can be seen as a two-phase best-first
search, where the first phase selects the states as a depth-first search would. For
this, we can determine f1 on-the-fly as f1(s) = 0, if s ∈ I , and f1(s) = f1(s′) − 1, if
∃` ∈ A .s′ `−→ s. In the second phase, an estimation function h : S →K is applied as f2
to select one state from the set of states delivered by the first phase.

6.11 Action-based Guiding

When referring to guiding functions in this chapter, we always adopted the approach
to apply such a function on a state, and using the outcome for the guiding. As state
spaces comprise of states and labelled transitions, an obvious alternative approach is
to base the guiding on transitions. Here, we refer to this alternative as action-based
guiding.

A first possibility in this field that comes to mind, is to associate priorities to action
labels. More precisely, we can use a priority function prio : A → Z to guide a search.
With such a function, at each state in the search, we can select up to a certain number
of transitions, which have the highest priority (as opposed to the lowest f -value in other
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Algorithm 15 Multi-phase best-first search
Require: M = (S , A , C , T , I ), guiding functions f1, . . . , fn, selection widths
β1, . . . , βn, goal states G , cost upper-bounds U1, . . . , Un, flags WidthPruning1,...,n,
bound-setting and updating functions newdepthbound1,...,n : K × 2S × 2S → K,
newwidthbound1,...,n : N × 2S × 2S → N, updatedepth : K ×K × 2S × 2S → K, and
updatewidth :N×N× 2S × 2S →N, flag IterativeSearch, flags BestStatesOnly1,...,n

Ensure: If found, a trace to a goal state is returned
Start←true; U ′

1,β′
1 ← ∞

repeat
if IterativeSearch or Start then

Start←false; i ← 0; H0 ← {s ∈ I | f (s) < U1}
end if
while H0 6= ; do

for j = 1 to n do
H j = ;
repeat

H j ← H j ∪ selectβ j−|H j |({s ∈ H j−1 | ∀s′ ∈ H j−1. f j(s) ≤ f j(s′)})
until BestStatesOnly j or (| H j |= β j or | H j |=| H j−1 |)
if WidthPruning j then

H0 ← H0 \ (H j−1 \ H j)
end if
if H j ∩ G 6= ; then

output GeneratePath(H j ∩ G )
U j ← newdepthbound j(U j, H j−1, H j ∩ G )
β j ← newwidthbound j(β j, H j−1, H j ∩ G )

end if
H j ← H j \ {s ∈ H j | f j(s) ≥ U j}

end for
Li ← H j; H0 ← H0 \ Li
for all s ∈ Li do

H0 ← H0 ∪ nxtM (s, enM (s))
end for
U ′

1 ← updatedepth(U ′
1,U1, H0, H1 ∩ G )

β′
1 ← updatewidth(β′

1,β1, H0, H1 ∩ G )
i ← i + 1
H0 ← DuplicateFree(H0 \ {s ∈ H0 | f (s) ≥ U1},

⋃i−1
j=0 L j)

end while
output false
U1 ← U ′

1; β1 ← β′
1

until β = 0 ∨U = 0
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guiding functions). Obviously, such a function does not explicitly take the history of a
state into account, but only considers the next transition(s) to take. It is, on the other
hand, implicitly important, since the outgoing transitions of different states cannot be
compared fairly. Consider a state space in which each trace leads to a goal state s ∈ G ,
and contains each ` ∈ A exactly once. This is, for instance, a common situation when a
scheduling problem has been modelled (as will be explained in more detail in the next
chapter). Within this state space, we wish to guide the search by associating priorities
with actions, thereby stimulating the early execution of highly important actions. Now,
let us look at states s and s′ in Figure 6.3. Say that we have `, `′ ∈ A , and a guiding
function prio : A → Z with prio(`) > prio(`′), based on the fact that the execution of
action ` has a higher priority than the execution of action `′. Clearly, in the situation
of state s, where both ` and `′ are possibilities for exploration, if we need to choose one
transition based on prio, we will choose `. If we would take all the outgoing transitions
of states s and s′ together into account, and simply make the same decision based on
prio, than we would make a mistake. Note that in the trace leading from I to s′, action
` has already been fired once. In other words, in s′ we are in a completely different
situation, due to the fact that s′ has a history different from s; in fact, it might be that
s′ represents a situation in which we have made more progress with the problem than
in state s, thereby we only have actions left to execute with lower priorities. As we do
not want to delay or even prune away this more promising trace, histories of states are
important when selecting transitions, and therefore we may only compare transitions
exiting the same state.

The inability of priority functions to globally compare states may be a limitation of
this kind of functions, compared to state-based (cost) functions, but priority functions
also have advantages; first of all, the computational complexity is, in general, far less.
Priority functions usually only encompass looking up a priority for a given action label
(in e.g. a table), while cost functions may incorporate complex calculations, particu-
larly when heuristics are involved. Second of all, no cost values are involved with a
priority function, therefore such a function can be applied on a, more traditional, un-
weighted state space, which implies that the cheaper version of duplicate detection can
be performed, in which g-values are not checked.

Of course, a way to explicitly include the history of states is to define prio : S ×A →
Z. Functions like this can also be used to make the assignment of priorities to actions
more dynamic; note that a function prio : A →Z assigns fixed priorities to action labels,
but a function prio : S × A → Z may assign different priorities to the same action
label at different times, depending on the situation, i.e. state. Fixed priorities are,
nevertheless, practically interesting; when used for scheduling problems, they seem
to resemble the dispatch scheduling strategy in Artificial Intelligence terminology, as
described e.g. by Si Ow and Morton (1988). Finally, both fixed and dynamic priority
assignment functions, although mostly applied on states, can be found in the literature
on priority beam search for well-structured trees, as explained in upcoming chapters.
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Figure 6.3: The selection of transitions

E.g. Valente and Alves (2004, 2005a,b,c) report on using priority beam search for well-
structured trees.

6.12 DMC Glossary

A
A∗ A best-first search with f = g + h, g being a cumulated cost function

g : S → K and h being an (admissible) estimation function h : S → K,
no pruning in the width, no selection of extra states, and β = 1. If β = ∞,
then we call the search set-based A∗. (See page 137)

A∗
ε A two-phase best-first search, where in the first phase, standard (set-

based) A∗ with selection of extra states is used to make an intermediate
selection of states. In this phase, all states need to be selected with an
f -value not greater than the minimal f -value plus a pre-given value ε.
In the second phase, f2(s) = h2(s), where h2 expresses a search effort
estimate, concerning the remaining computational effort needed by the
search algorithm to find a goal state. (See page 142)

action-based guiding Guiding a search using a function prio : A → Z, which as-
signs priorities to action labels, instead of a function f on states. Typ-
ically, in each round of action-based guided searches, those transitions
are selected for exploration, which have an action label with the (locally)
highest priority. (See page 142)

B
beam search A best-first search with f = g + h, g being a cumulated cost function

g : S →K and h being an estimation function h : S →K, pruning in the
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width, and the selection of extra states. In this context, β, which may be
set to any value, is referred to as the beam width. (See page 137)

best-first search A class of searches, where a guiding function f is employed to
guide the search through a state space. (See page 121)

bound setting function newdepthbound The function newdepthbound :K× 2S ×
2S → K sets a given depth upper-bound to a new value. The function
typically takes the current search horizon and the set of reached goal
states into account. Often, newdepthbound either sets the upper-bound to
the cumulated cost associated with an already found goal state, or raises
the value of the upper-bound by some fixed interval. It is used in cost-
updating searches. (See page 130)

bound setting function newwidthbound The function newwidthbound :N×2S ×
2S → N sets a given width upper-bound to a new value. The function
typically takes the current search horizon and the set of reached goal
states into account. Often, newwidthbound raises the value of the upper-
bound by some fixed interval. It is used in cost-updating searches. (See
page 130)

bound storing functions updatedepth and updatewidth updatedepth :K×K×
2S × 2S →K and updatewidth :N×N× 2S × 2S →N are used during a
round in an iterative search to calculate the new upper-bounds on-the-fly.
They can be used to, for instance, keep track of the minimum encountered
cumulated cost still higher than the current upper-bound, or the maxi-
mum cumulated cost, making the search more greedy in a sense. Another
option found in practice is to have the functions increase the bounds by
fixed intervals. (See page 130)

bound-updating search A cost-bounded search, which updates its bounds U and/or
β upon finishing, e.g. after having encountered a goal state, and then
continues searching, using the new bounds. (See page 130)

Branch-and-Bound (BnB) search A class of searches which are guaranteed to have
at least one optimal solution in each round in the search horizon. Ordi-
nary BnB search is an instance of this class, which updates its weighted
depth upper-bound whenever a new goal state is found, and continues the
search with this new upper-bound. (See page 138)

C
completeness A search is complete if it is ensured that, given a non-empty and

reachable set of goal states G , it always returns a trace from a state in I
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to a state in G . (See page 121)

cost-bounded search A search employing a guiding upper-bound U . (See page 129)

cost-optimality A search is cost-optimal if it is ensured that, given a non-empty and
reachable set of goal states G , it always returns a trace from a state in I

to a state s in G , with f (s) = d(I , G ). (See page 127)

D
deadlock avoidance The ability of a heuristic function to predict the locations of

(undesired) deadlock states in a state space. (See page 136)

duplicate detection function DuplicateFree Applies duplicate detection on a set
of states S, i.e. it checks for each element in S whether it has been ex-
plored earlier in the search. When considering cumulated costs, it is
checked whether each element has been explored before with a cumu-
lated cost smaller than or equal to the newly found cumulated cost. (See
page 128)

F
filtered beam search A two-phase best-first search which applies two different types

of beam search in two phases, subsequently, where in the first phase a
computationally cheap guiding function is used, and the second phase
deals with a more thorough selection among the remaining states. (See
page 142)

G
generation function GeneratePath Given a set of (goal) states, it returns a path,

or trace, from I to one of the elements in the set. The function is typically
used for reachability purposes. (See page 120)

greedy search In the literature, at least two searches are called greedy search, the
first one being a best-first search with f = h, h being an estimation func-
tion h : S → K, no pruning in the width, and β = 1, and the second one
being a best-first search with f = g+ h, g being a cumulated cost function
g : S → K, pruning in the width, and β = 1. To avoid confusion, we dub
the second one heuristic nearest neighbour search. (See page 137)

guiding function f A function on states, meant to be used to guide a search through
a state space. In general, f may depend on the description of a state, the
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description of the goal, the information gathered by the search up to that
point, and most important, on any extra knowledge about the problem
domain. The lower f (s) for a given state s, the more promising it is to find
a goal state by exploring s. (See page 121)

guiding upper-bound U An upper-bound to the guiding function f . Whenever it is
applied in a search, the search will never explore states with an f -value
greater than the upper-bound. (See page 128)

H
heuristic depth-first search A two-phase best-first search with f2 = h, h being an

estimation function h : S →K, and β= 1. The first phase selects states in
a depth-first search manner. In the second phase, h is applied to explore
one of the states selected by the first phase. (See page 142)

heuristic nearest neighbour search Referred to by e.g. Zhou and Hansen (2005)
as greedy search, heuristic nearest neighbour search is a best-first search
with f = g + h, g being a monotonic cumulated cost function g : S → K

and h being an estimation function h : S →K, β = 1, and pruning in the
width is applied. (See page 137)

heuristic or estimation function h A function h : S →K estimating the weighted
distance between a given state and the set of goal states. (See page 134)

I
iterative search Whenever a given, non-iterative, search would terminate, its iter-

ative version will start a new iteration by throwing away all generated
state space levels, possibly updating the used bounds, and considering I

for exploration. (See page 130)

L
local search A search which does not look further ahead in the state space than the

next transition(s) to take. (See page 130)

M
minimal weighted distance d The minimal weighted distance between two sets of

states S and S′ equals the minimum of the weights of all traces leading
from a state in S to a state in S′. (See page 123)
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monotonicity of cumulated cost functions A cumulated cost function g : S →K

is called monotonic iff for all s, s′ ∈ S with s `−→ s′ we have g(s′) ≥ g(s).
(See page 125)

multi-phase search A search in which each round consists of a number of phases,
where each phase is comparable to a round in a usual search. Round i
takes the output of round i − 1 (or the current search horizon if i = 1) and
outputs an intermediate search horizon H i. The last phase in a round
delivers the final output of the round. (See page 140)

N

nearest neighbour search Also known as gradient descent, the nearest neighbour
search is a local search with f = g, g being a monotonic cumulated cost
function g : S → K, β = 1, and pruning in the width is applied. (See
page 130)

P

pruning in the width A search prunes in the width whenever, in each round, it
removes the states not selected for exploration from the search horizon.
By setting the flag WidthPruning to true, this is activated. (See page 130)

S

select function selectβ The function selectβ : 2S →2S selects a subset of states from
a given set of states S, and the selected subset has no more than β ele-
ments, i.e. selectβ(S) ⊆ S and | selectβ |≤ β. How selectβ makes selections
may differ from one search to another. (See page 121)

selecting extra states A search using this functionality may also select states which
are not the most promising, i.e. states with an f -value greater than the
minimal one found in the search horizon. It is typically used to compen-
sate for inaccuracies in the guiding function. In the literature, a best-first
search employing the selection of extra states is often called a k-best-first
search. By setting the flag BestStatesOnly to false it is activated. (See
page 134)

selection width β An upper-limit to the number of states which may be selected for
exploration in each round of a search algorithm. (See page 121)
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T
tie-breaking Selecting a subset of states from a set of states comprising of equally

promising states, i.e. states with the same f -value. (See page 130)

U
uniform-cost search Also known as lowest-cost-first search and Dijkstra’s search,

uniform-cost search is a best-first search with f = g, g being a monotonic
cumulated cost function g : S → K, and no pruning or bounding is per-
formed. (See page 127)

W
weighted state space A state space extended with a given function C : A → K, K

being a cost domain. (See page 122)

Z
Z search A class of searches incorporating so-called recursive-weight-computation,

e.g. a cumulated cost function. (See page 138)
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Chapter 7

Model Checking Methods for
Scheduling

Aan de oevers van de tijd keek ik om me
heen. Ik wachtte aan de kant.

(Spinvis)

7.1 Problem Description

I
N RECENT YEARS, MODEL CHECKERS have been applied to solving combi-
natorial optimisation problems, i.e. problems where one of the best combi-
nations of possible values for a given set of variables needs to be found. In
particular, scheduling (or planning) problems have been considered, often

using a range of available model checkers. In a paper by Niebert et al. (2000), the
problem of minimum-time reachability for timed automata is considered. It is shown
that this problem can be solved by examining acyclic paths in a forward reachability
graph generated on-the-fly from a timed automaton. Based on this, Behrmann et al.
(2001a) consider the model checker UPPAAL, describing how to deal with instances of
job shop scheduling. The jobshop problem is the most classic scheduling problem in the
literature. In its most basic form, we have a finite set M of resources, and a number
of jobs J1, . . . , Jn, which compete in using the resources in a specific order and for a
finite number of time units. The problem is to allocate the resources such that the
jobs are finished in minimal time. Behrmann et al. (2001a) introduce linearly priced
timed automata as an extension of timed automata with prices on both transitions and
locations. They consider the minimum-cost reachability problem. An algorithmic solu-
tion is offered, based on a combination of branch-and-bound techniques, which can be
used for limiting the search space and for quickly finding near-optimal solutions, and
a new notion of priced regions. It is shown that using these techniques reduced the
explored state space by 90% when compared to a straight-forward breadth-first search.
For UPPAAL, e.g. Behrmann et al. (2005) suggest to model each job and resource as a
timed automaton. Another technique is to model the problem with a single process, as
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Ruys (2003) does with PROMELA. More on these two techniques later. The common
approach here is to model the system at hand, such that the resulting state space con-
tains all possibilities to deal with the problem. In such a state space, the problem is
interpreted as a reachability problem, where the question is, in a system where costs
are associated with transitions, what the minimal necessary cost is to reach a state
s ∈ G , where G ⊆ S is a set of successful termination states (i.e. ‘good’ states where
a complete schedule for the given problem has been achieved). A trace providing this
minimal cost then represents a schedule for the problem at hand.

A scheduling problem, within this setting, is typically about processing a certain
number of entities (for instance, products or jobs, in the case of jobshop scheduling).
The processing is usually done by a resource, or combination of resources, which can
perform tasks1 t1,. . .,tm ∈Ta, provided that the accompanying sets of constraints C1,. . .,
Cm are met.2 Furthermore, each task ti has an execution time d(ti) associated with it,
given by the function d : Ta → T. In these problems, a certain goal should be reached,
usually having completely processed a finite batch of entities. The question asked in
scheduling is not mainly if this goal can be reached, but how efficiently this can be
done.

Over the years, many techniques have been developed to deal with this kind of
scheduling problem, for instance by Brucker et al. (1994). Certainly it has been shown
that model checking can also be applied in this area. One could argue, however,
whether model checking can compete here with other methods, the majority of which
have been used much longer in this area and often specifically optimised to deal with
this kind of problems. For instance, there are countless attempts to deal with jobshop
scheduling, and when we apply model checking for this, the feared state space explo-
sion problem arises very quickly.

However, a major strength of most model checkers is the expressibility of their mod-
elling languages. For instance, the language µCRL, for which we describe techniques to
deal with scheduling problems in this part of the thesis, is a very expressive language
and allows the use of abstract data types, by which most useful data structures can
be defined. Model checkers are primarily designed to allow the modelling of complex
industrial systems, which can then be functionally verified. This expressibility can jus-
tify the use of model checkers for scheduling. In the existing scheduling literature, the
majority is either aimed at very specific types of scheduling problems, as for instance
job shop scheduling, or an individual case to be scheduled, which usually means that
an implemented algorithm to solve the case is directly built into the implementation of
the problem. In other words, a general modelling technique is often lacking.

As the main goal of the work in this thesis is to develop techniques that allow the
integration of qualitative and quantitative analysis, we want to achieve the possibility

1We denote task labels here as coming from a set Ta.
2To keep things general, we do not fix these constraints to a specific notation here. Suffice it so say that

they can deal with time and data.
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to model a system and use that one specification to do both functional analysis and
scheduling, if so desired. We observe that in order to achieve this, we need to keep in
mind that the techniques for scheduling should be applicable on arbitrary state spaces.
In scheduling literature, the search space of a scheduling problem often resembles a
highly structured tree, where the leaves represent the termination of a possible solu-
tion, and every node in level i of a tree with n levels has exactly n − i outgoing edges.
An example, where n = 3, is displayed in Figure 7.1. In the figure, goal nodes are de-
picted as grey nodes. In an arbitrary state space, however, there are cycles present,
states can have multiple incoming transitions, and paths may end unsuccessfully (i.e.
the system deadlocks). Later on, in Chapter 10, we give some examples of systems
which deliver a state space containing all of these elements. Already in this chapter,
we deal with these more general search spaces.

t1

t1 t2
t3

t3 t2

t3 t2 t3 t1 t2 t1

t2 t1 t3

Figure 7.1: Search tree for a single-resource scheduling problem with tasks t1, t2, t3

As we perform scheduling using model checking tools, we are able to deal with com-
plex industrial systems, the specifications of which tend to lead to very big, arbitrary
state spaces. We model tasks as transitions, meaning that performing task ti in an
execution appears as si

ti−→ si+1 in a state space M , where si and si+1 are two states in
the trace corresponding with the execution. In state spaces where the traces represent
schedules, we can observe the following.

A function progress: S →K can be constructed, which can access the state variables
of a state s, using the underlying specification of M and quantifies the progress made
to reaching some predetermined goal, for instance having completely processed a given
batch of entities. In general, say we have c0, cend ∈ K, ∀s ∈ S .c0 ≤ progress(s) ≤ cend
and ∀s ∈ I .progress(s) = c0, in other words, c0 is the initial (no) progress and cend rep-
resents having reached the goal. We do not claim any monotonicity of this function, as
in general one can imagine tasks which provide negative progress, leading a schedule
further from the goal.

Because of the presence of the progress function, we need to refine the description
of deadlock states in Chapter 2, where we mentioned that a state s is a deadlock state
whenever enM (s) = ;. Now, we need to distinguish deadlock states and successful
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termination states. We can do this as described in Definition 18.

Definition 18 ((un)successful termination). A state s is a successful termination
iff enM (s) = ; and progress(s) = cend . A state s is an unsuccessful termination iff
enM (s) = ; and progress(s) 6= cend.

Often, a scheduling problem is modelled such that each goal state is a successful
termination state, although, of course, one can imagine goal states which are not ter-
mination states. In most cases, therefore, G and the set of successful termination
states coincide. In this context, we associate B with the set of unsuccessful termina-
tion states, i.e. B = {s ∈ S | enM (s) = ;} \ G .

7.2 Scheduling with Model Checkers
In this section, we discuss some techniques for solving scheduling problems using mod-
elling languages and model checkers. Firstly, we give an impression of modelling
scheduling problems with PROMELA (for the model checker SPIN (Holzmann, 2004))
and priced timed automata (for the model checker UPPAAL CORA (Behrmann et al.,
2005)). After that, we describe how one can model a large class of scheduling problems
using µCRL, also considering problems which require a parallel solution.

The tools mentioned in the chapter were specifically chosen, because firstly, all have
been used for solving scheduling problems (e.g. Behrmann et al. (2001a), Behrmann
et al. (2005), and Fehnker (1999) report on using UPPAAL CORA, Brinksma and Mader
(2000), Ruys (2003), and Ruys and Brinksma (1998) describe how to deal with schedul-
ing problems using SPIN, and Wijs et al. (2005) presented techniques for scheduling
with µCRL), and secondly, the techniques for SPIN are based on depth-first search,
the techniques for the µCRL toolset and CADP are based on breadth-first search, and
UPPAAL CORA incorporates both kinds of searches. These two search techniques are
the two most basic search algorithms in model checking. Thirdly, the first two ap-
proaches work with different temporal logics. SPIN uses LTL (Pnueli, 1981), which
is state-based, meaning that you refer to state variables in its formulas; CADP, how-
ever, uses regular alternation-free µ-calculus (Mateescu and Sighireanu, 2003), which
is action-based, meaning that you refer to transition labels in its formulas. For both
types of logics we show how to deal with schedules. Finally, both SPIN and µCRL
deal with discrete time scheduling problems, where costs are natural numbers, while
UPPAAL CORA can deal with real-time scheduling problems. We will, however, not
deeply go into the syntax and semantics of the modelling languages associated with
these tools. Instead, we provide an idea of the approach to modelling scheduling prob-
lems, the reason for this being that the focus of this part of the thesis lies on the search
algorithms used to solve the problems, and not so much on the input languages to
model them. For more information on the input languages, the reader is referred to
the papers mentioned earlier on the specific languages and tools.
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First of all, in order to model a scheduling problem, we need to model some notion
of cost. One can create a specific variable for this and make sure that every time an
action associated with a task ti is fired, the value of this variable is raised by d(ti).
This approach has been carried out using SPIN, µCRL and UPPAAL CORA, and will
be used later in Sections 7.3.1, 7.3.2, 7.3.3 and 7.3.5. Another approach in µCRL is
described by Wijs et al. (2005), based on the work by Blom et al. (2003), Ioustinova
(2004), and Wijs and Fokkink (2005).3 Here, a special tick action is used, which models
time progression. This is comparable with relative discrete time (Baeten and Middel-
burg, 2002): A tick action indicates that the system moves to the next time slice. The
duration of an execution now equals the number of tick actions occurring in this trace.
Of course, instead of time, one can also view tick more generally as the progression
of cost.4 Note that this closely relates to delay transitions of timed automata, used in
both UPPAAL and UPPAAL CORA, as described by e.g. Behrmann et al. (2004). These
two approaches allow us to define a minimal-cost trace in two ways, as presented by
Definitions 19 and 20. Both approaches can be seen as practical ways to identify the
(minimal) weighted distance between I and a state s, as described by Definition 12
earlier on.

Definition 19 (minimal-cost trace with (parameterised) action-based costs).
Given a state space M and a set of successful termination states G ⊆ S , we say that
there is a trace with total cost c (c ∈ K) to G iff there is a trace in M starting from a
starting state s0 ∈ I and reaching a state s ∈ G , such that the number of (or, in case
of parameterised cost actions, the sum of the parameters of) tick (or delay) transitions
occurring in this trace equals c. We define a trace from I to G to be minimal-cost if
there is no other trace in M from I to G with fewer tick (or delay) transitions (or a
lower sum of the parameters).

Definition 20 (minimal-cost trace with state-based costs). Given a state space M ,
where each state s ∈ S contains a variable cost (of a type representingK) denoted s.cost,
where s.cost = 0 if s ∈ I and s.cost = s′.cost+ c′ if s 6∈ I ∧∃` ∈ A .s′ `−→ s∧C (`) = c′, and
a set of successful termination states G ⊆ S , we say that there is a trace with total cost c
(c ∈K) to G iff there is a trace in M starting from a starting state s0 ∈ I and reaching
a state s ∈ G , such that s.cost = c. We define a trace from I to G to be minimal-cost if
there is no other trace in M from I to any s′ ∈ G with s′.cost < c.

3The relevant work by Blom et al. (2003), Ioustinova (2004), and Wijs and Fokkink (2005) is also presented
in Chapter 3 of this thesis.

4By using tick actions to model costs, we actually connect the use of T from previous chapters with K, as
used in this part. Following the guidelines for T as given in Section 3.3, where its structure is defined as
equal to Z, we would obtain discrete timing as a cost measure. Though in the practical examples used in
this part we have used these guidelines, in general, one can imagine defining T in other ways, making
the tick approach flexible enough to deal with the techniques described in this and the following chapter
using any cost domain.
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In other words, note that Definitions 19 and 20 practically determine d(I ,G ), where
costs are modelled using the special action tick or delay transitions, either parame-
terised or not5, and using a variable cost, respectively. Using these definitions, we can
formulate a scheduling problem as a reachability problem: finding an optimal schedule
to perform a batch of tasks successfully can also be seen as finding a minimal-cost trace
to a state in G , in other words a state representing success, in a state space containing
all possible schedules as traces.

The general structure of a specification of a scheduling problem in PROMELA can be
described as consisting of a process, which is an alternative composition of all tasks ti,
each followed sequentially by an update of the cost variable, in order to indicate the
execution time (or cost) of each task. On top of that, the tasks ti can only be executed
if the accompanying conditions Ci are met, written in the specification as conditions
for the actions representing the tasks, and, once executed, the task has an effect on
the current state of the process (comparable with the function progress). Therefore,
this model can execute all available tasks as long as the constraints are satisfied. The
choices which tasks to execute and when are non-deterministic; there are no built-in
priorities.

Ruys (2003) describes how to model scheduling problems using PROMELA. There,
however, the more general situation, in which unsuccessful termination states, i.e. bad
states B, are present in the state space, is not considered. In this section, we present
the search algorithms extended with bad state detection and avoidance. For this pur-
pose, on the modelling side, we raise a flag finished whenever successful termination
has been reached.

In UPPAAL CORA, priced timed automata are used to specify a scheduling problem.
Here, in general, multiple processes, which synchronise with each other using chan-
nels, together express the problem. Recall that a scheduling problem often consists of a
set of passive objects, called resources, and a set of active objects, called jobs (Behrmann
et al., 2005). A resource process is usually a two-location cyclic process with one local
clock. The locations indicate that the resource is either waiting or operating. The re-
source starts operating whenever a job synchronises over a start channel, resetting
the clock. The moment a certain use time is reached, the resource moves back to the
waiting location and initiates synchronisation over a channel done.

A job process is an acyclic sequence of locations, where the initial state represents
the start of the job, and the final location, which we call Finished here for compari-
son reasons, indicates that the job is complete. The locations in between represent the
acquisition and release of resources. A resource is acquired by achieving synchronisa-
tion over the correct start channel and setting the use time. It remains in the same
location until synchronisation is performed over the done channel. The reachability
problem can now be formulated in UPPAAL CORA as the question whether a state can
be reached in which all the jobs are in the location Finished.

5Chapter 5 describes a method to use parameterised tick actions in µCRL specifications.
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Moving our attention to µCRL, we can create a specification of a scheduling problem
as described in this section, in ways very similar to both the PROMELA and the timed
automata approach. Like the approach described by Ruys (2003), we can often model a
scheduling problem in just one process, which contains all possible task alternatives ti
as actions, each guarded by a condition Ci, and each having a cost d(ti) associated with
it; in µCRL, we model d(ti) in an action-based manner, using, as mentioned earlier, the
special action label tick. The structure of a scheduling process actually resembles the
one of an LPE (see Chapter 2). Therefore, based on the LPE form, we present the
general form of a µCRL scheduling process in Definition 21.

Definition 21 (scheduling linear process equation). A scheduling linear process
equation is a guarded recursive equation of the following form:

X (d : D) =∑
i∈I

∑
e i∈Di

ai( f i(d, e i))·tick(wi(d, e i))·X i(g i(d, e i)) / hi(d, e i) . δ+

finished·X / progress(d) = cend . δ

where I is a finite index set,D,Di,Dai ,K ∈D, ai ∈A, ai :Dai , tick :K, f i :D×Di →Dai ,
wi : D×Di →K, g i : D×Di → D and hi : D×Di → B.

Of course, in this equation, actions ai( f i(d, e i)) correspond with tasks ti, conditions
hi(d, e i) relate to the scheduling conditions Ci, and function wi assigns the costs to the
tasks. In relation to weighted state spaces, wi(d, e i) = c iff C (ai) = c. Note that the
use of tick here is the parameterised form as explained in Chapter 5. An alternative
is to place in each line of the specification ti(d, e i) non-parameterised tick actions in
sequence. It should be stressed that in a state space resulting from such a specifica-
tion, transitions with a label different from tick essentially have no cost associated with
them. Furthermore, we use a special action called finished to indicate successful ter-

mination (i.e. in M , ∀s ∈ S .(∃s′ ∈ S .s′ finished−→ s ⇐⇒ s ∈ G )). This is mainly necessary
to express reachability using the µ-calculus later on. The condition for the success-
ful termination alternative is a direct translation of the progress check as explained
earlier.

With µCRL, it is moreover possible to specify a scheduling problem in a way very
similar to the technique described by e.g. Behrmann et al. (2005) for timed automata.
When, for instance, applied on jobshop problem instances, as described earlier in this
section, the technique involves mapping each resource and job to an individual process.
The feasibility of this technique first of all hinges on synchronisation over the channels
start and done, which can be specified with µCRL using appropriate communication
rules and the encapsulation operator ∂H with start, done ∈ H. Second of all, synchro-
nisation of timing is essential, i.e. all processes in the specification must agree on the
progression of time. Since this is achievable with µCRL by using e.g. the special oper-

157



Chapter 7 Model Checking Methods for Scheduling

ator | {tick} | (see Section 3.3) or with µCRLtick using |T| (see Chapter 5) to put processes
in parallel, we can directly adopt the same recipe to construct the resource and job
processes.

In planning literature, sequential plans (schedules) for a problem are distinguished
from parallel schedules. A sequential schedule directly corresponds with a sequence of
actions leading to a goal state, while in a parallel schedule independent actions may be
fired simultaneously and dependent actions should be fired sequentially. To point out
the structural difference between the two types of schedules, we define the notions of
sequential and parallel schedule in Definitions 22 and 23, based on the ones provided
by Edelkamp (2003), using the terminology of Section 7.1.

Definition 22 (Sequential schedule). Given the state space of a scheduling prob-
lem M = (S , A , C , T , I ) and a set of goal states G ⊆ S , a sequential schedule ωs =
(t1, . . . , tn) is an ordered sequence of tasks ti ∈ Ta such that the corresponding actions
in M lead from a state s ∈ I to a state s′ ∈ G , i.e. there exist states s0, . . . , sn ∈ S such
that s0 ∈ I , sn ∈ G , and si

ti+1−→ si+1, for 0 ≤ i < n.

Definition 23 (Parallel schedule). Given the state space of a scheduling problem
M = (S , A , C , T , I ) and a set of goal states G ⊆ S , a parallel schedule ωc = ((t1, u1),
. . ., (tn, un)) is a schedule of tasks ti ∈ Ta such that the corresponding actions in M lead
from a state s ∈ I to a state s′ ∈ G , where task ti is executed at absolute time ui.

Note that Definition 23 does not state how a parallel schedule should be represented
in a state space, unlike Definition 22 for a sequential schedule, which directly corre-
sponds with a sequence of transitions. Next, we will reason about parallel schedules,
and illustrate how such schedules can be represented in a state space using the µCRL
toolset, even if they cannot be represented by a sequential schedule, given that for each
task ti ∈ Ta we have d(ti) > 0.

When trying to construct a parallel schedule, one approach often considered is to
detect a successful trace in the state space, and converting this trace into a partially
ordered schedule (Pednault, 1986; Regnier and Fade, 1991; Veloso et al., 1991). The
partial order then gives rise to the possibilities to execute tasks in parallel. The con-
version involves analysing the pre- and post-conditions of the tasks, and determining
for each task ti which other tasks need to be completed before it can be executed,
and which other tasks it needs to precede in execution. Necessarily, this also leads
to insight into which tasks are independent of each other. Note that when using this
approach, it is assumed that every possible parallel schedule for a problem can be ob-
tained by relaxing the order in a sequential one. Later, we will deal with a situation
where this is not the case.

Next, we illustrate how a scheduling problem which calls for a parallel schedule,
assuming that it can be represented by a sequential schedule, can be modelled us-
ing µCRL in such a way that a trace in the resulting state space directly relates to a
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partially ordered schedule, which moreover can directly be interpreted as a parallel
schedule without any conflicts arising. The key for this is the presence of timing infor-
mation in the traces. First, we assume that the µCRL specification of such a schedul-
ing problem is structured conform the description given earlier to model a scheduling
problem by means of a number of processes representing jobs and resources in parallel
composition, i.e. the approach when using UPPAAL CORA. More specifically, we can
assume that the individual process descriptions are in a form very similar to the one of
Definition 21. Each job needs to perform a finite number of actions.

We illustrate two possible kinds of dependencies between actions. On the one hand,
the execution of a task t1 may enable the execution of another task t2. Here, we call
this a supporting dependency. Either t1 and t2 are part of the same job, in which
case they are ordered inside one process description, or they stem from different jobs.
In the latter case, the dependency is in fact enforced by some resource process, as
dependencies between jobs are established via some resource.

The other kind of dependency could be called a competing dependency, where the
execution of a task t1 (temporarily) disables the execution of another task t2. Again, the
tasks may either be part of the same job, in which case this dependency is established
by the conditions present in the process description, or they stem from different jobs,
which means that the dependency is (again) established via the resource processes. If
we have two job processes J1 and J2, and one resource process R, which J1 and J2 both
wish to use, then either J1 may synchronise with R, thereby disabling the possibility
for J2 to synchronise with R, or vice versa.

Given a trace from a state space, we show how this trace can be interpreted as a
parallel schedule. If t2 is dependent on t1, then the first possibility is that t1 and t2 are
part of the same job. In this case, clearly, by the form of the job description, t1 and t2
appear in different time units in the trace, i.e. the task executions are sequentially sep-
arated from each other by at least one tick action. Also, if the tasks stem from different
jobs, the (shared) resource, which upon being used by a job delays until the execution is
finished, ensures that t1 and t2 appear in different time units in the trace. Conversely,
if two tasks t1 and t2 appear in the same time unit, i.e. they are not sequentially sep-
arated by a tick action, then they are not part of the same job, nor are they dependent
on each other. In other words, they can safely by executed in parallel. This relates to
the notion of independent actions for partial order reduction (Peled et al., 1996).

Now, let us move to a more general setting, in which it is possible that a parallel
schedule cannot be represented by a sequential one. Such a situation may arise if we,
for instance, loosen the mutual exclusion behaviour of the resources. Consider the case
where we have a shuttle-bus which accepts passengers to be brought to an airport. The
bus is fully automatic; it opens its doors exactly once, and after it has detected that a
passenger has entered it, it closes the doors and leaves. If we have two people who
wish to be transported, and it is our goal that these two people both reach the airport,
then no sequential schedule is successful; as soon as one person has entered the bus, it
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heads for the airport, leaving the other person behind.
The key to the solution is the fact that both persons may enter the bus simultane-

ously. If we wish to model this system, we must therefore allow jobs to obtain a resource
in true concurrency. One way to do this is in fact used for the Clinical Chemical Anal-
yser (see Section 10.5). There, multiple cranks may perform operations on a table,
adding, removing, and mixing fluids. The scheduling problem is specified by means of
a single process description, which not only lists all the individual operations in alter-
native composition, but also all the possible combinations represented by additional
action labels, which express the operations being performed concurrently.

If the specification consists of multiple processes in parallel composition, another
way to model true concurrency is by employing the communication mechanism. It
is possible, in a way similar to the synchronisation of tick and tock actions (see Sec-
tion 3.3) and the modelling of shared variables in µCRL (see Section 3.4.13), to allow
the actions of multiple jobs and resources to synchronise with each other, resulting in
a single transition in the state space. If we, moreover, do not encapsulate the individ-
ual actions, then we also still allow sequential executions. In the shuttle-bus example,
an action of a person process would, first of all, need to synchronise with an action of
the shuttle-bus process, which is the usual approach, but besides that, in addition, we
would allow actions of other person processes to synchronise simultaneously with that
same shuttle-bus action. As tick actions synchronise as well, the delays associated with
the scheduling actions will be performed concurrently. Related to this, using a single
process to describe all possible behaviour, also concurrent behaviour, in fact allows the
possibility that the cost of performing some actions concurrently is not the same as the
sum of the costs of the individual actions. These situations actually occur in the case
of the Clinical Chemical Analyser.

One benefit of incorporating true concurrency in traces is that we can search for par-
allel schedules. Another benefit is that if we employ some kind of heuristics to search
for promising areas of the state space, we need not be concerned about this presence
of concurrency at all. If concurrency is represented by some partial order of actions,
then it means that a state space search encounters intermediate states. For example,
if tasks t1 and t2 are to be executed simultaneously, and we have a trace containing
s0

t1−→ s1
t2−→ s2, then we need to be aware of the fact that s1 does not represent a ‘real’

situation, since in fact the situation represented by s2 follows immediately from the one
represented by s0. This observation should be anticipated in the heuristics. However, if

we have instead a transition s0
t1,2−→ s2, where t1,2 is the action representing the simul-

taneous execution of t1 and t2, then this anticipation can be absent. Moreover, in an
action-based heuristic, we can differentiate between executing actions simultaneously
or not.6

6In the planning setting, e.g. Haslum and Geffner (2000) explain how to automatically construct admissible
heuristic functions to help in obtaining sequential or parallel plans.
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If we enforce concurrency as much as possible, i.e. we encapsulate the individual
actions, then a third benefit is that with true concurrency, we avoid interleavings of ac-
tions in the state space, which may lead to a drastic reduction of the average branching
factor of the state space if there is a lot of concurrency present in the problem.7

Having created a specification, it is possible, using the appropriate toolset, to gener-
ate a state space from it. This state space incorporates all possible behaviour of the sys-
tem described by the specification. Given that there exist successful traces in the state
space, i.e. at least one successful termination state is reachable, somewhere in this
state space there is at least one minimal-cost trace to a successful finish. Given Defini-
tion 19, we use the finished action to detect states s ∈G , in order to be able to capture in
the µ-calculus a minimal-time trace to a successful termination. In UPPAAL CORA, as
previously mentioned, a state s ∈ G is identified as a state where all the job processes
are in the Finished location. When using (state-based) LTL formulas in practice, how-
ever, it appears we are not able to incorporate the detection of successful termination
in the formulas themselves. When using SPIN following the approach of Ruys (2003),
where the formula is used to bound the search through each trace, incorporating this
detection will result in less efficient bounding behaviour, or even the removal of it. The
detection can sometimes, however, be performed by other means, while in other cases
it can be avoided altogether, at the cost of an increase of the state space size. This will
be explained in the following sections. It should be pointed out that, although in this
section we presented some techniques to specify scheduling problems, the algorithms
to search the resulting state spaces, presented in the next section and the following
chapter, are mostly designed with arbitrary state spaces in mind, i.e. practically any
specification can be analysed with these searches; they are by no means limited to the
analysis of a certain class of constructed specifications.

7.3 Finding Optimal Schedules

In this and the subsequent section, we describe the search algorithms used for schedul-
ing in SPIN and UPPAAL CORA in an abstract manner, and introduce some techniques
that allow the analysis of scheduling problems with µCRL, either in the state space
generating µCRL toolset or the model checker CADP. Here, we consider µCRL as the
input language of CADP, although of course LOTOS can also be used.

7Hoffmann and Geffner (2003) point out that in parallel planning, the usually high average branching
factor of state spaces is a major problem. They discuss how to deal with this by proposing a range of
branching schemes. Enforcing the concurrency as much as possible is important here, as otherwise we
may introduce a lot of additional transitions. E.g. Haslum and Geffner (2000) mention that such an
approach, i.e. where maximal concurrency is not enforced, may lead to an exponential increase of the
average branching factor.
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7.3.1 Iterative Searching

The most straightforward technique to search for solutions to a scheduling problem is
to iteratively search the state space using a set of formulas, written in a temporal logic,
such as LTL or µ-calculus.

First of all, using the specification of a scheduling problem and the matching toolset,
a full state space needs to be generated. Next, one needs to formulate, using a temporal
logic, the property φ that every trace in M has a cost greater than or equal to U ∈ K
before reaching successful termination. Here, U is chosen as an upper-bound to the
actual minimal cost of reaching successful termination. Given that U is an upper-
bound, the model checker will be able to find a counter-example to the property and
provide a new, smaller, possibly minimal cost U ′ ∈ K < U . Again, now with U ′, the
property is checked, possibly leading to another counter-example and a new value U ′′ ∈
K < U ′. This process is repeated until the model checker finds that the property holds,
at which point the currently minimal cost is the minimal cost we are looking for and
the counter-example given in the previous iteration is one of the minimal-cost traces.

The practical application of this technique differs from toolset to toolset. Here we
briefly describe how it works in both SPIN, as presented by Ruys (2003), and CADP.

In SPIN, when writing LTL formulas, one can refer to state variables in a PROMELA

specification. In this case, it allows us to use a variable in the specification that is used
to keep track of the total cost up to each state.8 In the formula we can now express the
property as φ = 3(cost ≥ U), where 3 expresses eventuality. As thus, φ expresses that
eventually, the value of cost will be greater than or equal to U . Since SPIN searches
through state spaces in a depth-first manner, it traverses a trace until it either finds
that the property holds (i.e. it finds a state where (cost ≥ U)), after which it can con-
tinue the search in another trace by employing back-tracking, or it concludes that the
property does not hold in a trace and a counter-example is produced, after which, in
the case of scheduling, the search also continues. This potentially goes on until the
complete state space has been searched. In cases, however, where unsuccessful termi-
nation states are present, i.e. B 6= ;, we do not want a counter-example each time the
property is violated, since we also have the requirement that a trace ends in successful
termination. As mentioned before, including this requirement in the property leads to
less efficient bounding, so we need to incorporate that in another way. By extending
unsuccessful traces infinitely, which can be done in the specification by always allow-
ing cost increasing steps once a state s ∈ B has been detected, we make sure that φ
holds for these traces and thereby avoid unwanted counter-examples. As mentioned
previously, this, however, leads to a larger state space.

In CADP, one can use regular, alternation-free µ-calculus to express properties. This
temporal logic, however, does not allow referring to state variables, it is purely action-

8Note that encoding the total cost as a value in each state tends to lead to infinite state spaces if the original
specification (without a cost variable) contains cycles.
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based. For that reason, in our setting, we need to count the tick labels in each trace,
in order to determine its cost. In the µ-calculus formula, we are able to differentiate
between successful and unsuccessful termination by referring to the finished action9:

φ = [¬tick∗.((T | ε).(¬tick∗))U−1.finished] F

Since CADP searches state spaces in a breadth-first manner, on average it has to
explore a lot more states, compared to SPIN, before it is potentially able to find a
counter-example, since it will consider all possible traces at the same time, therefore
only reaching G at a later stage.10

This technique works, but is highly inefficient, and therefore quickly becomes un-
usable for bigger problem instances. The main reason for this is that the entire state
space needs to be generated and searched multiple times, both when property checking
can be performed on-the-fly and when it needs to be done after generation. The search-
ing takes up a number of iterations, each time worst-case going over all the states in
the state space. On a practical note one can say that a depth-first search works in gen-
eral more efficiently here than a breadth-first search. The next technique improves on
the number of iterations at the searching stage, and the fact that its efficiency depends
less on the search order.

7.3.2 Displaying List of Labels
This technique, described by Wijs et al. (2005), is mainly focussed on CADP, since it
is an approach that happens to be practically possible in that toolset, in contrast to
the other tools. First of all, in the specification, we use the variable cost to represent
the progression of cost, and extend the finished action with a parameter, providing the
current total cost to the outside world when the action is fired.

Again, the complete state space of the specification needs to be generated. Then, in
the toolset, there has to be a possibility to display all the action labels occurring in the
state space. Besides labels representing the execution of tasks ti, the list will contain
a number of finished labels, each accompanied with a fixed parameter value c. Now,
the minimal c value, let us call it c′ here, needs to be obtained from this list, which
directly provides the minimal cost value in the state space. Next, one has to search the
state space only once using a µ-calculus formula indicating that the action finished(c′)
can never be reached, and the model checker will provide an optimal schedule as a
counter-example.

9Here it is checked that all traces leading to finished do not contain U −1 or fewer tick transitions. The (T | ε)
expression accepts at most one action (including tick). Finally, the An notation is not a valid µ-calculus
expression, but a shorthand for A written n times in sequence.

10In practical cases, SPIN seems to search much more states before finding a schedule, compared to µCRL
and CADP. An example of this can be seen in Section 10.3. These numbers can, however, not be compared,
since the tools apparently count states in completely different ways.
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Similar to the former technique, this approach also becomes impractical when the
problem instances get bigger. Instead of a varying number of iterations, however, we
can now claim that an optimal solution is found after two iterations; the first one going
over the whole state space, constructing the list of action labels, the second one using
the formula to obtain a schedule. The search order is less important here than for the
iterative search technique, since in the first iteration the complete state space needs to
be searched anyway, after which there is only one iteration left.

7.3.3 Depth-first Branch-and-Bound

In the next technique, we use the most common form of the Branch-and-Bound ap-
proach (see Kumar (1992) and Section 6.6). The idea of this is that while searching,
we can stop exploring a trace once it is clear that all traces in the subtree below the
current state lead to total-costs greater than the one of the best solution found so far.
It needs to be stressed that Branch-and-Bound is not a heuristic method, the pruning
of parts of the state space only happens when it is known that it can safely be done.
This in contrast with techniques like beam search, already described in Chapter 6, and
more extensively studied later in Chapters 8 and 9, which can therefore only claim
finding near-optimal solutions.

The idea of this technique is based on the iterative search, and is also described by
Ruys (2003). Instead of iteratively checking and updating an LTL formula, the formula
is adapted on-the-fly while searching the state space. Once a smaller cost c is found, the
new value is placed in the formula and the search continues where the model checker
stopped, now using the updated formula. The benefit of using this technique is that
the state space only needs to be searched once, and on average not completely, since
parts of the state space can be pruned away. Still, though, it can take a lot of time and
memory to find a solution. In SPIN 4.0, this technique can practically be used, since it
allows the use of C primitives. Hidden variables can be used to contain temporary data
while searching. An update section in the specification, written in C, is fired each time
a counter-example is found, which writes the counter-example to a file and updates the
(hidden) minimal-cost variable, thereby changing the property to check. We observe
that this technique also allows the detection of unsuccessful termination, since we can
extend the guard of the update section, such that it is only fired when the property does
not hold and the trace ends successfully. For a PROMELA specification example suitable
for depth first BnB in SPIN, which incorporates this additional check, see Appendix B.

As with iterative searching, the depth-first search performed by SPIN is well-suited
for this technique. See Section 10.3 for an example where this iterative search is used.
Algorithms 16 and 17 show a presentation of this approach using the DMC notation
of Chapter 6, which expresses the practical technique of checking for (cost-wise) better
traces using an LTL property and detecting successful termination in two consecutive
steps. We use the notation φ(U) to express the property that all traces have a weight
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greater than or equal to the upper bound U . This is written as a safety property φ(U) =
3(cost ≥ U) (where 3 is the eventuality operator) which depends on the given value
U ∈K. Related to this property, we can identify two types of sets of states S↓,<U , S≥U ∈
S . First of all, we say that a state s ∈ S↓,<U iff s is a termination state and s.cost < U .
For a state s ∈ S↓,<U , we can locally determine, i.e. we do not need to look ahead to
states reachable from s (since there are no states reachable from s), that φ(U) does not
hold for s. In fact, all traces leading from an s ∈ I to an s′ ∈ S↓,<U constitute all the
counter-examples to φ(U). In Algorithm 17, the sets S↓,<U are used to check whether
a counter-example has been found which is better than the last one found. In addition
to this, we say that a state s ∈ S≥U iff s.cost ≥ U . For a state s ∈ S≥U , we can locally
determine that φ(U) holds for s. With the sets S≥U , bounding on U can be performed,
since for every state s where s.cost ≥U , we know that φ(U) holds for all states in traces
from an s′ ∈ I through s, hence we do not need to check the property for any s′′ ∈ S

such that s →∗ s′′.

Algorithm 16 Depth-first BnB search for scheduling
Require: M = (S , A , T , I ), set of goal states G , depth upper-bound D, cost upper-

bound U
Ensure: if exists, a minimal-cost trace to a goal state is returned

Closed ← ;
L0 ← I \ S≥U
while L0 6= ; do

L̂0 ← selectβ(L0) (by increasing g(s))
L0 ← L0 \ L̂0
Closed ← Closed ∪ L̂0
〈U , Closed〉 ← sched_dfs(L̂0, Closed, G , D,U)

end while
return true

If a state is in S↓,<U , we need to check whether the goal has been reached, e.g. for
a problem as described in Section 7.1, that progress(s) = cend, or, in an action-based
setting, that finished can be performed. This can be done by determining whether the
state is also in G . In fact, we can consider S↓,<U \ G to be a set of bad states B, i.e.
unsuccessful termination states.

Notice that if selectβ always selects up to one state, i.e. β = 1, Algorithms 16 and 17
express an explicit depth-first search. Finally, the successor states are explored in
order of weight. This is called node ordering, and helps in finding an optimal solution
quickly, as reported by Zhang (1999).

One of the pitfalls of this technique is the presence in M of cycles in which the
cumulated cost is not increasing. It is possible to deal with these by providing a cut-off
depth, indicating the maximum depth at which the algorithm is allowed to search. In
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Algorithm 17 Procedure sched_dfs(Li, Closed, G , D,U)
if Li 6= ; then

Li+1 ← ;
if Li ∩ S↓,<U ∩ G 6= ; then

U ← min{g(s) | s ∈ Li ∩ S↓,<U ∩ G }
output GeneratePath(Li ∩ S↓,<U ∩ G )

end if
if i + 1 < D then

for all s ∈ Li do
Li+1 ← Li+1 ∪ nxtM (s, enM (s))

end for
Li+1 ← Li+1 \ (Closed ∪ S≥U )
while Li+1 6= ; do

L̂i+1 ← selectβ(Li+1) (by increasing g(s))
Li+1 ← Li+1 \ L̂i+1
Closed ← Closed ∪ L̂i+1
〈U , Closed〉 ← sched_dfs(L̂i+1, Closed, G , D,U)

end while
end if

end if
return 〈U , Closed〉

practice, SPIN always performs bounded depth-first search. It is used in Algorithm 17
as D, while the current depth is represented by i. Note the important difference from
U , which is an upper-bound on the cost. Also, note that here, in contrast with the use
of U in cost-bounded directed model checking algorithms (see Section 6.5 and ongoing),
the bounding is done with U using the sets S≥U , which more closely relates to the
practical technique used in SPIN. In fact, the main reason for showing Algorithms 16
and 17, even though bounded depth-first search fits into the searches presented in
Chapter 6, is to focus on the practical approach of SPIN concerning this search.

In Algorithm 17, the duplicate detection is straightforward, without checking if a
state has been encountered before with a greater cumulated cost or not. This extra
check can be avoided here, since the variable cost, by which way we practically keep
track of cumulated costs g, is part of the state itself, thereby each state has a unique
cumulated cost throughout the whole search. Compared to associating cumulated costs
dynamically with states during the search, i.e. the costs are calculated while exploring
and not part of the states themselves, the latter technique has in general the advan-
tage, however, of producing smaller state spaces; this is due to the fact that when costs
are part of the states, for any states s, s′ ∈ S , if g(s) 6= g(s′), then necessarily s 6= s′,
while this is not the case when g-values are calculated on-the-fly.
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7.3.4 g-Synchronised or Minimal-cost Search

The main disadvantage of the iterative searching method is the fact that the state
space needs to be generated completely, and needs to be searched multiple times, each
time focussing on a new possible minimal cost, because in a standard search, the costs
of the different traces cannot be compared in one iteration. As already seen, one way
of improving this is the use of Branch-and-Bound as described in the previous section.
This, however, is not always applicable, since it requires the possibility of updating
the temporal logic formula while searching. Another approach is to manipulate the
search order in such a way, that the intermediate cumulated costs of all traces can be
compared on-the-fly. Approaches like this, however, require that the model checker is
extended with new techniques.

The µCRL toolset has been extended with new generation algorithms. One of these
is called minimal-cost search, also referred to as g-synchronised search.11 Here, tick
transitions are used to represent the progress of cost, and other transitions are in fact
without cost. Besides the levels Li, there is a set W . For all s in the current Li to
be expanded, a successor s′ ends up in W if s tick−→ s′, and in Li+1 otherwise. The Li
set is continuously used to select new states, until Li = ;, at which point the search
moves to Li+1. If this level is empty at the start, all states in W are moved to Li+1 and
the searching continues, in other words, the algorithm starts considering states with
a greater cumulated cost. Basically, g-synchronised search equals uniform-cost search
from Section 6.4, where the cost is modelled using additional actions.

Algorithm 18 presents this technique. Whether a state s is in G is deduced here by
determining whether it is reached via a finished transition or not.

Searching with this ordering principle means we know that we find a minimal-
cost solution to the problem the first time we find a solution, and can therefore stop
immediately. Technically, for all levels Li ⊆ S , we have for all states s ∈ Li that
g(s) = d(I , Li−1)}, where d(I , Li−1) is calculated in an action-based way (see Defini-
tion 19). Furthermore, as in the case of BnB for SPIN in Section 7.3.3, duplicate de-
tection does not have to incorporate the checking of cumulated costs, since by its very
nature, uniform-cost search encounters a state the moment it has found a minimal-cost
trace to the state. In practice it shows that this technique pays off; the bigger the prob-
lem instance, the higher the percentage of the state space that can be skipped entirely
(for examples, see Chapter 10).

Algorithm 18 is designed for unparameterised tick actions, as presented in Sec-
tion 3.3. We can, however, extend this algorithm to parameterised tick(t) actions, as
used in Chapter 5. For that, we do not just need one set W , but sets W1, . . . ,Wc, where c
is the largest time jump the system can make in one step. Then, when checking tran-

11 g-Synchronised search is an instance of the more general G-synchronised search. Besides synchronising
on the cumulated cost, one could also, for instance, imagine synchronising on a heuristic function. In
Chapter 8, we will return to G-synchronised searching.
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Algorithm 18 Minimal-cost search for M with tick-encoded costs
Require: M = (S , A , T , I )
Ensure: If exists, a minimal-cost trace to a goal state is returned

W ← ;
i ← 0
Li ← I

Li+1 ← ;
while W 6= ; ∨ Li 6= ; do

if Li = ; then
Li ← W

W ← ;
end if
for all s ∈ Li do

for all s `−→ s′ ∈ enM (s) do
if ` = finished then

return GeneratePath({s′})
else if ` = tick then

W ← W ∪ {s′}
else

Li+1 ← Li+1 ∪ {s′}
end if

end for
end for
i ← i + 1
Li ← Li \

⋃i−1
j=0 L j

W ← W \
⋃i−1

j=0 L j
end while
return false
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sitions, each transition with action label tick(t) is placed in set Wt. Whenever Li = ;,
we set Li to W j with j the smallest index such that W j 6= ;. With W j made empty, the
remaining sets Wk with j < k ≤ c are shifted to the sets Wk− j. This implements that the
search performs a time jump of j time (or cost) units. Currently, though, this extension
is not yet available in the toolset.

7.3.5 Real-time Branch-and-Bound Scheduling

UPPAAL CORA has a number of searches built-in, which can help in solving schedul-
ing problems. Uniform-cost search, identified in UPPAAL CORA as best-first search, is
available to find cost-optimal schedules. Most other available searches are not cost-
optimal; we return to these later on. Fehnker (2002) describes an algorithm to perform
(ordinary) BnB on priced timed automata, comparable with depth-first BnB in SPIN,
setting a time upper-bound and using the global clock for comparison, or keeping track
of the minimal total cost found thus far in a variable named cost.

7.4 Finding Near-optimal Schedules

Up to now we described techniques which guarantee finding an optimal solution. To
be able to guarantee this, the complete state space M needs to be searched, or bound-
ing needs to be limited to situations where a cost upper-bound has been reached. In
practice however, M can be very large. One could consider not keeping the expanded
states in memory and writing them directly to disk, in cases where the state space of a
scheduling problem resembles a tree.12 But even then, although memory is not an is-
sue anymore, searching the entire state space can take a very long time. In cases where
a near-optimal solution practically suffices, one can prevent exhaustive searching. In
this section we explain some of the techniques available for such an approach.

7.4.1 Breadth-first and Depth-first Search

As remarked by Fehnker (2002), regular breadth-first and depth-first search can be
used to return solutions to a weighted problem, but they rarely return an optimal
solution. As he has experienced with UPPAAL, breadth-first search quickly runs out
of memory, and depth-first search actually returned the worst possible solution when
analysing the Sidmar Steel Plant case study. The problem here lies in the fact that
both breadth-first and depth-first search do not take cumulated costs into account.

12It should be noted that there are techniques known which allow writing states directly to disk even when
the state space does not resemble a tree, e.g. Hammer and Weber (2006) describe a technique where
duplicate detection is performed using a so-called Bloom filter. This filter is inquired whenever it needs
to be determined whether a state has already been written to disk earlier in the search, or not.
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7.4.2 Nearest Neighbour Heuristic or Gradient Descent
For some problems, e.g. the Traveling Salesman Problem (TSP), (see e.g. Lawler et al.
(1985)), the so-called nearest neighbour heuristic or Gradient Descent (see Section 6.5),
can provide acceptable solutions. This search selects for every state, which in the case
of TSP represents a city, the nearest successor state for further exploration. Since the
other successors are discarded, it can only promise to find near-optimal solutions. This
process is repeated until a complete schedule is found. In SPIN, this technique has
been used by Ruys (2003) by carefully specifying the processes in a specific order and
placing the different statements in if-clauses. This suffices to ensure that always the
nearest successor is selected. The search, however, only appears useful for problems
where a local view on states, i.e. for each state only considering the next transition to
take, suffices. The search seems to be particularly ineffective if the state space contains
unsuccessful traces, which initially appear promising.

7.4.3 Beam Search
We briefly mention beam search here, since it should be placed in this category of
searches for scheduling problems. It is, however, the main focus of Chapter 8, where
this search, which is originally designed to be applied on highly structured trees (see
Figure 7.1), is adapted and further extended to be effective for searching state spaces
in general. The main concept of beam search, and its place within the whole spectrum
of searches, is provided in Section 6.8. It is a technique that we have implemented in
the µCRL toolset, and has been applied on a number of case studies, as presented in
Chapter 10.

7.4.4 Near-optimal Real-time Scheduling
Fehnker (2002) describes a number of approaches to find near-optimal solutions to
scheduling problems, specific for UPPAAL. First of all, UPPAAL allows random depth-
first search. Whenever the state space does not contain cycles (and all traces are finite),
a random search is guaranteed to finish at some point. Running it several times and
calculating the average result is then an option; of course, the average result will often
be much greater than the optimal solution.

Another option is to declare certain actions urgent, i.e. they should be fired whenever
enabled before time passes. This technique, however, may also postpone useful delays,
thereby missing the optimal solutions.

Besides regular breadth-first and (random) depth-first search, UPPAAL CORA pro-
vides smallest heuristic first search, which is in fact greedy search (Russell and Norvig,
1995), where the heuristics used can, for instance, be an estimation of the remaining
cost. Then there is best depth-first search, which operates like nearest-neighbour. It ex-
plores states in increasing order of the cumulated cost, but limits its search horizon in a
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depth-first manner, therefore it looks for local minima, making it not cost-optimal, un-
less one would exhaustively search the whole state space in this manner (possibly using
BnB). If an estimation function is provided, UPPAAL CORA automatically incorporates
it into its uniform-cost and nearest-neighbour searches, making them comparable with
A∗ and heuristic nearest neighbour search, respectively.

7.5 Possible Extensions
In this chapter, an overview was provided of different techniques, which can be used
to solve the most common scheduling problems. These techniques are available in the
model checking tools SPIN, CADP together with the µCRL toolset, and UPPAAL CORA.
At this point, one can consider a number of possible extensions to these techniques,
thereby dealing with other, related, scheduling issues. Most of what is discussed here,
however, remains to be investigated.

First of all, one can consider the construction of an online scheduler for a specific
scheduling problem. In other words, instead of creating a schedule, given a batch of
entities to process, one would create a scheduler able to deal with any possible input
sequence of entities. Behrmann et al. (2005) refer to this as finding an optimal infinite
trace in M . In cases where there is only one kind of input entity, or several kinds
arriving in a fixed sequence, a cycle of actions (or edges in priced timed automata)
would suffice. However, when there are several kinds of entities to process, arriving in
an arbitrary order (which could be imagined, for instance, in the case of the Clinical
Chemical Analyser of Chapter 10), one would possibly have to look for a flower-shaped
structure, with, on average, the most entities processed per cost unit. Here, a flower-
shaped structure is made up of a set of states S ⊆ S , which is the set of initial states
for this structure, and a number of cycles moving from, and returning to S, depending
on the number of possible combinations of types of entities arriving as input. The
problem seems to be related to finding an optimal playing strategy for a game, which
is the subject of e.g. the search algorithm SSS∗ (Pearl, 1984). This search tries to
find a minimal-cost subtree of a search tree. The subtree must contain all possible
reactions to all possible actions of the opponent, and the cost of the subtree is defined
as the highest cost among the minimal-costs of goal states in the subtree. As the SSS∗
algorithm does not consider cycles though, it will need to be extended to be applicable
on arbitrary state spaces.

Another possible extension is the possibility to deal with multiple cost variables,
in situations where, for instance, not only time, but also money, energy, etc. play a
role. For priced timed automata, one already has moved in this direction, as reported
by Behrmann et al. (2005) and Larsen and Rasmussen (2005). The interesting phe-
nomenon here, is that a problem with multiple costs might have different solutions,
depending on the priority given to the different costs. For instance, if we put the highest
emphasis on the minimisation of time, we might get a very different answer compared

171



Chapter 7 Model Checking Methods for Scheduling

to when we minimise on money. As mentioned in Chapter 6, particular instances of
multi-phase best-first search, like multi-phase uniform-cost search, and synchronised
beam search, which is presented in Chapter 8, might be able to deal with multiple
costs. In the first case, we could subsequently order the states based on the different
types of cost, and in the second case we may consider synchronising on one type of cost,
but using another in the evaluation function. In both searches, the first type would
then be our main minimisation concern, while the second type would be kept as low as
possible, given the circumstances.
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Chapter 8

Directed Model Checking With Beam
Search

Your thinking [...] involves, therefore,
something over and beyond the mere
inspection of a four -dimensional
associational structure. It involves
interpretation of that structure.

(J.W. Dunne)

8.1 Introduction

O
VER THE YEARS, A NUMBER OF techniques have emerged to prune, while
generating, parts of the state space that are not (or do not seem) promising
given the task at hand. Some of these techniques, such as partial order
reduction (POR) algorithms (for instance, see Clarke et al. (1999)), guaran-

tee that no essential information is lost after pruning. On the other hand, this chapter
focuses mainly on heuristic pruning methods which heavily reduce the generation time
and memory consumption, but may prune away essential parts of the state space. The
idea is that a user-supplied heuristic function guides the generation algorithm such
that ideally only relevant parts of the state space are actually explored. This is, in fact,
at odds with the core idea of model checking when studying qualitative properties of
systems, i.e. to exhaustively search the complete state space to find any corner case
bug. However, heuristic pruning techniques can very well target performance analysis
problems, as approximate answers are usually sufficient when using model checking in
quantitative analyses of systems (for more on this type of analysis, see, e.g., Brinksma
et al. (2001)). A comparison between the two types of pruning can thus not fairly be
made, since different problems allow different techniques. However, such heuristics
are not restricted to quantitative properties, as, for instance, Torabi Dashti and Wijs
(2007) show, how a known POR algorithm for security properties can be cast to priority
beam search, which is a version of beam search explained in the following sections.
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In this chapter, we investigate how beam search can be integrated into the state
space generation setting. Beam search is a heuristic method for combinatorial opti-
misation problems, which has extensively been studied in artificial intelligence and
operations research, among others by Lowerre (1976), Rubin (1978), Fox (1983), Si Ow
and Smith (1988), Sabuncuoglu and Bayiz (1999), and Della Croce and T’kindt (2002).
There, beam search is similar to breadth-first search, as it progresses level by level
through a highly structured search tree containing all possible solutions to a problem,
but it does not explore all the encountered nodes. At each level, all the nodes are eval-
uated using a heuristic cost (or priority) function, but only a fixed number of them is
selected for further examination. This aggressive pruning heavily decreases the gener-
ation time, but may in general miss essential parts of the tree for the problem at hand,
since wrong decisions can be made while pruning. Therefore, beam search has so far
been mainly used in searching trees with a high density of goal nodes. Scheduling
problems, for instance, have been perfect targets for using beam search, as their goal
is to optimally schedule a certain number of jobs and resources, while near-optimal
schedules, which densely populate the tree, are in practice good enough.

The idea of using beam search in state space generation is an attempt towards inte-
grating functional analysis, to which state spaces are usually subjected, and quantita-
tive analysis. Since model checkers, like SPIN (Holzmann, 2004), UPPAAL (Behrmann
et al., 2004), and the µCRL toolset (Blom et al., 2001), which generate these state
spaces, usually have highly expressive input languages, beam search for state spaces
can be applied in a more general framework than its more traditional version for search
trees. Applying beam search to search state spaces tightly relates to directed model
checking (DMC) (Edelkamp et al., 2004), and guided model checking (for (priced) timed
automata) (Behrmann et al., 2001a), where heuristics are used to guide the state space
exploration when checking properties. Here, we mainly aim for checking quantitative
properties, where approximate results are often sufficient. This singles out our work
from the existing DMC techniques.

In the current chapter, we motivate and thoroughly discuss adapting the beam search
techniques to deal with arbitrary structures of state spaces. By this, we stretch the idea
of DMC to the field of quantitative analysis.

Next, we extend the classic beam search in two directions. First, we propose flexible
beam search, which, broadly speaking, does not stick to a fixed number of states to be
selected at each search level. This partially mitigates the problem of determining this
exact fixed number in advance. Second, we introduce the notion of synchronised beam
search, practically an instance of multi-phase best-first search (from Section 6.10),
which aims at separating the heuristic pruning phase from the underlying exploration
strategy. Possible combinations of these variants create a spectrum of search algo-
rithms that, as will be described, encompasses some known search techniques such as
A∗ search and partial order reduction algorithms.

Remarkably, POR can be seen as a sort of careful pruning in which certain func-
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tional properties of the model are preserved. In related work, the framework also
allowed us to extend this algorithm to deal with branching security protocols (Fokkink
et al., 2007). This confirms that the use of beam search, applied with suitable heuristic
functions, goes beyond checking quantitative properties.

Most of the upcoming beam searches have been implemented in the µCRL state
space generation toolset. Experimental results on comparing this toolset with SPIN in
scheduling are eventually presented in Chapter 10.

The classic beam search for highly structured trees is described in Section 8.2; here,
we temporarily deviate from the model checking setting, and present beam search in
its ‘traditional’ setting. Section 8.3 deals with the adaptation of two existing variants
of beam search to the state space generation setting. There we also propose our ex-
tensions to the beam search algorithms. After that we focus on the implementation
of some of these adapted and extended beam search algorithms in the µCRL toolset.
Related issues such as memory management and selecting heuristic functions are also
discussed. In Section 8.7, we describe how our framework encompasses A∗ search and
a partial order reduction algorithm for security protocols. Section 8.8 presents our
related work and Section 8.9 concludes the chapter.

8.2 Beam Search

Beam search (see, e.g., Si Ow and Morton (1988), Bisiani (1992), and Pinedo (1995))
is a heuristic search algorithm for combinatorial optimisation problems, which was
originally used in the artificial intelligence community by Lowerre (1976) for speech
recognition, and by Rubin (1978) for image understanding. Later on, this technique
has been applied to scheduling problems, for example by Fox (1983), Si Ow and Smith
(1988), and Sabuncuoglu and Bayiz (1999) in systems designed for jobshop environ-
ments (for an explanation of this kind of problem, see Section 7.1). Since then, new
variants of beam search, such as filtered beam search (Pinedo, 1995; Si Ow and Mor-
ton, 1988, 1989) and recovery beam search (Della Croce and T’kindt, 2002; Valente and
Alves, 2005c), have been introduced.

Beam search is similar to breadth-first search as it progresses level by level. At each
level of the search tree, it uses a heuristic evaluation function to estimate the promise
of encountered nodes1, while the goal is to find a path from the initial state (initial
node of the tree) to a leaf node that possesses the minimal evaluation value among all
the leaves. At each level, only the β most promising nodes are selected for further ex-
amination and the other nodes are permanently discarded. The beam width parameter
β is fixed to a value before searching starts. Because of this aggressive pruning, the

1In this section, we use the most common terminology when referring to beam search, i.e. we reason about
nodes and edges, as opposed to states and transitions. This emphasises that we adapt the beam search
techniques to a different setting.
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generation time is linear to the maximum search depth, and is thus heavily decreased.
However, since wrong decisions can be made while pruning, beam search is neither
complete (or cost-optimal), i.e. is not guaranteed to find a solution when there is one,
nor optimal, i.e. does not guarantee finding an optimal solution. To limit the possibil-
ity of wrong decisions, one can increase the beam width, at the cost of increasing the
required computational effort and memory use.

The original definition of beam search allows any kind of guiding function to be used.
Using the terminology of Chapter 6, it only demands that pruning in the width is per-
formed, and extra states are selected; as Fox (1983) put it: “[Beam search] builds a
highly pruned search tree of labelling alternatives which resembles a beam”. In this
chapter, however, we focus on two types of evaluation functions, which have tradition-
ally been used often for beam search, as, for instance, reported by Si Ow and Morton
(1988) and Valente and Alves (2005b): priority evaluation functions and total-cost eval-
uation functions, which lead to the priority and detailed beam search variants, respec-
tively. In priority beam search, at each node a priority evaluation function calculates
a priority for each successor node, and the algorithm selects based on those priorities.
At the root of the search tree, up to β most promising successors (i.e. those with the
highest priorities) are selected, while in each subsequent level only one successor with
the highest priority is selected per examined node. Figure 8.1 describes the basic idea
of traditional priority beam search. There, s0 is the root of the search tree, and all
leaves are assumed to be located at the same level.

1. Set B = ;, C = ;
• Branch s0 to generate its children
• Perform priority evaluation of each child node
• Select min{β,number of children} best child nodes, add them to B

2. For each node in B:
• Branch node to generate its children
• Perform priority evaluation of each child node
• Select best child node, add it to C

3. Set B = C; Set C = ;
4. Stopping Condition: if all nodes in B are leaf, select node with lowest total-cost and stop, otherwise

go to step 2.

Figure 8.1: Priority beam search for search trees (Valente and Alves, 2005a)

In detailed beam search, at each node n, the (state-based) evaluation function f (n) =
g(n) + h(n) calculates an estimate of the total-cost of the best schedule that can be
found, continuing from the partial schedule represented by node n. At each level, up
to β most promising nodes (i.e. those with the lowest total-cost values) are selected, re-
gardless of who their parent nodes are. If there are more than β nodes that receive the
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best evaluation value, a selection is made based on other criteria, e.g. the order of en-
countering the nodes (see Section 8.3.4 for other possibilities). Clearly, when β=∞, de-
tailed and priority beam search behave as exhaustive breadth-first search. Figure 8.2
represents traditional detailed beam search.

1. Set C = ;, B = {s0}

2. For each node in B:
• Branch node to generate its children
• Perform detailed evaluation of each child node n (i.e. calculate f (n) = g(n) + h(n))
• Select min{β,number of children} best child nodes, add them to C

3. Set B = ;; Select min{β, |C|} best nodes in C, add them to B; Set C = ;
4. Stopping Condition: if all nodes in B are leaf, select node with lowest total-cost and stop, otherwise

go to step 2.

Figure 8.2: Detailed beam search for search trees (Valente and Alves, 2005a)

In comparison, priority evaluation functions have a local view of the problem, since
they only consider the next job to be scheduled, while total-cost evaluation functions
have a more global view, taking the complete schedule into account and comparing
different branches of the tree. The intuition behind priority evaluation functions is
that one cannot simply compare priorities of jobs, i.e. nodes, which are connected to
different executions, because the suitability of a job depends on what came before in
the execution (for the more general state space setting, this is explained in more detail
in Section 6.11). The children of the root node, however, can fairly be compared as they
share the same (empty) execution history. A total cost evaluation function, on the other
hand, allows comparison of nodes from different executions, as it shows the progress
each execution is making.

In general, total-cost evaluation functions are computationally more expensive than
priority evaluation functions, but often provide more accurate heuristics because of
their global view (Si Ow and Morton, 1988).

Figure 8.3 shows the application of a detailed beam search on a search tree. The
grey nodes are selected using the evaluation function, while the obscured ones are
nodes that would have been encountered, had their parents been selected. Typically,
this is a detailed beam search as opposed to a priority beam search. First of all, in a
detailed beam search, states with the lowest f -values are selected, while in a priority
beam search, priorities must be high in order to qualify for selection. Second, in a
priority beam search, up to β transitions from the root of the tree are followed, after
which in each subsequent level of the tree one outgoing transition with the highest
priority is selected per examined node. In a detailed beam search, however, at each
level up to β nodes are selected to continue, regardless of what their parent nodes are,
therefore it could be the case, as in level 4 of Figure 8.3, that some nodes have multiple
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Figure 8.3: Example of detailed beam search with β = 2 in a search tree

selected children, while others have none. The reason for this is that one cannot simply
compare priorities of actions which are connected to different executions, due to the fact
that selection of an action depends on what came before in the execution. A total-cost
evaluation function does allow comparison of nodes from different executions though,
since using such a function allows us to see the progress each execution is making.

8.3 Adapting Beam Search for State Space
Generation

8.3.1 Motivation
Beam search is typically applied on highly structured search trees, like the one shown
in Figure 7.1, which contain all possible orderings of a given number of jobs, e.g. see
Oechsner and Rose (2005), and Valente and Alves (2005c). Such a search tree starts
with n jobs to be scheduled, which means that the root of the tree has n outgoing
transitions. Every node has exactly n − k outgoing transitions, where k is the level
in the tree where the node appears. State spaces, however, supposedly contain infor-
mation on all possible behaviours of a system. Therefore, they may contain cycles or
confluence of traces (i.e. states have multiple incoming transitions), and have more
complex structures than the well-structured search trees usually subjected to beam
search. This necessitates modifying the beam search techniques to deal with arbitrary
state spaces. Moreover, the beam search algorithms search for a particular state in the
search space, while in (and after) generating state spaces one might desire to study a
property beyond simple reachability (see Section 8.7 on partial order reduction as an
instance of extended beam search). We therefore extend beam search to a state space
generation setting, as opposed to its traditional setting that focuses only on searching.
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See Section 8.5 for possible optimisations when restricting beam search to verify reach-
ability properties. This, along with the necessary machinery for handling cycles, raises
memory management issues in beam search, as we will see in Section 8.5.

First, we revisit priority and detailed beam search for state space generation. Next,
we propose two variants of beam search which have, in our case studies, proved es-
sential for handling large state spaces. Flexible beam search mitigates the problem
of determining a sufficiently large beam width, while synchronised beam search sepa-
rates the pruning phase from the exploration strategy.

Figure 8.4 shows the spectrum of the variants that are described in the following
sections. There, DBS and PBS correspond, respectively, to the detailed and priority
beam searches, adapted to deal with arbitrary state spaces (Sections 8.3.2 and 8.3.3).
The F and S prefixes refer to the flexible and synchronised beam search variants (Sec-
tions 8.3.4 and 8.3.5).

xBS FxBS

SFxBSSxBS

Figure 8.4: Beam search spectrum, x ∈ {D, P}

8.3.2 Priority Beam Search for State Space Generation
Next, we motivate and describe the changes that we have made to the traditional pri-
ority beam search to deal with state space generation.

Priority beam search is shown in Algorithm 19. The user-supplied function prio :
A → Z provides the priority of actions, as opposed to states (see Section 6.11).2

We motivate this deviation from the traditional notion of priority beam search by
noting that jobs in the scheduling terminology correspond more naturally with actions
in a state space when specified for a model checker. Moreover, since priority beam
search focuses on generating an approximate state space rather than looking for a par-
ticular goal, no total-cost function is in general needed (and provided). The set Buffer
temporarily keeps seemingly promising transitions. The function priomin : 2T → Z

returns the lowest priority of the actions of a given set of transitions. We define
priomin(;) = −∞. The function getpriomin : 2T \ ; → T , given a set T of transitions,

2See Section 6.11 for a discussion about this kind of function. Note that as the domain of priorities is here
identified as Z, priorities are totally ordered.
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Algorithm 19 Priority beam search for state spaces
Require: M=(S ,A ,T ,I ), widening factor α, stabilisation level l, priority function

prio : A → Z, set of goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
Li ← I

Buffer ← ;
limit := α

while Li 6= ; do
Li+1 ← ;
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

for all s `−→ s′ ∈ enM (s) do
if prio(`) > priomin(Buffer) then

if |Buffer| = limit then
Buffer ← Buffer \ {getpriomin(Buffer)}

end if
Buffer ← Buffer ∪ {s `−→ s′}

end if
end for
Li+1 ← Li+1 ∪ nxtM (s, Buffer)
Buffer ← ;

end for
i ← i + 1
Li ← Li \

⋃i−1
j=0 L j

if i = l then
limit := 1

end if
end while
return true
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returns one of the transitions in T labelled by an action with priority priomin(T). Note
that the stopping condition of the traditional priority beam search algorithm of Sec-
tion 8.2 is represented here by the condition Li 6= ; of the while loop, which does
not assume that all leaves occur in the same level (this, moreover, avoids cycles). The
algorithm terminates when it has explored all the states in its beam.

In priority beam search, originally, up to β children of the root are selected. The
resulting beam of width β is then maintained by sprouting only one child per node in
subsequent levels. This works for trees such as the one shown in Figure 7.1, where the
root has more outgoing transitions than any other node in the tree. In state spaces,
however, the root has typically considerably fewer outgoing transitions than the aver-
age branching factor of the state space. Fixing the beam width at such an early stage
is therefore not reasonable.

Selecting all transitions at each level until β or more transitions are found in a single
level would be an option. However, if this number drastically exceeds β, it would not
be clear which transitions should be pruned away. To mitigate this problem, instead
of β, Algorithm 19 is provided with the pair (α, l), where α, l ∈ N and αl = β. We
call α the widening factor and l the stabilisation level. The idea is that the algorithm
uses the prio function to prune non-promising states from the very first level, but in
two phases: before reaching β states in a single level it considers per state the most
promising α transitions for further expansion, but after that (i.e. once it has reached
level l), it sticks to the one child per node rule. Here, the assumption is made that in
the first l levels of the state space, each state has at least α outgoing transitions. In
practice, this is not such a strong assumption, considering that the kind of problems
for which beam search is suitable typically produces state spaces which resemble trees
that expand quickly.

8.3.3 Detailed Beam Search for State Space Generation

The original idea of detailed beam search does not need to change much to fit into
the state space generation setting, except for handling cycles. When exploring a cyclic
state space, to guarantee the termination of the algorithm, it is necessary to store the
set of expanded states (in the sets Li in, for example, Algorithm 8), to allow detecting
duplicates to avoid exploring a state more than once. However, if a state is reached via
a path with a lower cost, the state has to be re-examined. This is because the total-
cost of each state depends on the cost to reach that state from I . Thus a state (and
its successors) may more competently qualify for further explorations if it is reached
via a lower cost path. This is a known issue when dealing with weighted state spaces
(Section 6.3), and reappears in the upcoming text.

As a side note, the average running time of the detailed beam search algorithm
of Section 8.2 can be reduced if the order of exploration and evaluation is reversed.
Intuitively, instead of first expanding the nodes of the current level and then evaluating
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the children and selecting the β most promising of them to constitute the next level (c.f.
the algorithm of Section 8.2), we first evaluate the states of the current level, select the
β most promising states among them and then expand them, to constitute the next
level. When performed successively, these two orders are identical. However, since the
number of nodes to be evaluated is a priori known in each level, evaluation of the states
of a level containing no more than β states can altogether be avoided.3

Besides that, to reduce the space complexity of the traditional detailed beam search
algorithm of Section 8.2, while evaluating, only the βmost promising states can be kept
in a set and the rest can be discarded (note that β2 states are stored in the algorithm
of Section 8.2). This optimisation, of course, does not depend on the order of evaluation
and exploration. In the broader context of DMC, beam search applies pruning in the
width and selection of extra states (Chapter 6), and the beam width β is comparable
with the selection width β in cost-bounded best-first search (Algorithm 11),

Algorithm 20 shows detailed beam search after the mentioned optimisations. It can
be applied on a weighted state space M = (S , A , C , T , I ). The total-cost evaluation
function is called f : S →K. This function is decomposed into f (s)= g(s)+h(s), in other
words, as explained in Chapter 6, it incorporates a cumulated cost part and a heuristic
part. The g(s) function represents the cumulated cost taken to reach s from I , which is
defined as g(s)= g(s′)+ c if s′ `−→ s and C (`)= c. The set of (action label,weight) pairs C

is user-supplied. The weights can, e.g., denote the time needed to perform different jobs
in a scheduling problem. These weights are fixed before searching starts. In practice,
often, the weights range over non-negative numbers. In these cases, the values of g
never decrease along a path, i.e. s →∗ s′ =⇒ g(s′) ≥ g(s); in other words, g is monotonic
(Definition 14). Since the generation of successor states incorporates calculating the
new cumulated costs for them, we redefine nxtM (s, T), as is done for Algorithm 9 in
Section 6.3, as nxtM (s, T) = {〈s′, s.g + c〉| s′ ∈ S ∧ ∃` ∈ A . (s `−→ s′ ∈ T ∧ C (`) = c)}.

The user-supplied heuristic function h(s) estimates the cost it would take to effi-
ciently complete the schedule continuing from s. Similar to g, the total-cost function f
is called monotonic iff s →∗ s′ =⇒ f (s) ≤ f (s′).

The function getf max : 2S \ ; → S , given a set of states, returns one of the states
that has the highest f -value. It thus computes f (s) = g(s) + h(s) for each member of
the set (it can of course be optimised for consecutive calls to the same set). The level
sets Li contain pairs of states and corresponding g-values, i.e. 〈s, s.g〉.

Note that a state will be revisited only if it is reached via a path with a lower cost
than the cumulated cost assigned to it.

3Actually, the evaluation of the heuristic estimation part, which is computationally the most expensive
phase, is the part that is avoided. See Algorithm 20 for details.
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Algorithm 20 Detailed beam search for state spaces
Require: M = (S , A , C , T , I ), heuristic function h : S → K, beam width β, set of

goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
Li ← {〈s, 0〉 | s ∈ I }
while Li 6= ; do

Li+1 ← ;
while |Li| > β do

Li ← Li \ {〈s, s.g〉 ∈ Li | s = getf max(Li)}
end while
if {s | 〈s, s.g〉 ∈ Li} ∩ G 6= ; then

return GeneratePath({s | 〈s, s.g〉 ∈ Li} ∩ G )
end if
for all 〈s, s.g〉 ∈ Li do

Li+1 ← Li+1 ∪ nxtM (s, enM (s))
end for
i ← i + 1
Li ← {〈s, s.g〉 ∈ Li | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈ ⋃i−1

j=0 L j ∧¬∃g′ < s.g ∈K.〈s, g′〉 ∈ Li}
end while
return true
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8.3.4 Flexible Beam Search

A major issue that still remains unaddressed in the beam search adaptations of Sec-
tions 8.3.2 and 8.3.3 is how among equally competent candidates, e.g. having the same
f values, pruning should be carried out.

Actions in state spaces can have several parameters. The same action can thus
appear multiple times as an outgoing transition of a given state, each time having dif-
ferent parameter values, possibly leading to equally competent states. This potentially
leads to situations where, during selection, a large number of transitions or states have
equal evaluations (for some examples, see Chapter 10). In such cases, a selection has
to be made among equally competent candidates if they happen to be (one of) the most
promising transitions or among the β-best states. These selections are beyond the in-
fluence of the evaluation (or priority) function and can undesirably make the algorithm
non-deterministic. Hence, we propose two variants of beam search that we call flexible
detailed and flexible priority beam search, in which the beam width can change during
state space generation.

In flexible detailed beam search, at each level, up to β most promising states are
selected, plus any other state which is as competent as the worst member of these β

states. This achieves closure on the worst (i.e. highest) total-cost value being selected.
Similarly, in flexible priority beam search, in the first l levels (see Section 8.3.2), at each
state, up to α most promising outgoing transitions are selected, plus any transition
which has the same priority as the least competent member of these α transitions. At
the l + 1th level and onwards, at each state, all the transitions with the same priority
as the most promising transition of that particular state are selected (i.e. as if α =
1). In other words, in flexible beam searches, tie-breaking is avoided, by making the
beam dynamic in size. Note that in flexible priority beam search, in contrast to flexible
detailed beam search, if the beam width is stretched, it cannot be readjusted to the
intended β.

The benefit of this approach is that there are no selection criteria other than the
evaluation function used. This not only leads to more insight in the effectiveness of
the function, but in practice it may also mean that smaller beam widths can be used,
compared to non-flexible beam search (see, for instance, the results in Chapter 10). The
drawback is that the memory requirement is no longer linear in the maximum search
depth, since β is only a guideline for the beam width.

8.3.5 G-Synchronised Beam Search

As is described in Section 8.2, the classic beam search algorithms were tailored for
the breadth-first exploration strategy. Next, we explain a more general way, where
beam search can be used with any best-first exploration strategy. Broadly speaking,
we separate the exploration strategy from the pruning phase, where the exploration
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may be guided with a (possibly different) heuristic function. This is particularly useful
when checking reachability properties on-the-fly.

Using the terminology of Chapter 6, we inductively describe G-synchronised x-beam
search as a two-phase best-first search, where G is the function that guides the explo-
ration and x can be either detailed, priority, flexible detailed or flexible priority. Let
H be the current search horizon. In the exploration phase of round i, we need to
determine the set of states to be explored Li ⊆ H . We do this by first determining
an intermediate search horizon H ′ by employing the guiding function G as follows:
H ′ = {s ∈ H | ∀s′ ∈ H .G(s) ≤ G(s′)}. Subsequently, the pruning phase of x-beam search
is applied on H ′, leading to Li ⊆ H ′. According to the pruning phase (which can pos-
sibly employ an evaluation function different from G)4, some of the states in H ′ are
selected, constituting the set Li. Finally, the successors of all the states in Li are de-
termined and added to H . The next round starts with the search horizon H \ H ′ and
needs to determine Li+1. Since this technique distinguishes an exploration phase and
a pruning phase, it can perfectly combine most exploration strategies (from different
best-first searches) with all the variants of beam search introduced earlier.

Modular implementation of synchronised beam search variants can thus be con-
ceived: the first phase takes care of the order in which states need to be considered
for pruning and exploration, and the second phase performs the actual pruning and
selection. Such a two-phase approach resembles filtered beam search, described by
Si Ow and Morton (1988), where classic priority beam search is applied before classic
detailed beam search takes place. In Section 6.10, we described a general algorithm,
encompassing these two types of searches, called multi-phase best-first search, which
can also deal with more than two phases per round.

Using any constant function as G in synchronised detailed beam search clearly re-
sults in beam search with breadth-first exploration strategy. Algorithm 21 shows this
technique in detail.

To mention a practically interesting candidate for G, we temporarily return to the
application of finding schedules for a given problem. This means that we wish to find
a path of minimal cost that leads to a particular action or state in a state space. If for
every action `, prio(`)= 1, this problem corresponds to finding the minimal length trace
when verifying a reachability property. Recall that the total-cost function in detailed
beam search can be decomposed into f (s) = g(s) + h(s), where g(s) is the cost of the
trace leading from I to s. If G(s) = g(s) in G-synchronised detailed beam search, once
a goal state (or a complete schedule) is found, searching can safely terminate. This is
because in a goal state s, f (s) = g(s), and since the algorithm always follows paths with
minimal g (remember that g is monotonic), state s is reached before another state s′
iff g(s) ≤ g(s′). Note that here no state is re-opened, because states with minimal g are
taken first and thus a state can be reached again only via paths with greater costs (c.f.

4Using different functions for guiding exploration and pruning in principle allows dealing with multi-priced
optimisation problems, c.f. Behrmann et al. (2005).
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Section 8.3.3).
Both g-synchronised detailed beam search and g-synchronised priority beam search

have been used in solving timed scheduling problems, the results of which are reported
in Chapter 10, where minimal-time traces to a particular action label are searched for.
One can imagine these searches as two-phase best-first searches with a minimal-cost
search (Algorithm 18) in the first phase, and a greedy search (best-first search with
f (s) = h(s)) and a priority beam search in the second phase, respectively. The same
pruning algorithm can be used to search for other kinds of traces, such as a shortest
trace or a shortest minimal-time trace.

Algorithm 21 G-Synchronised detailed beam search
Require: M = (S ,A ,C ,T ,I ), exploration function G, heuristic function h : S →K,

beam width β, set of goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
H ← {〈s, 0〉 | s ∈ I }
while H 6= ; do

H ′ ← {〈s, s.g〉 ∈ H | ∀〈s′, s′.g ∈ H 〉.G(s) ≤ G(s′)}
H ← H \ H ′
Li ← H ′
while |Li| > β do

Li ← Li \ {〈s, s.g〉 ∈ Li | s = getf max(Li)}
end while
if {s | 〈s, s.g〉 ∈ Li} ∩ G 6= ; then

return GeneratePath({s | 〈s, s.g〉 ∈ Li} ∩ G )
end if
for all 〈s, s.g〉 ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← {〈s, s.g〉 ∈ H | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈ ⋃i−1

j=0 L j ∧¬∃g′ < s.g ∈K.〈s, g′〉 ∈ H }
end while
return true

8.4 Beam Search in the µCRL Toolset

In the µCRL toolset, we implemented the G-synchronised variants of beam search, pre-
sented in this chapter, where G equals the cumulated cost function g, and the explo-
ration phase is performed in an (action-based) minimal-cost manner (see minimal-cost
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search in Section 7.3.4), therefore these variants can be applied on unweighted state
spaces with an action-based representation of costs. In these variants, there is no ad-
ditional space needed to store (intermediate) cumulated cost results for states, and the
duplicate detection can be done straightforwardly, not considering the cumulated costs.
Next, we describe how total-cost and priority evaluation functions are represented in
the toolset.

In our implementation of priority beam search, priority values are assigned to ac-
tions, as opposed to nodes in classic beam search, and are fed to the state space gener-
ator in an input file. In this setting, each trace in the state space represents a sequence
of jobs (as in the case of the Clinical Chemical Analyser presented in Chapter 10). To
be precise, priority values are assigned to action labels and are fixed during the search.
Therefore, identical action labels have equal priority levels regardless of their source,
destination or parameters (if present). By default, all actions have priority zero.

Related to detailed beam search, which uses a total-cost evaluation function, the
µCRL toolset can perform a g-synchronised detailed search with f (s) = h(s).5 The de-
sired estimation function h : S → K can be specified using constants and variables
taken from the parameter list of the LPE (see Definition 4) of the specification, com-
bined with the usual operations, i.e. addition, subtraction, multiplication and division.
If the estimation function has a sophisticated structure, e.g. depends on some pre-
calculated information as in the case of Oechsner and Rose (2005), it should be encoded
in the specification. In µCRL, abstract data types are used to specify data structures
and functions. This is very expressive and allows creating many useful functions, pos-
sibly incorporating pre-calculated data. What remains to be done in the specification
is to ascertain that a designated parameter of a process is updated at right moments
with the appropriate value of this function. Then the actual estimation function can
use this parameter.

In general, G-synchronised searches can be applied, as long as the G-guiding is
action-based, like e.g. minimal-cost search, which can keep track of g-values by record-
ing the number of encountered tick transitions along the way. Also, flexible versions of
the implemented variants are available.

Of course, a total-cost function f (s) = g(s) + h(s) can be achieved by keeping track of
cumulated costs of states in a special variable cost in the specification, as explained in
Section 7.2.

Case studies on timed scheduling problems using the beam search implementations
in the µCRL toolset are discussed in Chapter 10.

5In fact, note that a guiding function f (s) = g(s) + h(s) has the same effect here, as in each round of the
search, g-synchronised detailed beam search considers states with the same g-value, therefore these
states can only have different f -values if they have different h-values.
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8.5 Memory Management
Memory management is a challenging issue in state space generation. Although beam
search reduces memory use due to cutting away parts of the state space, still explored
states need to be accessed to guarantee the termination of the exploration in case of
cyclic state spaces. Keeping the whole set of visited states in the memory is usually
susceptible to early state space explosion. This can be counter-measured by taking
into account specific characteristics of the problem at hand and the properties that
are to be checked. Below we discuss some possible optimisations when applying beam
search:

1. When aiming at a reachability property on-the-fly (such as reachability of a goal
state, checking invariants and hunting deadlock states), the memory require-
ments can be lowered by checking the property while exploring. In that case,
once a state satisfying the desired property is reached, the search terminates
and the witness trace is reported. This however cannot be extended to arbitrary
properties.

2. If there are no cycles in the state space, there is in principle no need to check
whether a state has already been visited (in order to guarantee termination).
Therefore, only the states from the current level need to be kept and the rest can
be removed from memory, i.e. flushed to high latency media such as disks. In
this case, however, some states may be revisited due to confluent traces, hence
undesirably increasing the search time. Prominent examples of systems with
acyclic state spaces are large classes of scheduling problems, which have been
traditional targets of beam search, and most security protocols (see Section 8.7).
As is demonstrated by Torabi Dashti and Wijs (2007), a known POR algorithm
for security protocols can be seen as an instance of beam search.

3. In detailed beam search variants, if each state s has a unique cumulated cost
g(s) associated to it, e.g. denoting a notion of progress, and if g is monotonic,
then there cannot be any transition from states with a greater cumulated cost to
the states with lower cumulated costs: g(s) < g(s′) =⇒ s 6→∗ s′. Consequently,
states with cumulated costs strictly lower than the cumulated costs of the states
to be processed can be removed from memory. This resembles sweep-line state
exploration (Christensen et al., 2001).

4. In G-synchronised beam search variants with a monotonic G-function, bit-state
hashing (Holzmann, 1998) can be used to reduce memory use. This technique is
however inherently incomplete, i.e. may miss parts of the state space, and in par-
ticular when used in beam search there is the possibility of ignoring a previously
visited state when it is reached via a path with a lower G-value. However, for G-
synchronised BS variants with monotonic G, this does not pose a problem, since
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re-opening of states is never needed. Note that the approach remains an approx-
imation to beam search and, thus, can be seen as a trade-off between memory
usage and having a tight grip on pruning.

8.6 Heuristics and Selecting the Beam Width

Effectiveness of beam search hinges on selecting good heuristic functions. Heuristic
functions, as George Polya put it in 1945, are meant “to discover the solution to the
present problem” (Polya, 1945), and thus heavily depend on the problem being solved.
As the focus of the current chapter is the development of search algorithms working
with heuristics, we do not discuss techniques to design the heuristic functions them-
selves. Developing heuristics constitutes a whole separate body of research and, here,
we refer to a few case studies on using heuristics in pruning state spaces: Among oth-
ers, Groce and Visser (2004), Oechsner and Rose (2005), Si Ow and Morton (1988), and
Valente and Alves (2005b) present detailed discussions on pruning heuristics when
dealing with Java program analysis, scheduling a wafer stepper machine, and jobshop
scheduling problems, respectively. In Chapter 10, we show the effect of using heuristics
to schedule a Clinical Chemical Analyser.

Particularly papers on designing heuristic functions, such as the work by Edelkamp
et al. (2001a), Edelkamp et al. (2004), Groce and Visser (2004), and Kupferschmid et al.
(2006), constitute a nice complement to the work we present here, as they explain how
to design heuristic functions and we start with the assumption of having a heuristic
function. Edelkamp et al. (2001a) and Edelkamp et al. (2004) use guidelines to ap-
proximate the distance to deadlocks and violations of invariants and assertions. The
objective of Groce and Visser (2004) is to model check Java programs with heuristics
constructed using the properties to check, the structure of the programs and additional
input of the user. Such functions can naturally be used as input also to the algorithms
proposed in the current chapter.

Selecting the beam width β is another challenge in using beam search. The beam
width intuitively calibrates the time/memory usage of the algorithm on one hand and
the accuracy of the results on the other hand. Therefore, in practice the time/memory
limits of a particular experiment determine β. To reduce the sensitivity of the results
to the exact value of β, we propose using flexible beam search variants, c.f. the results
in Chapter 10. This, however, comes at the price of losing a tight grip on the memory
consumption (see also Section 8.3.4).

For more general discussions on selecting β and its relation to the quality of answer
we refer to Si Ow and Morton (1988).
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8.7 Connections to Other Heuristic Search
Algorithms

Having described the beam search spectrum of Figure 8.4, we observe that some exist-
ing search techniques fit neatly in there. We here briefly mention some of these con-
nections to other search algorithms. This can be particularly interesting in practice,
where one looks for umbrella theories and tools to cover as many existing techniques
as possible to ease their use and interoperability. Our main result is that the basic AI
search algorithm A∗ (Hart et al., 1968) can be seen as an instance of G-synchronised
flexible detailed beam search, the bottom right corner of the spectrum of Figure 8.4.
First, in order to be able to compare search behaviour of different best-first searches,
we formally define the notions of a guiding signature of a best-first search, and strong
and weak guiding equivalence of two best-first searches, and we demonstrate the use-
fulness of these notions, by proving that uniform-cost is strong guiding equivalent to an
instance of G-synchronised detailed beam search. Next, we present A∗ in pseudo-code,
and prove that, given a monotonic guiding function f (s) = g(s) + h(s), it is both weak
guiding equivalent to set-based A∗ and weak guiding equivalent to f -synchronised
flexible detailed beam search.

We observe that the behaviour of a best-first search through a state space M can be
uniquely described by expressing the behaviour of each round in the search.6 The latter
can be done by means of two functions ξ,ν : 2S → 2S , which describe the state space
level creation and the search horizon creation in each round of the search algorithm,
respectively. This insight is used to define the notion of a guiding signature of a best-
first search in Definition 24.

Definition 24 (Guiding signature of a best-first search). For any M =(S ,A ,C ,T ,
I ), we say that the guiding signature of a best-first search A is a tuple (ξ, ν), where
ξ : 2S ×K → 2S ×K is a function describing the creation of a state space level, given a
search horizon, in a round of A, and ν : 2S ×K → 2S ×K is a function describing the
evolution of a search horizon through a round in A.

We denote applying ν exactly n times on S as νn(S).
Observe that the search horizon H of a best-first search with guiding signature (ξ,ν)

through a state space M evolves as follows through the search rounds: I ,ν(I ),ν2(I ),
etc. The state space levels consecutively created by A are L0 = ξ(I ), L1 = ξ(ν(I )),
L2 = ξ(ν2(I )), etc.

Next, we define the notion of strong guiding equivalence, by which we can compare
the behaviour of best-first searches. This is defined in Definition 25.
6Actually, iterative best-first searches form an exception to this. Note that a search A and an iterative

version of A search in exactly the same way up to the end of the first iteration of the iterative search;
after this point A has terminated and the iterative search is in its second iteration. In the current context,
though, there is no need to distinguish iterative and non-iterative searches.
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Definition 25 (Strong guiding equivalence). Given two best-first searches A and
B with guiding signature (ξA , νA) and (ξB, νB), respectively. We say that A and B are
strong guiding equivalent if for any M = (S , A , C , T , I ) and S ⊆ S , we have ξA(S) =
ξB(S) and νA(S) = νB(S).

Now, we can prove the following lemma:

Lemma 4. Given a cumulated-cost function g(s) and f (s) = g(s), uniform-cost search
(see Section 6.4) is strong guiding equivalent to g-synchronised detailed beam search,
with β = ∞.

Proof. Given a state space M = (S , A , C , T , I ). Let H ⊆ S be the current search
horizon in round i of the searches. In order to prove that uniform-cost search (UCS)
and g-synchronised detailed beam search (g-BS), with β=∞, are strong guiding equiv-
alent, we must show that:

1. ξUCS(H ) = ξgBS(H );

2. νUCS(H ) = νgBS(H ).

From Algorithm 9 with f (s) = g(s) and Algorithm 21 with G(s) = g(s), we observe
that:

• ξUCS(S) = Li = {〈s, s.g〉 ∈ S | ∀〈s′, s′.g〉 ∈ S. f (s) ≤ f (s′)};

• νUCS(S) = {〈s, s.g〉 ∈ S ∪ {s | ∃s′ ∈ ξUCS(S),` ∈ A .s′ `−→ s} | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈⋃i
j=0 L j ∧¬∃g′ < s.g ∈K.〈s, g′〉 ∈ S ∪ {s | ∃s′ ∈ ξUCS(S),` ∈ A .s′ `−→ s}};

• ξgBS(S) = Li = H ′ = {〈s, s.g〉 ∈ S | ∀〈s′, s′.g ∈ S〉.G(s) ≤ G(s′)} (Since β = ∞, no
pruning is done);

• νgBS(S) = {〈s, s.g〉 ∈ S ∪ {s | ∃s′ ∈ ξgBS(S),` ∈ A .s′ `−→ s} | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈
(
⋃i−1

j=0 L j ∪ ξgBS(S)) ∧ ¬∃g′ < s.g ∈ K.〈s, g′〉 ∈ (S \ ξgBS(S)) ∪ {s | ∃s′ ∈ Li, ` ∈
A .s′ `−→ s}}

Clearly, ξUCS(H ) = ξgBS(H ) and therefore also νUCS(H ) = νgBS(H ).

Comparing the standard (not the set-based) A∗ with set-based A∗ or f -synchronised
flexible detailed beam search, though, we observe that these searches are not strong
guiding equivalent. However, they are equivalent according to a weaker notion, which
we call weak guiding equivalence, defined in Definition 26.

Definition 26 (Weak guiding equivalence). Given two best-first searches A and B
with guiding signature (ξA ,νA) and (ξB,νB), respectively. We say that A and B are weak
guiding equivalent if for any M = (S , A , C , T , I ) and S ⊆ S , there are n, m ≥ 0 such
that ξA(S) ∪ ξA(νA(S)) ∪ . . . ∪ ξA(νn−1

A (S)) = ξB(S) ∪ ξB(νB(S)) ∪ . . . ∪ ξB(νm−1
B (S)) ⊂ S

and νn
A(S) = νm

B (S).
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With weak guiding equivalence, we express that, given a search horizon H , two
searches A and B can be considered equal if they produce the same set of states in a
finite number of levels, not constituting the full state space, otherwise any two exhaus-
tive searches would be weak guiding equivalent. Furthermore, the search horizons of
A and B after the production of those levels are equal. Note that considering the two
equivalence notions in the context of reachability problems, given a state space M , if a
search A finds a goal state s ∈ G in some Lk, with k ≥ 0, then a strong guiding equiva-
lent search B through M also finds a goal state in Lk, and that unlike strong guiding
equivalence, weak guiding equivalence with respect to a state space M does not imply
equality of the searches with respect to efficiency in finding a goal state.

In the terminology of Chapter 6, A∗ is a search algorithm with a guiding function
f (s) = g(s) + h(s), no pruning in the width, and no selection of extra states (see Sec-
tion 6.8). For the sake of clarity, we present A∗ explicitly in pseudo-code in Algo-
rithm 22, based on the general algorithm for best-first search (Algorithm 10).

Algorithm 22 A∗ search
Require: M = (S ,A ,C ,T ,I ), heuristic function h, selection width β (either 1 or ∞),

set of goal states G

Ensure: If found, a trace to a goal state is returned
i ← 0
H ← I

while H 6= ; do
Li ← selectβ({s ∈ H | ∀s′ ∈ H .g(s) + h(s) ≤ g(s′) + h(s′)})
H ← H \ Li
if Li ∩ G 6= ; then

return GeneratePath(Li ∩ G )
end if
for all s ∈ Li do

H ← H ∪ nxtM (s, enM (s))
end for
i ← i + 1
H ← DuplicateFree(H ,

⋃i−1
j=0 L j)

end while
return true

Observe that Algorithm 22 describes both standard A∗ and set-based A∗, depending
on the value of β (1 and ∞, respectively).

Lemma 5. Given a monotonic total-cost function f (s) = g(s)+ h(s), A∗ is weak guiding
equivalent to set-based A∗.

Proof. Given a state space M = (S , A , C , T , I ). Let H ⊆ S be the current search
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horizon in round i of the searches. In order to prove that A∗ and set-based A∗ (sA∗), are
weak guiding equivalent, we must show that for some n, m≥0, ξA∗ (H )∪ξA∗ (νA∗ (H ))∪
. . .∪ξA∗ (νn−1

A∗ (H ))= ξsA∗ (H )∪ξsA∗ (νsA∗ (H ))∪ . . .∪ξsA∗ (νm−1
sA∗ (H ))⊂S and νn

A∗ (H )=
νm

sA∗ (H ).
From Algorithm 22 we observe that:

• ξA∗ (S) = Li ∈ {s ∈ S | ∀s′ ∈ S. f (s) ≤ f (s′)} (Since β = 1);

• νA∗ (S) = DuplicateFree(S ∪ {s | ∃s′ ∈ ξA∗ (S),` ∈ A .s′ `−→ s},
⋃i

j=0 L j);

• ξsA∗ (S) = Li = {s ∈ S | ∀s′ ∈ S. f (s) ≤ f (s′)} (Since β = ∞);

• νsA∗ (S) = DuplicateFree(S ∪ {s | ∃s′ ∈ ξsA∗ (S),` ∈ A .s′ `−→ s},
⋃i

j=0 L j).

First of all, we consider f to be strictly increasing, as a special case of being monotonic,
i.e. ∀s, s′ ∈ S .s →+ s′ =⇒ f (s) < f (s′), with →+ the transitive closure of `−→, for any
` ∈ A . Since the exploration of a state s only leads to visiting new states with f -values
greater than s, it follows that for n =| {s ∈ H | ∀s′ ∈ H . f (s) ≤ f (s′)} | and m = 1, we have
ξA∗ (H ) ∪ ξA∗ (νA∗ (H )) ∪ . . . ∪ ξA∗ (νn−1

A∗ (H )) = ξsA∗ (H ) ⊂ S and νn
sA∗ (H ) = νm

sA∗ (H ).
Next, we consider f to be monotonic, but not strictly increasing. Then, A∗ will ex-

plore all the states in the set {s | ∃s′ ∈ {ŝ ∈ H | ∀ŝ′ ∈ H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s ∧ f (s) =
f (s′)} before any other states. Since A∗ explores one state per round, this is done in
| {s | ∃s′ ∈ {ŝ ∈H | ∀ŝ′ ∈H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s∧ f (s) = f (s′)} | rounds. Likewise, sA∗ will
explore this set in a number of rounds equal to the longest trace leading from a state
s ∈ {s ∈H | ∀s′ ∈H . f (s)≤ f (s′)} to a state s′ ∈ {s | ∃s′ ∈ {ŝ ∈H | ∀ŝ′ ∈H . f (ŝ)≤ f (ŝ′)}.s′ →∗
s∧ f (s) = f (s′)}. If we call the latter number m, and n =| {s | ∃s′ ∈ {ŝ ∈H | ∀ŝ′ ∈H . f (ŝ) ≤
f (ŝ′)}.s′ →∗ s∧ f (s)= f (s′)} |, then we have ξA∗ (H )∪ξA∗ (νA∗ (H ))∪ . . .∪ξA∗ (νn−1

A∗ (H ))=
ξsA∗ (H ) ∪ ξsA∗ (νsA∗ (H )) ∪ . . . ∪ ξsA∗ (νm−1

sA∗ (H )) ⊂ S and νn
A∗ (H ) = νm

sA∗ (H ).

In f -synchronised flexible detailed beam search, as in any G-synchronised beam
search, a round i in the search consists of two phases. In the first phase of each round,
a subset H ′ of the search horizon H is selected, where H ′ = {s ∈ H | ∀s′ ∈ H . f (s) ≤
f (s′)}. In general, in a G-synchronised detailed beam search, the second phase of a
round selects a subset of the result of the first phase, using the function f , and prunes
the remaining states. However, note that in f -synchronised detailed beam search,
selecting a subset of H ′ necessarily incorporates tie-breaking, as all the states in H ′
have the same f -value. But a flexible variant of f -synchronised detailed beam search
avoids tie-breaking, therefore it selects the entire H ′ as Li in the second phase. In
short, f -synchronised flexible detailed beam search selects in each round i all states
from H with the minimal f -value, places them in Li, expands them, and adds the
successor states to H . This gives rise to Lemma 6.

Lemma 6. Given a monotonic total-cost function f (s) = g(s) + h(s), f -synchronised
flexible detailed beam search, with arbitrary β > 0, is weak guiding equivalent to A∗.
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Proof. Given a state space M = (S , A , C , T , I ), let H ⊆ S be the current search
horizon in round i of the searches. In order to prove that A∗ and f -synchronised flexible
detailed beam search (identified in this proof as f BS), are weak guiding equivalent,
we must show that for some n, m ≥ 0, ξA∗ (H ) ∪ ξA∗ (νA∗ (H )) ∪ . . . ∪ ξA∗ (νn−1

A∗ (H )) =
ξ f BS(H ) ∪ ξ f BS(ν f BS(H )) ∪ . . . ∪ ξ f BS(νm−1

f BS (H )) ⊂ S and νn
A∗ (H ) = νm

f BS(H ).
From Algorithm 22 and Algorithm 21 with G(s) = f (s), we observe that:

• ξA∗ (S) = Li ∈ {s ∈ S | ∀s′ ∈ S. f (s) ≤ f (s′)} (Since β = 1);

• νA∗ (S) = DuplicateFree(S ∪ {s | ∃s′ ∈ ξA∗ (S),` ∈ A .s′ `−→ s},
⋃i

j=0 L j);

• ξ f BS(S)=Li =H ′ = {〈s, s.g〉 ∈ S | ∀〈s′, s′.g ∈ S〉.G(s)≤G(s′)} (Since f BS is flexible,
and pruning cannot be done here without tie-breaking, no pruning is done);

• ν f BS(S) = {〈s, s.g〉 ∈ S ∪ {s | ∃s′ ∈ ξ f BS(S),` ∈ A .s′ `−→ s} | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈
(
⋃i−1

j=0 L j ∪ ξ f BS(S)) ∧ ¬∃g′ < s.g ∈ K.〈s, g′〉 ∈ (S \ ξ f BS(S)) ∪ {s | ∃s′ ∈ Li, ` ∈
A .s′ `−→ s}}

First of all, we consider f to be strictly increasing, as a special case of being mono-
tonic, i.e. ∀s, s′ ∈ S .s →+ s′ =⇒ f (s) < f (s′), with →+ the transitive closure of `−→,
for any ` ∈ A . Since the exploration of a state s only leads to visiting new states with
f -values greater than s, and G(s) = f (s), it follows that for n =| {s ∈ H | ∀s′ ∈ H . f (s) ≤
f (s′)} | and m = 1, we have ξA∗ (H )∪ ξA∗ (νA∗ (H ))∪ . . .∪ ξA∗ (νn−1

A∗ (H )) = ξ f BS(H ) ⊂ S

and νn
A∗ (H ) = νm

f BS(H ).
Next, we consider f to be monotonic, but not strictly increasing. Then, A∗ will ex-

plore all the states in the set {s | ∃s′ ∈ {ŝ ∈ H | ∀ŝ′ ∈ H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s ∧ f (s) =
f (s′)} before any other states. Since A∗ explores one state per round, this is done
in | {s | ∃s′ ∈ {ŝ ∈ H | ∀ŝ′ ∈ H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s ∧ f (s) = f (s′)} | rounds. Like-
wise, since G(s) = f (s), f BS will explore this set in a number of rounds equal to
the longest trace leading from a state s ∈ {s ∈ H | ∀s′ ∈ H .G(s) ≤ G(s′)} to a state
s′ ∈ {s | ∃s′ ∈ {ŝ ∈ H | ∀ŝ′ ∈ H .G(ŝ) ≤ G(ŝ′)}.s′ →∗ s ∧ G(s) = G(s′)}. If we call the latter
number m, and n =| {s | ∃s′ ∈ {ŝ ∈ H | ∀ŝ′ ∈ H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s ∧ f (s) = f (s′)} |, then
we have ξA∗ (H )∪ ξA∗ (νA∗ (H ))∪ . . .∪ ξA∗ (νn−1

A∗ (H )) = ξ f BS(H )∪ ξ f BS(ν f BS(H ))∪ . . .∪
ξ f BS(νm−1

f BS (H )) ⊂ S and νn
A∗ (H ) = νm

f BS(H ).

The major difference between A∗ and f BS is that in the latter, all the states of the
H set with the minimal f -value are collected in Li, and are all expanded in one go
(i.e. nothing is pruned, since the search is flexible and the members of H ′ all have
the same f -value), while in A∗ they are expanded one by one. If f is increasing, all
the successor states of these states (with minimal f ) will have an f -value greater than
their parents, therefore A∗ will do exactly what f -synchronised flexible detailed beam
search does, i.e. it will first explore the members of H ′ before considering any other
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state. In case f is monotonic, but not strictly increasing, the set {s | ∃s′ ∈ {ŝ ∈ H |
∀ŝ′ ∈ H . f (ŝ) ≤ f (ŝ′)}.s′ →∗ s} is explored before any other states. This holds for both
searches, although they may explore this set in different numbers of rounds.

Finally, note that f -synchronised flexible detailed beam search and set-based A∗ are
strong guiding equivalent.

We also observe that the POR algorithm of Clarke et al. (2000) for security protocols
can be seen as an instance of flexible priority beam search. The main principle of
POR is to exploit the commutativity of concurrently executed transitions in order to
generate only a sufficient fraction of the state space by exploring a subset of enabled
transitions ample(s) ⊆ enM (s) at each state s. This resembles priority beam search,
since at each state, based on the suitability of the enabled transitions, some of the
successors are pruned away while generating. However, in contrast to priority beam
search, no essential information is lost in POR as the ample set is selected such that
a certain class of desired properties is preserved. We refer to Clarke et al. (1999) for a
general introduction to POR. Torabi Dashti and Wijs (2007) provide a translation from
this algorithm to the general pruning framework, and Fokkink et al. (2007) extend the
algorithm within this framework to be applicable to branching security protocols.

Felner et al. (2003) extend best-first search to k-best-first search, allowing to com-
pensate for inaccuracies in the evaluation function by selecting in each iteration more
than only the best state. Essentially, the difference between k-best-first search and
beam search is the decision to keep states not selected in one iteration for the next iter-
ation (this technique is also described in Section 6.7). This makes k-best first search a
complete search, but it also means its memory requirement is higher, since there is no
pruning done. A trade-off can, however, be achieved, by using inadmissible heuristics,
such that fewer states are expanded, but the solution will be near-optimal. This trade-
off is also used for weighted A∗ by Pohl (1970), and linear-space best-first search by
Korf (1993), where the h-function is multiplied by some factor. Moreover, in the latter,
the memory requirement is linear in the size of the search depth.

Our extension of g-synchronised beam search can probably best be compared with
filtered beam search (Si Ow and Morton, 1988), in the sense that in each iteration,
the current set of states undergoes two phases; in filtered beam search, first a priority
beam search is applied, and on the outcome of that, detailed beam search is used,
this to lessen the computational complexity. In g-synchronised beam search, we first
postpone some states, and then prune states from the remaining set. Both searches
can be seen as instances of multi-phase best-first search (Section 6.10).

8.8 Related Work
The literature on traditional beam search mainly focuses on how beam search is useful
for solving a specific problem and no general framework is presented. For example,
Valente and Alves (2005a) provide a relatively small specification of a typical jobshop
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scheduling problem that does not include data structures, which are often necessary
when dealing with practical systems. Oechsner and Rose (2005) use a very specific pro-
gram, which is only able to simulate the case study presented there. In these papers,
beam search is used on a case by case basis, therefore reusing their implementation of
beam search on other case studies is not straightforward. We provide a general frame-
work, based on an expressive specification language, instead of case-based tools. This
allows us to easily describe complex systems and various problem restrictions.

In many applications of beam search, no restrictions, neither timing nor data, are
initially put on scheduling jobs (e.g., in simple jobshop scheduling problems (Pinedo,
1995) or in the case of Oechsner and Rose (2005)). However, in single machine early/
tardy jobshop scheduling problems (Valente and Alves, 2005a,c), for instance, there
are (timing) restrictions on scheduling jobs. But the violation of these restrictions is
usually allowed while penalties are put on them, hence not excluding violations from
the search space. These restrictions, in their most general form, can either be hard,
meaning that they have to be necessarily met, or soft, that is the violation of these
requirements will result in a penalty, but is still allowed. Soft restrictions can simply
be modelled by adding extra costs on prohibited actions. We contend that hard restric-
tions should be specified in the model, because allowing unwanted executions leads to
a search space larger than necessary. This, however, requires an expressive specifica-
tion language, which seems not readily available, e.g., for Valente and Alves (2005a,c),
where restrictions are applied on the model after generation. In µCRL, conditions on
data and timing restrictions can be specified in a straightforward manner.

The flexible variants of beam search presented in this chapter are remotely similar
to beam search with variable width, as described by Valente and Alves (2005a). They
completely leave out a predefined beam width and introduce deviation parameters so
that, broadly speaking, the algorithm calculates how far the evaluation of a node may
be from the optimal evaluation value of that level to still be selected for exploration.
In comparison, Valente and Alves take away some influence of the evaluation function,
to be able to consider more possibilities when searching a tree, whereas we give more
influence to the evaluation function and do not allow any other criteria to affect the
selection, in order to reestablish the importance of the evaluation function after we
moved the searches to the state space setting. There are significant implementation
differences between flexible beam search and beam search with variable width of Va-
lente and Alves (2005a). In detailed beam search with variable width, at each level,
the largest total-cost value of the states of the level must be known before selection can
proceed. This completely disables the second optimisation mentioned in Section 8.3.3.
Furthermore, in priority beam search with variable width, the priority threshold has
to be separately computed for each node, which can be computationally expensive.

Groce and Visser (2004) use a number of search algorithms to generate state spaces,
one of which called beam search. Their beam search, however, deviates from our us-
age, in that they let f (s) = h(s), making it practically a linear space greedy search; it
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is, nevertheless, according to the original notion, a beam search. Furthermore, they
include duplicate detection, but do not consider other extensions in order to deal more
efficiently with arbitrary state spaces, such as a flexible beam width.

Beam search is extended to a complete search by Zhou and Hansen (2005), by using
a new data structure, called a beam stack. With this, it is possible to achieve a range of
searches, from depth-first search (β = 1) to breadth-first search (β = ∞). Considering
our extensions for arbitrary state spaces, it would be interesting to try to combine these
two approaches. Edelkamp and Jabbar (2007) apply a search width k on breadth-first
BnB search for priced timed automata. The resulting algorithm is made complete by
using iterative broadening. There, k expresses the percentage of states that should be
explored per level of the state space; they also allow the selection of more than k%,
which is comparable to our flexible beam width. The usage of a heuristic function is
not considered; instead, selection is done based on cumulated costs.

Our work is also related to the body of research on DMC, where, to find a counter-
example to a functional property (usually belonging to LTL) with a minimal exploration
of the state space, heuristics (based on the property) are used to guide the search. Us-
ing A∗ (Edelkamp et al., 2004) and genetic algorithms (Godefroid and Khurshid, 2002)
to guide the search are among notable works in this field. Connections to other heuris-
tic search algorithms are discussed in Section 8.7. In contrast to DMC, we generate
a partial state space in which an arbitrary property can be checked afterwards (the
result would of course not be exact, hence being useful mainly in quantitative anal-
yses where a near-optimal solution for a problem often suffices). In this sense, these
approaches are different in spirit, addressing rather different problems (i.e. checking
qualitative vs. quantitative properties) from different angles (directing the search vs.
searching an approximation to the state space). Nonetheless, there are strong similar-
ities as well: A∗ can be seen as an instantiation of our extensions of beam search (see
lemma 6), and the approach of Godefroid and Khurshid (2002) is similar to ours, as it
is in general not guaranteed to explore the whole state space.

8.9 Conclusions
In this chapter, we extended and made available an existing search technique to be
used for quantitative analysis within a setting used for system verification. By doing
so, we contribute to attempts to achieve a general framework in which different types
of analysis, such as functional verification and scheduling, can be performed on a single
system specification. Moving beam search to the field of state spaces, we experienced
that the algorithm needed to be extended in order to counter a decrease of influence
of the heuristic function used. Beam search with a flexible beam width can cope with
encountering more than β sufficiently promising states. Using the algorithm for gen-
erating state spaces also introduces the well-known issue of re-opening states in DMC.
G-synchronised beam search is another introduced extension of beam search, of which
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the instance g-synchronised beam search, in cases where the g-function is monotonic,
avoids re-opening states, by using a two-phase approach; in the first phase, states are
ordered based on the cost needed to reach them from I . In the second phase, the states
are considered in this order and an estimation function is applied to prune relatively
unpromising states. The extensions of beam search give rise to a beam search spec-
trum. We introduced a way to compare the guiding behaviour of different best-first
searches, and presented some example comparisons, relating uniform-cost search and
A∗ to our spectrum. Our experiments in Chapter 10 show the usefulness and flexibility
of the extensions presented in this chapter.
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Chapter 9

Distributed Searching

Not everything that counts can be
counted, and not everything that can be
counted counts.

(Albert Einstein)

9.1 Introduction

I
N THIS PART OF THE THESIS, we started with an overview on the different
types of searches applicable on state spaces. We saw techniques to limit
the search to ‘interesting’ parts, depending on the problem to solve and/or
the property to check. Some of these techniques can limit a search, such

that it remains complete, i.e. its result is guaranteed to be correct (such a technique is
used in e.g. depth-first BnB search); other, often more aggressive, limiting techniques
do not preserve cost-optimality, making the search a near-optimal one (e.g. pruning as
in beam search).

Focussing on beam search, it proves to be very fruitful for finding near-optimal sched-
ules for a given scheduling problem, as examples show in Chapter 10. Sometimes
finding a solution may, however, still take quite a lot of time, mostly due to the extra
computation needed to evaluate states. Besides that, in specifications of scheduling
problems, often complex data structures are used, making the computational complex-
ity to calculate the successor states of a given state s higher. One can improve on these
points by moving the beam search techniques to a distributed setting. In this chap-
ter, we first introduce distributed minimal-cost search, building on both minimal-cost
search from Algorithm 18 and distributed breadth-first state space generation from
Algorithms 4 and 5. Next, we propose distributed versions of the beam search vari-
ants of Chapter 8, focussing on detailed beam search, since due to its global view when
pruning, it is not obvious how a distributed algorithm should function.
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9.2 Distributed Minimal-cost Search
In Section 7.3.4, we presented a (sequential) search algorithm to find minimal-cost
traces, as defined in Definition 19, called minimal-cost search (or g-synchronised search,
according to the terminology of Chapter 8). This search is applicable on state spaces
which contain an action-based encoding of costs using the special tick transition label.
As is the case in general with state space search algorithms, in practice, the capabil-
ities of the search are limited by the available memory and computing power of the
machine performing the search. These limitations can be stretched by moving to a dis-
tributed setting, i.e. running the search on a cluster of machines. Therefore, we would
like to extend minimal-cost search to a version applicable in such a context.

Distributed minimal-cost search maps very well to general distributed breadth-first
state space generation from Algorithms 4 and 5, as minimal-cost search is based on
breadth-first search. Algorithm 23 describes what happens at the client side. For a
precise explanation of the mechanism, we introduce the notion of cost region in Defini-
tion 27.

Definition 27 (Cost region). Given a state space M , we say that two states s, s′ ∈ S

are in the same cost region iff d(I , {s}) = d(I , {s′}).

Each client ID keeps track of a number of sets. These are:

• W ID: Contains the states which have to be expanded once the system has moved
to a new cost region. For every state s ∈ W ID, there exists a state s′, already
processed by some client in the cluster, such that s′ tick−→ s. Expanding the states
in W ID will only commence once no other states in the current cost region can be
expanded (signalled by the manager using the nextcostregion command).

• Ŵ ID: Contains newly found states which have to be expanded in the next cost
region (as in W ID).

• E ID: Contains all states representing successful termination found by client ID.

A state s is an element of E iff there exists a state s′ such that s′ finished−→ s.

• L ID
i : Here, all states are received from all the clients in the cluster to be ex-

panded next by client ID, in the current cost region.

• L ID
i+1: Right after exploration of the states in L ID

i , L ID
i+1 contains all the states

encountered by client ID which can be expanded in the current cost region.

Now, during the generation, a client can receive the following commands from the
manager:

• continue: In the next round, expand all received states which are situated in
the current cost region (i.e. are received in L ID

i ).
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• nextcostregion: In the next round, expand all received states which are situ-
ated in the next cost region (i.e. are received in W ID).

• finish: Stop the search algorithm.

When the client receives a command from the manager other than finish, it re-
ceives new states to expand from all clients in the cluster. Possibly it has to move to
the next cost region, indicated by the nextcostregion command. As long as there
are states to expand and no successful termination state is found, the client expands
states and places the successors in the appropriate sets. Once finished with expand-
ing, the obtained states are distributed, using the hash function # : S → {1, . . . , n} and
the functions SendToClientsNextLevelAndWaiting(), RecvFromClientsNextLevel(), and
RecvFromClientsWaiting(). The function SendToMgrGoalStates() is invoked to send
any encountered goal states to the manager. Every client also needs to report in each
round whether it has some states waiting to be expanded in the next cost region, which
is done via the function SendToMgrHaveStatesWaiting(). This tells the manager that
even if in a round no new states are encountered, at least the search can continue into
the next cost region.

Algorithm 24 shows how the manager behaves during a search. It keeps track of the
successful termination states found, whether new states have been found, and whether
there are states available for the next cost region. If there are no successful termina-
tion states found, but there are new states available, then the clients can move to the
next level. If there are no successful termination states and no new states found, but
there are states available for the next cost region, then all the clients should move to
the next cost region. If successful termination states have been found, or there are no
states available anymore, the search has to finish. Finally, if appropriate, the man-
ager will return a minimal-cost path from I to E . In order to produce this, the func-
tion GeneratePath incorporates additional communication with the clients in order to
gather the appropriate path information; the clients provide this information through
the AnswerTransitionRequestsFromMgr() function.

9.3 Distributed Detailed Beam Search
Because of the global view of total cost evaluation functions, designing a distributed
version of detailed beam search, presented earlier in Chapter 8, is non-trivial. Clients
should not select states for further exploration in isolation of each other, but have to
communicate.

Let us have a manager and n clients to do a distributed detailed beam search. As
described in Chapter 2, we have a hash function # : S →N, which is used to distribute
generated states over the clients for future exploration. Let the state space consist of
levels L0, L1, etc. As detailed beam search is done in a breadth-first manner, each
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Algorithm 23 Distributed minimal-cost search - Client Instantiator
Require: M = (S ,A ,T ,I ), client number ID, set of client numbers CIDs, hash func-

tion # : S → CIDs
i ← 0
L ID

i , E ID, W ID, Ŵ ID ← ;
for all s ∈ I do

if #(s) = ID then
L ID

i ← L ID
i ∪ {s}

end if
end for
repeat

L ID
i+1 ← ;

for all s ∈ L ID
i do

for all s `−→ s′ ∈ enM (s) do
if ` = finished then

E ID ← E ID ∪ {s′}
else if ` = tick then

Ŵ ID ← Ŵ ID ∪ {s′}
else

L ID
i+1 ← L ID

i+1 ∪ {s′}
end if

end for
end for
SendToMgrGoalStates(E ID)
SendToMgrNewStatesFound(| L ID

i+1 |> 0)
SendToMgrHaveStatesWaiting(| Ŵ ID ∪ W ID |> 0)
i ← i + 1
command ← RecvFromMgr()
if command 6= finish then

SendToClientsNextLevelAndWaiting(L ID
i , Ŵ ID)

L ID
i ← RecvFromClientsNextLevel()

W ID ← W ID ∪ RecvFromClientsWaiting()
if command = nextcostregion then

L ID
i ← W ID

W ID ← ;
end if
L ID

i ← L ID
i \

⋃i−1
j=0 L ID

j
end if

until command = finish
AnswerTransitionRequestsFromMgr()
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Algorithm 24 Distributed minimal-cost search - Manager Instantiator
Require: Set of client numbers CIDs
Ensure: If exists, a minimal-cost trace to a goal state is returned

E ← ;
repeat

nextlevel, havewaiting ← false
for all ID ∈ CIDs do

E ← E ∪ RecvFromClientGoalStates(ID)
nextlevel ← nextlevel ∨ RecvFromClientNewStatesFound(ID)
havewaiting ← havewaiting ∨ RecvFromClientHaveStatesWaiting(ID)

end for
if E = ; and nextlevel then

SendToClients(continue)
else if E = ; and havewaiting then

SendToClients(nextcostregion)
end if

until E 6= ; or (¬nextlevel and ¬havewaiting)
SendToClients(finish)
if E 6= ; then

return GeneratePath(E )
else

return false
end if
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level of states Li gets distributed over the n clients before exploration, leading to the
subsets L 1

i ,. . .,L n
i , such that L 1

i ∪ . . .∪L n
i =Li for all levels i, where L

j
i is the subset

of Li designated to client j by the hash function.

→ f

↓
Clients

Figure 9.1: Distributing, partitioning, and selecting states

Now, we define function p f : 2S → 22S
, which is used at each level i by each client

j. For practical reasons, we assume that k is an upper limit of f . Now, p f distributes
the states from a set L

j
i over k equivalence classes [σ j

0], . . . , [σ j
k−1], such that ∀u ∈

{0, 1, . . . , k − 1}.∀s ∈ [σ j
u]. f (s) = u.

We refer to a selection of γ states from a set L
j
i using evaluation function f as

sel f
γ(L j

i )= [σ j
0]∪ . . .∪ [σ j

r]∪ [σ′], with r ∈N and r < k−1, such that | [σ j
0]∪ . . .∪ [σ j

r] |< γ,
[σ′] ⊆ [σ j

r+1] and | [σ j
0] ∪ . . . ∪ [σ j

r] ∪ [σ′] |= γ. In practice, [σ′] ⊆ [σ j
r+1] is composed

according to a so-called tie-breaking rule. In the remainder of this chapter, we denote
sel f

γ as selγ.
The goal to achieve now for the protocol is the following:

∀i.selγi,1 (L 1
i ) ∪ . . . ∪ selγi,n (L n

i ) = selβ(Li) (9.1)

Here, β is the beam width and γi,1, . . . , γi,n ∈ N, such that γi,1 + . . . + γi,n = β. If
we could assume that γi,1 = . . . = γi,n, then there would be no problem moving the
sequential beam search algorithm to a distributed setting. Then, however, besides
assuming that the states of each level are evenly distributed over the clients, we also
have to assume that the β most promising states of a level are evenly distributed.
This we cannot guarantee in general. Instead, we need to move to a more general
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situation where the γi, j ’s are unequal to each other. In order to achieve this, extra
communication is necessary.

Being in level i, let every client j first determine selβ(L j
i ), this to be prepared for the

worst case scenario where all β most promising states end up at a single client.1 This
is illustrated in the top part of Figure 9.1, where each row in the diagram represents
a client, and each column represents an equivalence class. Having constructed the
equivalence classes, selβ(L j

i ) is determined, which, in Figure 9.1, is highlighted in
grey for each client. Once this is done, the clients send a set of tuples, each consisting
of an evaluation value and the number of states in selβ(L j

i ) that have this evaluation
value to the manager. Formally, the following is sent by each client j, being in level i
of the state space:

E j
i = {(r, | [σ j

r] ∩ selβ(L j
i ) |) | 0 ≤ r ≤ k − 1∧ | [σ j

r] ∩ selβ(L j
i ) |6= 0} (9.2)

All the sets E j
i sent by the clients are used by the manager to determine a final

selection of β states. This is illustrated in the bottom part of Figure 9.1. First, E i is
created as E i = {( j, e, t) | (e, t) ∈ E j

i }, where j is the client ID, and e and t correspond to
the first and second element in the tuples calculated in Equation 9.2. Similar to p f , we

define a function pe : 2N
3 → 22N

3
, which allows us to distribute the elements of the set

E i over k equivalence classes [e0], . . . , [ek−1], such that ∀u ∈ {0, 1, . . . , k − 1}.∀( j, e, t) ∈
[eu].e = u.

For selecting the β best states, we define a function T j : 2N
3 → N, which returns

the number of states of client j represented in the given evaluation set E i; more
specifically, T j(E i) = ∑

( j,e,t)∈E′ t, with E′ = {( j′, e′, t′) ∈ E i | j′ = j}. We define T :
2N

3 → N as the total number of states represented in the given evaluation set E i,
so T(E i) = ∑n

j=1 T j(E i). We refer to a selection of β triples from E i as evselβ(E i) =
[e0] ∪ . . . ∪ [er] ∪ [e′], with r ∈ N and r < k − 1, such that T([e0]) + . . . + T([er]) < β,
[e′] = evsubselβ−(T([e0])+...+T([er]))([er+1]). Here, evsubselβ′ ([eu]) = {( j0, e0, t0)} ∪ . . . ∪
{( jw−1, ew−1, tw−1)} ∪ {( jw, ew, t′w)}, where ( j0, e0, t0), . . . , ( jw, ew, tw) ∈ [eu], t′w ≤ tw and
t0 + . . . + tw−1 + t′w = β′. In practice, [e′] is composed according to a tie-breaking rule.

Each client j receives a width γi, j, constructed by the manager according to Equa-
tion 9.3, which the client uses to obtain selγi, j (L

j
i ). Since selγi, j (L

j
i ) ⊆ selβ(L j

i ), this
set can be constructed from memory. As it turns out. for this approach only one extra
communication round is necessary.

γi, j = T j(evselβ(E i)) (9.3)

One advantage of detailed beam search, as described by Algorithm 20, is that if a

1At this point, it is possible to remove all states not in selβ(L j
i ) from memory.
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level contains up to β states, for all states s in the level, h(s), which can be computa-
tionally expensive, does not have to be calculated. To achieve this in the distributed
version, the manager gets from every client the number of newly generated states. The
sum of these numbers equals the complete size of the next level. If it sends this number
together with the next continue command, the clients know whether or not to prune
(see Algorithms 25 and 26).

In general, distributed state space generation algorithms benefit from symmetry. If
all clients have to do a similar amount of work, then little to no idle time occurs in
any of the clients and therefore no processing power is wasted. However, if we al-
low unequal γi, js, then the workload of the clients can be very unequal at times. It
makes no sense to have clients idle, while they could very well expand states. Ex-
ploring more states than originally asked for can in practice, where the accuracy of
the evaluation function and the minimally necessary beam width are in general not
known, only be seen as an improvement in accuracy.2 For this reason we decided to
create a variant where the manager does not provide every client j with γi, j, but a
single γi = max{γi,1, γi,2, . . . , γi,n} is provided to all clients. In this way every client
expands the same number of states3, and we know that the β most promising states
are selected. One could argue that another approach is to redistribute the β selected
states over the clients, in order to balance the workload. However, then we go against
the distribution of the hash function, which means that clients will no longer be able
to perform duplicate detection, leading possibly to redundant work.

Algorithms 25 and 26 show what the clients and the manager do in a distributed
detailed beam search, respectively. The selection procedure of the manager to obtain
the γi, j ’s, described formally by Equation 9.3, is done in calcLimit(). Matching send
and receive functions can be identified by their names. Note that duplicate detection is
now performed by each client after having received the new set of states to be expanded.
This works thanks to the # function, which ensures that a state s is always assigned to
the same client j. During the generation, a client can receive the following commands
from the manager:

• continue: For the next round, receive new states in Li and expand them.

• finish: Stop the search algorithm.

9.4 Other Beam Search Variants
In Chapter 8, besides detailed beam search, some other variants have been introduced.
Priority beam search is performed using a priority evaluation function prio : A → Z,
2There are results where a bigger beam width does not correspond to a greater accuracy, such as in Oechsner

and Rose (2005) and in Chapter 10. However, this phenomenon mainly occurs when using relatively small
beam widths (compared to the size of the state space), and can therefore be ignored for bigger cases.

3The exception to this is when a client has fewer states available than it is told to expand.
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which assigns priorities to transitions. A fixed number of outgoing transitions is se-
lected per state, meaning that pruning is performed on a state by state basis. This
makes an adaptation to a distributed setting straightforward. Since each selection
does not consider the outgoing transitions of other states, extra communication with
other clients for the pruning phase is not needed. We can take the standard distributed
breadth-first state space generation algorithms (Algorithms 4 and 5), and insert an
evaluation and selection step at the point where a state is expanded.

Minimal-cost search can be combined with beam search, resulting in g-synchronised
beam search, which is presented in Chapter 8 as an instance of G-synchronised beam
search, where G can be any reasonable guiding function. Compared to regular beam
search, now only states with equal g-values are considered at the same time and states
are selected purely on their h-value. This variant not only allows finding minimal-cost
solutions within the beam before any other solutions. If one uses additional actions
to model costs, it also removes the necessity to store the g-value of every state, since
revisiting a state necessarily means having found a less efficient trace compared with
a previous trace to the state. Although not worked out explicitly in this chapter, one
can imagine combining the techniques of distributed minimal-cost search from Algo-
rithms 23 and 24 with distributed detailed beam search from Algorithms 25 and 26,
resulting in a g-synchronised detailed beam search with action-based encoding of costs.

Finally, two other variants are flexible priority beam search and flexible detailed
beam search, also introduced in Chapter 8. Flexible priority beam search behaves as
regular priority beam search, but at each state it also selects any transition which
has the same priority as the least competent member of the usually selected set. This
search can be implemented in a distributed setting, since the local view characteristic
is not lost. Similarly, in flexible detailed beam search we achieve at each level clo-
sure on the worst evaluation value still selected. Distributed detailed beam search,
as presented by Algorithms 25 and 26, can be made flexible by redefining some func-
tions. First, we say that function selγ(L j

i ) selects at least γ states, where selγ(L j
i ) =

[σ j
0] ∪ . . . ∪ [σ j

r] ∪ [σ j
r+1], with r ∈ N and r < k − 1, such that | [σ j

0] ∪ . . . ∪ [σ j
r] |< γ and

| [σ j
0]∪ . . .∪ [σ j

r]∪ [σ j
r+1] |≥ γ. Likewise, we redefine evselβ(E i) = [e0]∪ . . .∪ [er]∪ [er+1],

with r ∈N and r < k−1, such that T([e0])+ . . .+T([er])<β and T([e0])+ . . .+T([er+1])≥
β.

9.5 Related Work

Distributed state space generation has appeared in various forms and in various set-
tings, we will just mention a few here. An early approach, not limited to any specific
input language, was proposed by Ciardo et al. (1998). Dill (1996) presents a distributed
generation algorithm for the MURφ verifier. Based on this technique, a distributed
UPPAAL has been developed by Behrmann et al. (2000). An implementation of a dis-
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Algorithm 25 Distributed detailed beam search - Client Instantiator
Require: M = (S ,A ,C ,T ,I ), heuristic function h : S →K, beam width β, set of goal

states G , client number ID, set of client numbers CIDs, hash function # : S → CIDs
levelsize ←| I |
i ← 0
L ID

i ← ;
for all s ∈ I do

if #(s) = ID then
L ID

i ← L ID
i ∪ {〈s, 0〉}

end if
end for
repeat

L ID
i+1 ← ;

if levelsize > β then
while | L ID

i |> β do
L ID

i ← L ID
i \ {〈s, s.g〉 ∈ L ID

i | s = getf max(L ID
i )}

end while
SendToMgrEvalInfo(EID

i ), with EID
i as Equation 9.2, selβ(L j

i ) = L ID
i

γi,ID ← RecvFromMgrLimit()
while | L ID

i |> γi,ID do
L ID

i ← L ID
i \ {〈s, s.g〉 ∈ L ID

i | s = getf max(L ID
i )}

end while
end if
SendToMgrGoalStates({s | 〈s, s.g〉 ∈ L ID

i } ∩ G )
for all s ∈ L ID

i do
L ID

i+1 ← L ID
i+1 ∪ nxtM (s, enM (s))

end for
SendToMgrSizeNextLevel(| {〈s, s.g〉 ∈ L ID

i+1 | ¬∃g′ < s.g ∈K.〈s, g′〉 ∈ L ID
i+1} |)

i := i + 1
(command, levelsize) ← RecvFromMgr()
if command 6= finish then

SendToClientsNextLevel({〈s, s.h〉 ∈ L ID
i | ¬∃g′ < s.g ∈K.〈s, g′〉 ∈ L ID

i })
L ID

i ← RecvFromClientsNextLevel()
L ID

i ← {〈s, s.g〉 ∈ L ID
i | ¬∃g′ ≤ s.g ∈K.〈s, g′〉 ∈ ⋃i−1

j=0 L ID
j ∧¬∃g′ < s.g ∈K.〈s, g′〉 ∈

L ID
i }

end if
until command = finish
AnswerTransitionRequestsFromMgr()
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Algorithm 26 Distributed detailed beam search - Manager Instantiator
Require: M = (S , A , C , T , I ), beam width β, set of client numbers CIDs
Ensure: If found, a trace to a goal state is returned

levelsize ←| I |
E ← ;
repeat

if levelsize > β then
SendToClientsLimit(calcLimit(RecvFromClientsEvalInfo())), see Equation 9.3

end if
levelsize ← 0
for all ID ∈ CIDs do

E ← E ∪ RecvFromClientGoalStates(ID)
end for
for all ID ∈ CIDs do

levelsize ← levelsize + RecvFromClientSizeNextLevel(ID)
end for
if E 6= ; or levelsize = 0 then

SendToClients(finish, 0)
else

SendToClients(continue, levelsize)
end if

until E 6= ; or levelsize = 0
if E 6= ; then

return GeneratePath(E )
else

return true
end if
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tributed state space exploration algorithm based on the SPIN model checker exists,
described by Lerda and Sista (1999). Garavel et al. (2001) present a method to gener-
ate state spaces in a distributed way by means of the CADP model checker. All these
approaches, however, focus on exhaustive state space generation, and not on heuristi-
cally pruning parts of the state space on-the-fly in order to solve a particular kind of
problem. Jabbar and Edelkamp (2006) developed a distributed, external version of A∗,
thereby combining the fields of distributed, directed and external model checking.

Attempts to create a distributed beam search can be found outside of model check-
ing (Bisiani, 1992). In those settings, one usually works with search trees which have a
much smaller average branching factor (the number of outgoing transitions per state)
compared to an average state space. Because of this, Bisiani (1992) concludes that
small beam widths, usually not bigger than 10, suffice, making a distributed beam
search counter-productive due to the communication overhead (a similar result can be
found in Section 10.4). In model checking, however, we wish to deal with arbitrary
state spaces, where the average branching factor can be much greater, thereby, for
bigger instances, making a distributed beam search effective.

9.6 Conclusions
We presented distributed versions of minimal-cost search and detailed beam search.
Due to the global view of detailed beam search, designing distributed detailed beam
search was non-trivial. Furthermore, we described how the other beam search variants
presented in Chapter 8 can be transformed to work in a distributed setting. In the next
chapter, the results are reported of a number of experiments with both distributed
minimal-cost search and distributed (flexible) detailed beam search.
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Chapter 10

Search Experiments in Weighted
State Spaces

The answer to the ultimate question of
Life, the Universe, and Everything is...
42.

(Deep Thought)

10.1 Introduction

S
EVERAL SEARCH TECHNIQUES have been described in Chapters 7, 8, and
9, to deal with scheduling problems using model checkers. In the first sec-
tion of this chapter, we look at a very basic scheduling problem, which has
been used already several times in the literature to demonstrate schedul-

ing techniques. We limit ourselves there to demonstrating how to specify the problem
and report a minimal-cost solution obtained using minimal-cost search. In the next two
sections of this chapter, we present a number of relatively small problems, which nev-
ertheless nicely represent the class of problems these searches are meant to be applied
to. In particular, these problems produce state spaces with interesting structures: they
contain cycles, deadlocks (meaning unsuccessful terminations of attempts to solve the
problem), and confluence of traces (i.e. there are states with multiple incoming tran-
sitions). Therefore, these problems show the effectiveness of our techniques to some
extent. We describe the problems, and report experimental results, which were ob-
tained by using the µCRL toolset version 2.17.13 (and, in one case, also SPIN version
4.2.7). The results are analysed, and conclusions are drawn.

It should be stressed that the main targets for the search techniques are industrial
case studies. Therefore, in Section 10.5, we present an industrial case study of a Clin-
ical Chemical Analyser in detail. For that case, we applied a whole range of searches
described in the previous chapters, using the µCRL toolset, to solve problem instances
of the general scheduling problem of this machine. From these results, we can draw

211
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conclusions on how to schedule the machine in general.

10.2 A Five Tasks Scheduling Problem
In order to facilitate comparison, we will look at the small static scheduling problem
originally presented by Niebert et al. (2000), later adapted by Behrmann et al. (2001b).
A number of tasks (a1, a2, c, b1, and b2) need to be performed in a specific order. All
tasks need to be performed precisely once, except task c, which can be performed zero
or more times. The order is as follows: After task a1, one should perform a2, followed
by (zero or more times) c. Then task b1 needs to be executed, finishing with task b2.
The system is free to decide for itself how long it wants to delay after having performed
a task. Tasks themselves are considered here to take no time to execute. There are
three timing constraints however:

1. The time between execution of a1 and execution of b1 should be at least 2 time
units;

2. The time between execution of a2 or the last execution of c and execution of b1
should be no more than 1 time unit;

3. The time between execution of a2 and execution of b2 should be at least 3 time
units.

We created a µCRL specification M = (D, F, A, C, P, I) with N,T ∈ D, + : T × T →
T,+ : N ×N → N ∈ F, a1, a2, c, b1, b2, tick, finished ∈ A, and C = ;. Furthermore, P

constitutes of a single process S, presented in Figure 10.1. We use three counters, x, y
and z, to ensure timing constraints 1, 2 and 3, respectively. The parameter n is used to
encode which actions are enabled when. All parameters initially have the value 0, in
other words, I = S(0, 0, 0, 0). Originally, Niebert et al. (2000) presented this problem as
a timed automaton. To facilitate comparison, Figure 10.2 displays the problem in this
manner.

Using the µCRL toolset, we can search for a minimal-cost (in this case, minimal-
time) trace using minimal-cost search in the resulting state space M . This delivers the
following trace, where I = {s0}, which takes three time units to execute: s0

a1−→ s1
a2−→

s2
tick−→ s3

c−→ s4
tick−→ s5

b1−→ s6
tick−→ s7

b2−→ s8
finished−→ s9. It took the state space generator

less than three seconds to generate the necessary part of the state space and present a
minimal-time trace.

The result is a different one from the one given by Behrmann et al. (2001b), but the
execution times of the traces are the same. The only difference is due to the freedom
to delay after a task is done. Because of this, there are several minimal-time traces
present in the state space.
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10.3 Cannibals and Missionaries

S(x : T, y : T, z : T, n :N) =
a1·S(x, y, z, n + 1) / n = 0. δ+
tick·S(x + 1, y, z, n)/ n = 1 . δ+
a2·S(x, y, z, n + 1) / n = 1. δ+
tick·S(x + 1, y + 1, z + 1, n) / n = 2 . δ+
c·S(x, 0, z, n) / n = 2. δ+
b1·S(x, y, z, n + 1) / n = 2 ∧ x ≥ 2 ∧ y ≤ 1. δ+
tick·S(x, y, z + 1, n)/ n = 3 . δ+
b2·S(x, y, z, n + 1) / n = 3 ∧ z ≥ 3 . δ+
tick·S(x, y, z, n)/ n = 4 . δ+
finished·X / n = 4 . δ

Figure 10.1: A µCRL process describing a five tasks scheduling problem

x ≥ 2
y ≤ 1

a1

x := 0

a2

y := 0
z := 0

c

y := 0

b1 b2

z ≥ 3

Figure 10.2: A timed automaton describing a five tasks scheduling problem

10.3 Cannibals and Missionaries

In this section, we report our experimental results on solving the Cannibals and Mis-
sionaries (CM) problem (see, e.g., Lim (1992)), which belongs to the class of river cross-
ing problems (Dudeney, 1958). We use a number of µCRL implementations of searches
and a SPIN implementation of the depth-first branch-and-bound algorithm to solve this
problem. First, we describe the problem. After that, we list the search techniques used
and discuss the results, shown in Table 10.1.

10.3.1 Description of the Problem

In the Cannibals and Missionaries problem, C missionaries and C cannibals stand on
the left bank of a river that they wish to cross, with C ∈ N. There is a boat available

213
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which can ferry up to B people across (B ∈ N). The goal is to find a schedule for fer-
rying all the cannibals and all the missionaries safely across, i.e. the cannibals never
outnumber the missionaries, on a shore or in the boat. The boat can only move if it
contains at least one person. On top of that we associate costs with moving the boat (1
time unit per passenger), and desire to find a minimal-cost path towards the goal.

10.3.2 Results

Table 10.1 provides all the obtained results. The experiments have been performed on
a single machine with a 64 bit Athlon 2.2 GHz CPU and 1 GB RAM, running SUSE

Linux 9.2, using both the µCRL toolset version 2.17.13 and SPIN version 4.2.7. Ap-
pendix B provides the specifications and the commands used to invoke the searches.

In µCRL, we first applied the minimal-cost search, denoted MCS in Table 10.1. As a
reminder, MCS is an exhaustive search method, where the states in the state space are
ordered based on the cost needed to reach them from the initial state. This search was
used to find the minimum number of time units needed to solve the problem (shown
in the Result column). The execution times of the searches are displayed in the corre-
sponding Time column in the format ‘minutes:seconds’.

For comparison reasons, we also performed experiments with SPIN. In those cases,
we followed the technique of Ruys (2003), a prominent technique to use heuristics
within SPIN. The idea is that the LTL formula that is checked is modified during
verification to reflect the best solution found so far. This can effectively implement a
BnB mechanism in SPIN, denoted DFS BnB Prop in Table 10.1. This algorithm can
avoid exhaustive searches, but nevertheless is complete, as is the minimal-cost search
used for µCRL. In these experiments, the LTL property is 3(q ≥ U) (with 3 the even-
tuality operator), where q denotes the total cost of a trace and U denotes an upper
bound on this cost, provided by the user. In the standard depth-first search, U is fixed
during the search, while in the BnB search C-code in the specification updates U to the
best (smallest) total cost found so far in the search. The search through a trace stops
only when either the property does not hold or a deadlock state is found. In the latter
case, we have slightly adjusted the technique of Ruys (2003) to deal with unsuccessful
terminations: U is updated only on successful terminations. Since µCRL and SPIN

seem to count states in different ways, we remark that the numbers of states of the
experiments using different tools cannot fairly be compared.

A problem in setting up the SPIN experiments is choosing U . Apparently a very high
U has a negative effect on the search performance. Choosing it too high can happen
easily. Here we always chose U fairly close to the final result, but not so close, that
updating it for every case was necessary. For the cases up and including (50, 20), we
took U = 200, after that switching to U = 300. The (300, 10) case with U = 1000 was
the last case we could actually study, i.e. SPIN could not deal with bigger cases. As
the experiments showed that choosing U has a big effect on the efficiency of the SPIN
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10.3 Cannibals and Missionaries

searches, one approach can be to use the result of a beam search as the initial value of
U . Further integration of these techniques remains to be investigated.

Contrary to the results of Ruys (2003), here the depth-first BnB search technique
does not prune much, compared to standard depth-first search. This can be due to
the differences in the nature of the problems that are studied. We believe that in this
experiment there are many more possible schedules with very long traces, in compar-
ison to the Travelling Salesman Problem, analysed by Ruys (2003). The fact that the
first successful termination in general was found quite late in the search, means that
pruning could only be started at a fairly late stage. Before that stage, of course, depth-
first BnB search searched exactly the same amount of states as depth-first search. It
remains to be investigated, whether compression techniques or approximation tech-
niques such as bit-state hashing have a positive effect on the search capabilities in this
specific case.

As a final step, we used g-synchronised flexible detailed beam search (g-SFDBS),
which is a combination of the techniques proposed in Chapter 8, with h(s) = C(s) +
M(s)+ (〈C(s) 6= M(s)〉 × (2×C)) as the heuristic part of the search, where C(s) and M(s)
are the numbers of cannibals and missionaries on the left bank in state s, respectively,
C is the total number of cannibals (or missionaries) in the problem, and 〈C(s) 6= M(s)〉
equals 1 if C(s) 6= M(s), and 0 otherwise. The intuition behind this heuristic is that,
first, we want to minimise C(s) and M(s), hence the first part of the function. Second,
we support having an equal number of cannibals and missionaries on the left bank as
an easy way to avoid deadlock states where C(s)> M(s), hence putting an extra penalty
on such states.

Our experiments showed that in practice there are so many unsuccessful termina-
tion states in the specification that some deadlock avoidance in the heuristic function
is needed. Without it, we often experienced unsuccessful searches in which the entire
beam got trapped in deadlocks. With deadlock avoidance, flexible beam search proved
to be applicable using a fairly stable beam width of 20, partially showing the suitability
of the heuristics used. In Table 10.1, the T column under g-SFDBS shows the mini-
mum number of time units needed to solve the problem approximated by this search.
The results show an example of what can be achieved when near-optimal solutions are
acceptable, i.e. when we give up completeness.

Let us take a closer look at a particular problem instance, using the 3D interactive
state space visualisation tool LTSVIEW (see bibliography). Figure 10.3 shows us, on
the left side, the complete state space of the (50,10) instance of the Cannibals and
Missionaries problem, in other words, the case where there are 50 missionaries and
50 cannibals, and the boat can contain up to 10 people. The initial state is at the top
of this structure. As it turns out, there is exactly one state representing successful
termination, therefore all possible successful traces end up in this state. The state
is situated in the small cone near the bottom of the image, in the center of the black
circle. When we search the state space with minimal-cost search, which is situated on
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the right of the figure, we observe that everything needs to be searched, except for the
part at the bottom, which is at a greater depth than the cone containing the goal state.

Figure 10.3: Breadth-first and minimal-cost search of the (50,10) CM problem

Figure 10.4: g-Synchronised detailed beam search of the (50,10) CM problem: 1. β =
10 without deadlock avoidance; 2. β = 100 without deadlock avoidance;
3. β = 10 with deadlock avoidance

If we consider the same problem instance using beam search, we get the results
shown in Figure 10.4. The importance of including some notion of deadlock avoidance
in the estimation function becomes apparent here. On the left, we see the parts of
the state space, which are searched using a g-synchronised detailed beam search with
β = 10 and h(s) = C(s) + M(s), displayed in dark grey. It is particularly interesting
to note that, using this estimation function, the search quickly gets trapped in the
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10.3 Cannibals and Missionaries

‘deadlock cone’ at the top, i.e. a part of the state space, which only leads to failure. We
can compensate for this behaviour, by increasing the beam width. If we take β=100, we
find the goal state. This case is shown in the middle of the figure. In this case, however,
it should be clear that we are not so successful at pruning. Besides, as it turns out in
practice, the beam width needs to be increased in size considerably when dealing with
increasingly big problem instances. On the right, we can see a g-synchronised detailed
beam search with β = 10 and h(s) = C(s) + M(s) + (〈C(s) 6= M(s)〉 × (2 × C)). Now, with
some form of deadlock avoidance in the estimation function, we are able to find the
goal state with a beam width of 10, and furthermore are able to completely avoid the
deadlock cone.

Our g-SFDBS algorithm should ideally be compared with other heuristic state space
generation tools, such as HSF-SPIN, which is SPIN augmented by Edelkamp et al.
(2001b) with A∗ and greedy best-first search. We, however, leave this as future work.
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10.4 The Zebra Finch Problem

10.4 The Zebra Finch Problem
Next, we look at some experimental results of attempts to solve instances of what we
call the Zebra Finch problem. We based this problem on a combination of several river
crossing problems, such as five jealous husbands and soldiers and children (Dudeney,
1958). First, we describe the problem, and then we provide the results obtained using
the techniques described in earlier chapters.

10.4.1 Description of the Problem
Zebra Finches, Taeniopygia guttata (Vieillot, 1817), are small birds living in Central
Australia (Zann, 1996). They are found in large colonies of pairs inhabiting open
steppes with scattered bushes and trees. These birds can react aggressively towards
each other, for instance when a jealous male bird tries to keep other male birds away
from his mate. When young birds reach an age where they can live outside the nest,
they are quickly adopted by the group.

Figure 10.5: A pair of Zebra Finches

We consider a group consisting of n pairs and m young, sitting in a tree on an open
steppe. They want to migrate to some bushes up ahead, but they have to travel in
smaller groups, since there are some hawks flying in the distance, which can spot a
group of more than k adult finches. Once a group has reached the bushes, at least one
of the Zebra Finches needs to fly back, in order to signal that a new group can travel.
On top of this there are two other conditions:

1. Considering the jealous nature of the male Zebra Finches, no female finch may
ever be either in the tree, the travelling group or the bushes in the presence of
other male birds, unless her partner is also present.

2. The young in the colony have to be guided by at least one adult finch, so the
travelling group cannot consist of only young finches. In limiting the group size,
two young are equivalent to one adult.
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Finally, some costs are related to the travelling from tree to bushes and back:

• A group consisting of only adults needs 1 time unit to travel the distance, inde-
pendent of the size of the group;

• If the number of young in the group does not exceed the number of adults, the
time needed to travel is 2 time units (each adult needs to take care of at most one
young);

• When, in the group, the number of young exceeds the number of adults, the travel
takes 3 time units, since at least one adult takes care of more than one young.

We specify the problem allowing all possible actions at all times. It demonstrates the
techniques’ ability to deal with arbitrary state spaces; problem instances lead to state
spaces containing both cycles (while forming the group and when birds fly away and
back again), and deadlocks (violations of the ‘jealous male’ condition).

10.4.2 Results
In Table 10.2, we present some results we found for instances of the Zebra Finch prob-
lem. We used minimal-cost search, g-synchronised detailed beam search (g-SDBS),
and its flexible variant (g-SFDBS), where for the last two cases we defined h(s) for
each state s as the number of finches still in the tree, thereby encouraging fast removal
and discouraging the returning of finches. Problem instances are described by provid-
ing n, m and k. For each search, the total execution time of the result found is given
as T. Furthermore, the number of states searched to find the solution is provided and
the time needed to find it is displayed in the format ‘hours:minutes:seconds’. Searches
not performed are marked with hyphens, and when a search is done in a distributed
setting, an asterisk is placed after the number of states. Sequential searches were
performed using a machine with a 64bit Athlon 2.2Ghz processor, 1 GB of memory
and running Suse 9.3, while 16 of these machines together performed the distributed
searches.

The minimal-cost search tells us that as the problem instances get bigger, the state
spaces grow very rapidly. The beam searches on the other hand show a much nicer in-
crease in states from instance to instance. Looking at the (50,50,10) instance though,
we see an unwanted effect in the regular g-synchronised detailed beam search, already
briefly referred to in Section 9.3, namely that increasing β not necessarily means get-
ting a better result. The main cause for this is tie-breaking, i.e. the fact that pruning
is sometimes not being done only based on f , but also on other criteria, simply because
more than β states turn out to be promising enough. Although this mainly has a notice-
able effect in smaller instances, it is undesired and does not occur in its flexible variant.
Because of this, the flexible search provides better insight into the effectiveness of the
estimation function used.
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10.4 The Zebra Finch Problem

Furthermore, it is interesting to note that for smaller instances, the distributed algo-
rithm performs worse than the sequential version, which can be seen in the (50,50,20)
case, where we performed both a sequential and a distributed search. The Li sets
in the state space are all relatively small, making the communication overhead of the
distributed algorithm noticeable. This seems to be directly related to the argument
found in the literature, for instance by Bisiani (1992), against distributed beam search
in a more traditional setting, mentioned in more detail in Section 9.5. Besides that,
note that the result obtained with the distributed search is better than the one of
the sequential search, even though the beam widths are equal. This, again, is due to
tie-breaking, which, in a distributed environment, can happen at multiple places in a
single level, instead of only at one point. In the flexible search, where tie-breaking is
avoided altogether, this behaviour does not appear.

The (100,100,50) and the (100,100,80) case have a big difference in execution time,
while the number of states in the latter case is even smaller. However, although the
number of expanded states is smaller in the (100,100,80) case, the number of encoun-
tered and evaluated states is much greater. This is directly related to the maximum
size of the travelling group k.

Finally, as stated earlier in Section 8.3.4, for the flexible search, overall β is more
stable compared to the non-flexible search. Due to this, in the two biggest cases, the
flexible search is even more efficient than the non-flexible one. The stability of β means
in general that, given some search results, it is easier to determine β for a new flexible
search than for a new non-flexible one.
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10.5 A Clinical Chemical Analyser

10.5.1 Introduction
In this section, we describe and analyse an industrial case study of a Clinical Chemi-
cal Analyser. The Clinical Chemical Analyser (CCA) is used to automatically analyse
patient samples (blood, plasma or urine). TNO Industry, in cooperation with the Eind-
hoven University of Technology (TU/e), has been involved in the redesign of the CCA.
The project charter was originally drawn up by Vital Scientific, a customer of TNO, to
examine the possibility of a 100% throughput increase.

At TU/e, several projects have been devoted to the CCA. First, the basic outline
for the hardware was explored by Vervoort (1999), while, in a parallel project, the
scheduler was developed by Spronk (1999). Then, the hardware for a CCA mock-up
was designed by Hesen (2000). Currently, a new scheduler is being designed by Weber
(2003). The fact that a schedule providing optimal performance of the CCA still has
not been found raised the idea to look at this problem using a modelling language.

The section is set up as follows: First, we give an introduction to the CCA. After
that, we discuss the CCA µCRL specifications we used for the CCA case study, followed
by the results obtained by applying the sequential and distributed implementations of
minimal-cost search to instances of the general scheduling problem of the CCA. Fol-
lowing, we conducted more experiments, applying the implementations of some of the
beam search variants, presented in Chapter 8, on the CCA specifications. Finally, we
compare the experimental results and draw conclusions.

10.5.2 Description of the Problem
What follows is a description of the scaled-down CCA as we used it for the research
described in this section. Note that this is based on the design as given to us by me-
chanical engineers. Improving the design is regarded outside the scope of this work.

Figure 10.6 shows the setup of the CCA; there is a cuvette rotor containing 11 cu-
vettes, which are indexed from 0 to 10 counter-clockwise (this in contrast with both the
CCA mock-up, which has 45 cuvettes, and the real CCA, which has 120 cuvettes). There
are three cranks, which are able to perform actions on these cuvettes: The reagent
crank can add a reagent from the reagent rotor to a cuvette, the sample crank can
add a patient sample from the sample rotor to a cuvette, and the emptying crank can
empty a cuvette. Besides that there is a mixing crank, but it is unimportant for the
scheduling problem, which will become clear later on.

The use of the machine is to process test recipes. Each available patient sample
should be processed according to one of three possible test recipes.

In Table 10.3, the three recipes are depicted. In recipe 1, first a reagent (R1), and
later a sample (S) is added to a cuvette. After that, the cuvette is emptied (E). Recipe 2
is an extension of recipe 1 in the sense that after having added a sample to the cuvette a
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Reagent Rotor (RR)

Reagent Crank (RC)

Sample Crank (SC)

Cuvette Rotor (CR)

Sample Rotor (SR)

Cuvette

Emptying Crank (EC)

Figure 10.6: The scaled-down CCA

Table 10.3: Recipes for the CCA
Description Recipe

1-reagent R1 → ∆t1 → S → ∆t2 → E
2-reagent R1 → ∆t1 → S → ∆t3 → R2 → ∆t4 → E
3-reagent R1 → ∆t1 → S → ∆t5 → R2 → ∆t6 → R3 → ∆t7 → E

second reagent (R2) must be added. Finally, recipe 3 requires even a third reagent (R3)
to be added to the cuvette. This adding of fluids cannot be done at any time however.
The ∆ occurrences in Table 10.3 represent delays of certain lengths (measured in time
units). The values of t1, ..., t7 are limited to the following possibilities: t1 ≥ 15, t2 ≤
105, 3 ≤ t3 ≤ 27, t4 ≤ 105 − t3, 6 ≤ t5 ≤ 21, 9 ≤ t6 ≤ 42, t7 ≤ 105 − t5 − t6.1

The CCA consists of a number of independently working parts (cranks and rotors)
which have to be controlled using a set of low-level actions. In order to avoid problems,
these actions are used as the building blocks for higher level instructions, so-called
operations. Careful design of the operations has led to the property, that no errors
occur within them. These are the operations available:

• Ri( j): Reagent i of a test is added to cuvette j;

• S(i): The sample for cuvette i is added;

1A time unit in the scaled-down CCA specification corresponds with a duration of 4 seconds in the actual
CCA.
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• E(i): Cuvette i is emptied.

Finally, a number of operations together form a cycle, which is the basic building block
for a schedule. There are three types of cycles, the 12, 16 and 24-cycles, differing in the
number of time units they require for execution. In the 12-cycles round 1 of operations
occurs, in the 16-cycles rounds 1 and 2 occur, and in the 24-cycles all three rounds
occur. The rounds being (in this order):

1. Given an empty cuvette i, the first reagent of a test can be added to this cuvette.
At the same time, if possible, the sample for the test in cuvette i−5 can be added.
Finally, also at the same time, if cuvette i +3 contains a finished test, the cuvette
can be emptied.

2. If a cuvette j (i 6= j) is ready to receive a second or a third reagent, this reagent
can be added.

3. If a cuvette k (i 6= k, j 6= k) is ready to receive a third reagent, this reagent can be
added.

- add

- add S
- empty

- add R1

- add S
- empty

- add R1

- add S
- empty

- add R1

4 128 16 20 240

- add

R2, R3

R2, R3

- add
R3

Figure 10.7: The 12, 16, and 24-cycles for the CCA

In Figure 10.7, the three types of cycles are visualised. All of them start with round
1, where the available operations (listed using hyphens) can be performed in parallel.
After that, in the case of 16 and 24-cycles, a second round is entered. In 24-cycles even
a third round appears. This mandatory ordering in rounds means that even in a cycle,
in which only a second and/or a third reagent is added, round 1 appears, even though
no operation (or only an empty operation) is performed in this round.

The cycles can be named by listing the operations that occur in each round. We do not
list the E operations though, since emptying cuvettes is done whenever possible. For
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instance, in the 12-cycle R1(i), round 1 from the list above is carried out without adding
a sample. When rounds 2 and 3 occur in a cycle, it will always be after having done
round 1. Also for these rounds the necessary cuvette indices are given. For instance,
cycle R1SR2(i, j) first performs round 1, with a first reagent being added to cuvette
i and a sample being added at the same time to cuvette i − 5, after which a second
reagent is added to cuvette j in round 2. In the real machine it happens to be the case
that there is no cycle which only empties a cuvette. This is important to know when
looking at the results of the case study, in particular Section 10.5.8.

It was previously mentioned that there is a mixing crank. Mixing should happen ev-
ery time an extra fluid is added to a cuvette. This, however, is not part of the scheduling
problem, because mixing is done within the operations.

The scheduling problem is now the following: given a batch of tests to be processed,
provide a sequence of cycles that enables the CCA to process the tests in the minimum
time possible.

10.5.3 Creating the Specification of the CCA

For the scheduling problem of the CCA, it is not necessary to specify all the parts of the
machine at a very detailed level. It suffices to concentrate on a process which allows
every valid sequence of cycle commands to happen. Invalid sequences would consist of
cycles applied to inappropriate cuvettes or cycles applied too soon or too late. It has to
be stressed that we therefore incorporate explicitly the timing constraints, as seen in
Section 10.5.2, in the specification.

When designing, it is important to choose the parameters in a smart way. The more
information you store, the larger the resulting state space will be, therefore any unnec-
essary information must be avoided. We decide not to use test IDs; to solve the problem
we do not need to link an individual sample with some particular reagents. We can as-
sume that the reagent and sample rotors provide the right reagents and samples when
required. Furthermore the number of samples and second and third reagents that still
need to be added is not needed; it is clear what must be added when looking at the
rotor and the number of unprocessed first reagents. That leaves us with the following:

• The cuvette list, consisting of 11 tuples. Each tuple stores which fluids are cur-
rently in the corresponding cuvette, which type of test is in the cuvette, and how
much time is left before a new fluid may be added.

• How many 1-reagent tests should still be started.

• How many 2-reagent tests should still be started.

• How many 3-reagent tests should still be started.
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When specifying, it becomes clear how convenient the use of abstract data types is.
The rotor can be specified using a specially taylored list data type, and we can define
functions to quickly check the status of the rotor (e.g. whether there are any tests ready
to receive a sample, or whether a certain test is finished). This makes working with
complex data structures easier.

We decide to build the specification in an incremental way; first, we build a specifi-
cation dealing only with 1-reagent tests and 12-cycles. It consists of a single process
which has the 12-cycles as actions, together with the necessary guards and recursive
calls, placed in alternative composition. The guards are there to check whether a cho-
sen cuvette is indeed ready to receive a certain fluid and whether the timing constraints
are met. Note that it is not necessary to keep track of the overall execution time in
this specification, as each action requires a delay of three time units; in such a case a
minimal-time trace in a state space is also the shortest trace. Therefore we can do a
normal breadth-first search for the finished action.

Using the specification in practice, though, on a number of test batches, we find that
the freedom to place new tests anywhere on the rotor leads to a state space explosion.
Therefore, we decide to build a second specification allowing new tests to be placed only
in the next empty cuvette, looking counter-clockwise. Since the cranks are placed in
such a way that, rotating one cuvette at a time, a sample can be added to a cuvette
the moment it reaches the sample crank, this restriction will not lead to a suboptimal
solution. In fact, Section 10.5.4 shows that this is indeed the case, for a test batch of
five products.

Next, we build a third specification with a process using all possible cycles together
with the necessary guards, placed in alternative composition. We also use this spec-
ification to find schedules for different test batches. The results can be found in the
following sections. After that, we create a fourth specification, which is much more
restricted in its possibilities; we put a strategy in it to cope with a batch of tests. We
attach priorities to cycles, such that the specification will always execute the enabled
cycle with the highest priority. In short, the strategy is to always perform as many
operations in parallel as possible and to get the first reagents of the tests as quickly as
possible on the rotor. Using the same batches of tests as input for this specification, we
get the same results as we get using the strategy-free specification (in cases where the
complete state space of the latter specification can be generated at least). This tells us
that the strategy used in the strategy specification is a good one for the test batches
used.

The distributed state space generator of the µCRL toolset makes it possible to gener-
ate state spaces using a cluster of computers. In this case study, it becomes clear quite
soon that an increase of the size of the test batch results in a big growth of the state
spaces of most of the specifications. For some of the test batches a minimal-time trace
cannot be found without distributed state space generation.
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10.5.4 Results Using Exhaustive State Space Search
Tables 10.4 and 10.5 summarise our findings when applying exhaustive breadth-first
search. We used the sequential implementation for the small cases, and switched to the
distributed implementation for the bigger cases (indicated with an asterisk). Table 10.4
considers the simpler case where all test batches consist of a number of 1-reagent tests.
In this setting, only 12-cycles are needed. In Table 10.5, all cycles are incorporated. In
both cases, we consider the specification with and without a built-in strategy.

The tables should be read as follows: In every row, a test batch is specified. In
Table 10.4, the number of tests is displayed, in Table 10.5, the descriptions are of the
form (a, b, c), where a, b and c indicate the number of 1-reagent, 2-reagent and 3-
reagent tests, respectively. The results are in the following format: r/s, where r and
s equal the number of time units and the number of cycles in the minimal-time trace,
respectively. Searches not performed are marked with hyphens. Also, the number of
states in the different state spaces is given. Finally, the time needed to find the results
is given in the format ‘minutes:seconds’.

From the numbers, it is clear that the state spaces grow rapidly in size when using
bigger test batches. In the specifications without a strategy this is due to the fact that
from every state the system can do any of the valid actions. In Table 10.4, in case of the
12-cycles specification, the size is increasing so rapidly, that already with 10 tests we
had to conclude this would not be promising to continue. The restricted specification
was sufficient for us to find minimal-time traces for all configurations.

Table 10.4: Exhaustive search results for the CCA with only 12-cycles
XXXXXXXXXX# Tests

Spec.
12-cycles # States 12-cycles restr. # States

5 30/10 416,352 * 30/10 447
10 - - 45/15 9,878
15 - - 60/20 528,699
20 - - 75/25 8,403,885
30 - - 105/35 222,613,811 *

Table 10.5 contains the results we obtained when using specifications with the three
types of tests. When using 10 tests, we are not able to get minimal-time traces anymore
using the general specification. Although generating the state spaces takes a lot of
time and effort, it is still possible. The problem is the fact that CADP, which is used to
obtain minimal-time traces from the state spaces, needs the chunks of the state space,
obtained from a distributed state space generation, to be merged into a single state
space, since it only works sequentially at the moment. In the (6,2,2) test batch, the
resulting state space takes about 30 Gigabytes of disk space, and is too big to handle
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Table 10.5: Exhaustive search results for the CCA
XXXXXXXXXX# Tests

Spec.
All cycles # States Runtime Strategy # States Runtime

(3,1,1) 36/11 1,148 00:07.41 36/11 222 00:02.64

(1,3,1) 39/11 5,352 00:27.50 39/11 290 00:02.84

(1,1,3) 45/12 16,380 01:16.99 45/12 273 00:02.84

(6,2,2) - - - 51/15 11,477 00:44.92

(3,5,2) - - - 55/15 29,929 01:56.82

(1,2,7) - - - 73/17 23,895 01:34.84

(7,4,4) - - - 75/21 5,300,625 * 83:48.21

(4,8,3) - - - 77/21 3,959,283 * 63:31.45

(2,5,8) - - - 91/22 1,951,446 * 31:37:53

afterwards. In the strategy specification, the size increase is mainly due to the non-
determinism concerning adding new tests (more precisely, deciding which test type
should be added at which point). One can therefore decide to create another strategy
specification, which applies a fixed order of tests concerning their type (i.e. first adding
3-reagent tests).

10.5.5 Results Using On-the-fly Searching

We also used minimal-cost search to find minimal-time traces for the strategy spec-
ification, using five and ten products (in the varying type combinations). Table 10.6
contains the results of these tests. Please note that the number of states in this table
cannot be straightforwardly compared to the numbers in Tables 10.4 and 10.5. This is
because for the on-the-fly searching we added the necessary tick actions to the specifi-
cation, resulting in more states in the state spaces.

In the cases of five products, we find that the state spaces still need to be generated
almost completely in order to find the solutions. When moving to bigger test configura-
tions though, the payoff becomes considerate; in the (6,2,2) test batch, a minimal-time
trace can be found halfway through the state space generation.

The results of using minimal-cost search are twofold: on the one hand, we are able
to find minimal-time traces with less effort; more specifically, since we can find these
traces on-the-fly, merging the state space chunks into a single state space and subse-
quently searching for a specific action using CADP can be avoided. This already saves
us a lot of time. On the other hand, it still proves very difficult to get results for bigger
test configurations, as seen in Table 10.6. The state space for the (6,2,2) test batch is
very big and takes hours to generate. It has to be said that, although difficult, getting
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Table 10.6: Minimal-cost search results for the CCA
XXXXXXXXXX# Tests

Spec.
All cycles # States Runtime

(3,1,1) 36/11 3,375 (of 4,001) 00:10.35
(1,3,1) 39/11 13,194 (of 15,091) 00:30.48
(1,1,3) 45/12 34,142 (of 39,132) 01:10.97
(6,2,2) 51/15 341,704,322 * (of 677,470,840) 1524:56.00
(3,5,2) - - -
(1,2,7) - - -
(7,4,4) - - -
(4,8,3) - - -
(2,5,8) - - -

a minimal-time trace is only possible using on-the-fly searching, since converting the
state space after generation and then searching the state space using a model checker
provides technical difficulties (as mentioned earlier in Section 10.5.4). For bigger test
configurations, we are currently unable to find minimal-time traces, since we encounter
technical bottlenecks, such as the speed of communication between the computers in
the cluster we use. Other problems stem from this particular case study and specifica-
tion, not from the search algorithm.

10.5.6 Results Using Beam Search

Applying detailed and priority beam search to the CCA case study proves to be very
fruitful. It is possible to prune away traces, which are not promising, very effectively,
and it turns out to be very interesting to try and see how much can be pruned without
removing all optimal solutions. Of course, one can only know if all optimal solutions are
pruned if the total cost of these solutions is known. Using previous results (Tables 10.4,
10.5 and 10.6), the beam widths needed to get optimal solutions can be determined for
those particular problem instances. These beam width values provide an indication of
how big the beam widths will have to be for even bigger instances.

In Table 10.7, the results are given which are obtained using a g-synchronised de-
tailed beam search through the state spaces. The estimation function h we use counts
the number of fluids that still have to be added to the rotor. Worst case, a given partial
schedule can always be extended using n cycles, where n is the remaining number of
fluids. Note that, in order to use this function, we have to add an extra parameter to
the specification described in Section 10.5.3, to be able to keep track of the total number
of fluids left.
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As can be seen, almost at all times, we are able to deal with the test batches using a
standalone computer. Notice that in the first number of configurations we are able to
provide the number of states in the complete state space, thereby showing how much
we can prune. As is shown with the (6,2,2) configuration, the number of pruned states
can become considerate, in this particular case more than 99.9% of the state space.
Looking at the results, we see that the needed beam width differs from test to test.
This makes it hard to predict the needed beam width for larger test configurations. The
larger you choose the beam width, the higher the probability that the solution found
is a minimal-time trace, so when choosing a beam width value, one should determine
how much time and effort is reasonable to put into finding a solution.

The beam width is not growing in relation to the number of fluids in a test configu-
ration. Probably this is due to the ordering of states while searching. Sometimes the
generator is forced to make some selections which are not based on the evaluation val-
ues of the states (tie-breaking), due to the hard limit of states per level set by the beam
width. In those cases, the order in which the states are encountered plays a role.

The execution times become very long already when dealing with 10 tests, no doubt
because of the evaluation procedure. It seems interesting to try to optimise this proce-
dure in the future, since a lot of time could be gained then.

Table 10.8 shows us results obtained by performing a g-synchronised priority beam
search. Again, here we were able to find solutions for the test configurations using a
standalone computer. The used priority function prio stimulates to perform as many
operations in parallel as possible. To facilitate comparison, we searched for solutions
for all the test configurations with α, l = 1, a search which could in fact be called g-
synchronised heuristic breadth-first search, and, in most cases, with α, l > 1. This
shows the effect of raising the widening factor and choosing the stabilisation level fur-
ther down the state space.

Finally, in Table 10.9, our experiences with flexible priority beam search are shown.
The execution times of searches applied on batches up to 10 tests are very promising.
The major advantage of flexible beam search is that determining the beam width for
each individual configuration is no longer an issue. In all the cases the beam width
is initially set to 1, i.e. αl = 1, and is increased automatically where needed during
exploration. When dealing with batches bigger than 10 tests, we see that the execution
time and the number of states searched rapidly increase. This shows the drawback
of a flexible search: it avoids tie-breaking, as mentioned already several times in this
chapter, but the result of this is that the space and computation time requirements are
no longer linear to the maximum search depth.

Note that we do not conduct any tests using flexible detailed beam search. Although
we have implemented it in the toolset, we do not think that, in the CCA case study,
it will show a much better performance than detailed beam search. More on this is
mentioned in Section 10.5.7.
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Table 10.7: g-Synchronised detailed beam search results for the CCA
XXXXXXXXXX# Tests

Spec.
All cycles β # States Runtime

(3,1,1) 36/11 25 1,461 (of 4,001) 00:03.43

(1,3,1) 39/11 41 2,234 (of 15,091) 00:03.93

(1,1,3) 45/12 19 1,598 (of 39,132) 00:03.46

(6,2,2) 51/15 81 7,408 (of 677,470,840) 00:07.76

(3,5,2) 55/15 765 67,470 00:49.45

(1,2,7) 73/17 75,000 6,708,705 84:38.41

(7,4,4) 75/21 35,000 3,801,607 41:01.80

(4,8,3) 77/21 50,000 5,837,325 85:41.60

(2,5,8) - - - -

10.5.7 Comparisons
Taking a closer look at the minimal-time traces found, we conclude the following: Con-
cerning the 12-cycles specifications, the minimal-time traces are straightforward. The
first five reagents need to be added without adding a sample, because of the incubation
times. After that, a reagent can be added together with a sample, until there are no
reagents left to add and the final five samples can be added. Having a batch of i prod-
ucts will therefore lead to a minimal-time trace of i+5 cycles, which will take 3× (i+5)
time units, since every cycle takes three time units.

For the more general case, using 12, 16, and 24-cycles, it is more difficult to observe
a pattern, though. There does not seem to be any advantage gained by adding the
reagents for the different kinds of tests in a certain order (for instance first adding
all the reagents for the 3-reagent tests). Besides that, there does not have to be any
pattern shared by the particular minimal-time traces found here; it could very well
be the case that there are several minimal-time traces coexisting in the same state
space. We only get to see one though, which shows a possible solution, not necessarily
a mandatory one.

Next, we compare the results of the different search techniques used. The first ob-
servation is, that when analysing the results of Table 10.5, the chosen strategy seems
to be a good one, at least for the test configurations we used. Therefore, it seems to be
a good approach to try to put the first reagents of tests as quickly as possible on the
rotor and to try to do as much as possible in each cycle.

Table 10.6 tells us that for the smaller configurations (5 tests) the minimal-time
traces present are not much shorter than the longest traces in the state spaces. We get
this from the fact that only a small part of each state space is left unexplored when
finding a minimal-time trace. An explanation for this may be the fact that with 5 tests,
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Table 10.8: g-Synchronised priority beam search results for the CCA
XXXXXXXXXX# Tests

Spec.
All cycles α l # States Runtime

(3,1,1) 37/12 1 1 48 (of 4,001) 00:03.03

(3,1,1) 36/11 2 5 179 (of 4,001) 00:03.52

(1,3,1) 39/11 1 1 50 (of 15,091) 00:03.08

(1,1,3) 45/12 1 1 57 (of 39,132) 00:03.08

(6,2,2) 52/16 1 1 67 (of 677,470,840) 00:02.63

(6,2,2) 51/15 2 9 479 (of 677,470,840) 00:03.06

(3,5,2) 58/18 1 1 74 00:02.65

(3,5,2) 55/15 3 13 4,125 00:13.47

(1,2,7) 73/17 1 1 90 00:02.99

(7,4,4) 84/30 1 1 107 00:03.14

(7,4,4) 75/21 3 25 151,379 08:14.66

(4,8,3) 88/30 1 1 112 00:03.14

(4,8,3) 77/21 3 25 148,015 08:28.38

(2,5,8) 106/32 1 1 132 00:05.55

(2,5,8) 94/25 3 25 150,088 09:40.77

not a lot of freedom is given to the system to do actions, which leads to inefficient
traces. When moving to the (6,2,2) configuration, a lot is gained though. Already
halfway through the state space search do we encounter a minimal-time trace. This
encourages us to believe that the on-the-fly searching method can help more and more
with even bigger configurations.

The problem with the on-the-fly searching method, of course, is that still the amount
of states that have to be explored grows rapidly when increasing the number of fluids
in a configuration. At this moment, we are not able to deal with configurations bigger
than (6,2,2), but once the hardware gets improved and our generator gets optimised we
will be able to in the future.

When using a g-synchronised priority beam search in the CCA case study, it turns
out that the search progresses much faster compared to using a detailed beam search.
Furthermore, in all cases, we are able to find the optimal solutions with smaller beam
widths, when compared to using a detailed beam search. It shows that the evaluation
function used for the detailed beam search can be improved. We have not tried to im-
prove the total-cost evaluation function yet. It turns out that this particular scheduling
problem is well solvable by assigning priorities to actions. This is already noticable by
the effectiveness of the strategy specifications. Based on these results, we decide not to
perform any tests using flexible detailed beam search. At least, the findings here are
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Table 10.9: g-Synchronised flexible priority beam search results for the CCA
XXXXXXXXXX# Tests

Spec.
All cycles # States Runtime

(3,1,1) 36/11 821 (of 4,001) 00:03.70

(1,3,1) 39/11 1,133 (of 15,091) 00:04.06

(1,1,3) 45/12 1,145 (of 39,132) 00:04.03

(6,2,2) 51/15 45,402 (of 677,470,840) 02:33.65

(3,5,2) 55/15 128,373 06:44.93

(1,2,7) 73/17 122,449 04:02.94

(7,4,4) 75/21 20,666,509 872:55.71

(4,8,3) - - -

(2,5,8) - - -

in contrast with experiences in other settings, for instance the results found by Valente
and Alves (2004), who state that in general, detailed beam searches, with their global
view on the state space, perform more accurately than priority beam searches. One
has to note, though, that due to these different settings, comparisons cannot be easily
made.

Solutions are found quicker using beam search than using on-the-fly searching, but
of course, when applied to bigger cases for which a minimal-time trace has not been
found yet, this is at the expense of finding near-optimal solutions.

Using the (g-synchronised) flexible priority beam search, we find that, with αl = 1
and the right priority assignments, the obtained results are the same as the ones ob-
tained from the strategy specification during the earlier testing. The flexible beam
search technique, therefore, saves the user the effort of separately specifying a specifi-
cation with a built-in strategy, if such a specification is only needed to place an order-
ing on actions. This is not only convenient, but also removes the possibility of errors or
unwanted behaviour, which may appear when writing a specification with a strategy.
Besides that, it makes changing a strategy during testing very straightforward. Of
course, this comes at a cost; finding a solution using flexible priority beam search takes
more time than finding the same solution using a specification with a built-in strategy,
due to the evaluation procedure.

Compared to the other beam search variants used, we no longer have the problem of
determining the beam width for each test batch when using flexible beam search.
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10.5.8 Other Findings
Looking at the (4, 8, 3) batch within the strategy specification produces some strange
results; the state space turns out to be of infinite size. Since this is unexpected, we
look at it in more detail, and find a trace of infinite size showing that it would be wise
to have a cycle which only empties a cuvette, if one wants to exclude the possibility
for the scheduler to create an invalid schedule. The trace in question will now be
presented, where we always indicate the type of the test subjected to an operation,
using a superscript i for an i-reagent test. Furthermore, ε is the 12-cycle in which no
operation at all is executed; basically it is a delay. This is the trace:

[R3
1(0), R3

1(1), R3
1(2), R1

1(3), R1
1(4), R1

1S3(5), R1
1S3(6), R2

1S3R3
2(7, 0), R2

1S3R1
2(8, 1),

R2
1S3R1

2(9, 2), R2
1S1R3

3(10, 0), S1R3
3(0, 1), R2

1R3
3(3, 2), R2

1(6), S2(1), R2
1S2R2

2(4, 7),

S2R2
2(2, 8), R2

1R2
2(5, 8), S2(8), S2R2

2(9, 3), S2R2
2(0, 4), S2R2

2(10, 6), S2R2
2(3, 5),

R2
2(9), ε, ε, ε, ...]

In this trace, all the cuvets get filled with tests in such a way that there is never a
completed test at the emptying position. In the end, the rotor is filled entirely with
completed tests, but nothing can be removed, because there is no cycle in which only a
removal operation is done.

10.6 Conclusions
The modelling language µCRL is well-suited for modelling scheduling problems. The
data support it has is very convenient when working with complex data structures,
as in the case of the CCA. In this regard, no changes had to be made to the current
µCRL toolset. In other regards, the µCRL toolset had to be extended with search
algorithms other than breadth-first search. Although not a necessity, a useful feature
in the modelling language µCRL would be a priority operator, which could be used to
assign priorities to actions.

Furthermore, it often suffices to model a single process, as all the experiments in
this chapter show. This applies to scheduling problems in general, since the nature of
this kind of problems is to find, within all possible sequences of commands, actions,
etc., a minimal-time trace leading to a successful termination.

The number of possibilities can grow very rapidly though, when increasing the size
of the problem instance. Particularly in case of the CCA, we already encountered tech-
nical problems concerning the size of the state space when working with 10 products in
a test batch. It is possible, however, to limit the specification in certain ways to make
this state space smaller. For the CCA, we restricted new tests to be added to the first
empty cuvette on the rotor (counter-clock wise) available.
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Another way is to build a specification with a built-in strategy. By introducing a
strategy, the number of possible execution sequences can be brought down a lot, de-
pending on the level of non-determinism still in the specification. A specification with
a built-in strategy can be used to compare a certain strategy with the general specifi-
cation. Besides that, it can serve to determine an upper-bound for a bounded search
through a state space of a general specification. Note that using a specification with
a built-in strategy does not guarantee finding minimal-cost traces, depending on the
effectiveness of the strategy chosen.

In a distributed setting we are able to deal with bigger problem instances. When per-
forming minimal-cost search in this setting, we found that the larger the state space,
the higher the percentage of states which can be avoided in the search.

We showed that g-synchronised (flexible) detailed beam search is suitable for find-
ing near-optimal solutions for instances of the Cannibals and Missionaries problem
and the Zebra Finch problem, which are two problems in the class of river crossing
problems. In these particular problems, the state spaces incorporate cycles, conflu-
ence of traces, and unsuccessful termination states, thereby they are useful examples
to demonstrate that the beam search variants of Chapter 8 can deal with arbitrary
state spaces. Moving to a distributed setting with the beam searches has proven to
be worthwhile. Of course, there is some communication overhead when searching in a
distributed way, but when dealing with big problem instances and beam widths, overall
there is a gain in processing time, compared to a sequential search. In the case of the
CCA, we used both g-synchronised detailed and g-synchronised priority beam search;
the latter turning out to be more effective in this particular case study, meaning that
using priority beam search, smaller beam widths are needed to get similar solutions in
shorter execution times. This can be due to the fact that the CCA scheduling problem
seems to be well solvable by assigning priorities to actions, as can already be seen by
the effectiveness of specifications with a built-in strategy. Beam search allows one to
make a trade-off between computation time and the quality of the solutions to find.
Having both detailed and priority beam search to work with, even increases the possi-
bilities for such a trade-off. If one wants a certain level of quality, however, choosing
the right beam width becomes a problem.

Because of this, in Chapter 8, we proposed extensions of both detailed and priority
beam search, called flexible beam search, in which the actual beam width can change
while searching, in order to keep track of all actions with a sufficient priority in each
level (i.e. avoiding tie-breaking). The experiments suggest that from case to case, the
beam widths of flexible beam searches do not have to be increased often. The exper-
imental results for the CCA suggest that flexible priority beam search removes the
necessity to create additional specifications with built-in strategies, if they are only
needed to assign priorities to actions. Flexible priority beam search combines the ease
of use of beam search, meaning that no additional specifications have to be created
to use it, with the flexibility of a specification with a built-in strategy, meaning that
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there is no limit to the number of states or transitions expanded per level. The major
benefits of flexible beam searches are the relative ‘stability’ of the beam widths (i.e.
when increasing the size of the test configuration, the beam width can often be left
unchanged) and the avoidance of tie-breaking, but this comes at a price, namely that
the space and computation time requirements of these searches are not linear to the
maximum search depth.

As a side note, in Section 10.5.8, we showed an example of gaining results not related
to the scheduling problem in question. When generating a state space you may notice
some unexpected behaviour, which could lead to more insight into the system.
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Part III

Comparing Timed Behaviour

IN WHICH A DEFINITION OF TIMED BRANCHING BISIMILARITY IS EXTENDED, THE

EXTENDED NOTION IS PROVED TO BE AN EQUIVALENCE, AND A ROOTED VERSION IS

PROVED TO BE A CONGRUENCE

This part is an extended version of the work by Fokkink et al. (2005)





Chapter 11

Is Timed Branching Bisimilarity a
Congruence Indeed?

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.

(T.S. Eliot)

11.1 Introduction

B
RANCHING BISIMILARITY (Van Glabbeek and Weijland, 1989, 1996a) is a
widely used concurrency semantics for process algebras that include the
silent step τ. Two processes are branching bisimilar if they can be related
by some branching bisimulation relation. See the work of Van Glabbeek

(1994) for a clear account on the strong points of branching bisimilarity.
Over the years, process algebras such as CCS, CSP and ACP have been extended

with a notion of time. As a result, the concurrency semantics underlying these process
algebras have been adapted to cope with the presence of time. Klusener (1991, 1992,
1993) was the first to extend the notion of a branching bisimulation relation to a setting
with time. The main complication is that while a process can let time pass without
performing an action, such idling may mean that certain behavioural options in the
future are being discarded. Klusener pioneered how this aspect of timed processes can
be taken into account in a branching bisimulation context. Based on his work, Van
der Zwaag (2001, 2002) and Baeten and Middelburg (2002) proposed new notions of a
timed branching bisimulation relation.

A key property for a semantics is that it is an equivalence. In general, for concur-
rency semantics in the presence of τ, reflexivity and symmetry are easy to see, but
transitivity is much more difficult. In particular, the transitivity proof for branching
bisimilarity of Van Glabbeek and Weijland (1989) turned out to be flawed, because
the transitive closure of two branching bisimulation relations need not be a branch-
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ing bisimulation relation. Basten (1996) pointed out this flaw, and proposed a new
transitivity proof for branching bisimilarity, based on the notion of a semi-branching
bisimulation relation. Such relations are preserved under transitive closure, and the
notions of branching bisimilarity and semi-branching bisimilarity coincide.

In a setting with time, proving equivalence of a concurrency semantics becomes
even more complicated, compared to the untimed case. Still, equivalence properties
for timed semantics are often claimed, but hardly ever proved. Klusener (1993), Van
der Zwaag (2001, 2002), and Baeten and Middelburg (2002) claim equivalence prop-
erties without an explicit proof, although in all cases it is stated that such proofs do
exist.

Related to this, it is an interesting question whether a rooted version of timed
branching bisimilarity is a congruence over a basic timed process algebra contain-
ing parallelism, successful termination and deadlock (such as Baeten and Bergstra’s
BPAur

ρδ
(Baeten and Bergstra, 1991), which is basic real time process algebra with

time stamped urgent actions). Similar to equivalence, congruence properties for timed
branching bisimilarity are often claimed, but hardly ever proved. One such congru-
ence proof is provided by Klusener (1993). Considering other timed settings, Reniers
and Van Weerdenburg (2007) provide a congruence proof for a setting with an untimed
τ-step, which makes it possible for them, unlike for us, to follow the format of the
usual congruence proof for untimed branching bisimilarity. Trčka (2007) proved timed
branching bisimilarity to be a congruence over a timed process algebra in a setting
with discrete, relative time.

In the current chapter, first of all, we study in how far the notion of timed branching
bisimilarity of Van der Zwaag constitutes an equivalence relation. We give a counter-
example to show that in case of a dense time domain, his notion is not transitive.
We proceed to present a stronger version of Van der Zwaag’s definition (stronger in
the sense that it relates fewer processes), and prove that this adapted notion does
constitute an equivalence relation, even when the time domain is dense. Our proof
follows the approach of Basten. Next, we show that in case of a discrete time domain,
Van der Zwaag’s notion of timed branching bisimilarity and our new notion coincide. So
in particular, in case of a discrete time domain, Van der Zwaag’s notion does constitute
an equivalence relation.

In Appendix C, we show that our counter-example for transitivity also applies to the
notion of timed branching bisimilarity by Baeten & Middelburg in case of a dense time
domain (see Baeten and Middelburg (2002, Section 6.4.1)). So that notion does not
constitute an equivalence relation as well.

Following the equivalence proof, we prove that a rooted version of the stronger ver-
sion of timed branching bisimilarity is a congruence over a basic timed process algebra
containing parallelism, successful termination and deadlock. In a number of ways,
our proof differs from the usual congruence proof for untimed branching bisimilarity.
For example, due to the presence of successful termination, there is a large number of
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cases. In fact, the congruence proof for the parallel composition operator is restricted
to a setting without successful termination, since the number of cases in a proof consid-
ering successful termination is just too large. Furthermore, Example 7 demonstrates
that the standard approach for untimed branching bisimilarity, i.e. take the smallest
congruence closure and prove that this yields a branching bisimulation, falls short in
a timed setting.

This chapter is organized as follows. Section 11.2 contains the preliminaries, describ-
ing the notion of a timed labelled transition system, i.e. a timed state space. Section 11.3
features a counter-example to show that the notion of timed branching bisimilarity by
Van der Zwaag is not an equivalence relation in case of a dense time domain. A new def-
inition of timed branching bisimulation is proposed in Section 11.4, and we prove that
our notion of timed branching bisimilarity is an equivalence indeed. In Section 11.5 we
prove that in case of a discrete time domain, our definition and Van der Zwaag’s defini-
tion of timed branching bisimilarity coincide. Section 11.7 gives suggestions for future
work. In Appendix C, we show that our counter-example for transitivity also applies to
the notion of timed branching bisimilarity by Baeten and Middelburg (2002).

11.2 Timed Labelled Transition Systems

Let A be a non-empty set of visible actions, and τ a special action to represent internal
events, with τ 6∈ A . We use Aτ to denote A ∪ {τ}.

The time domain T is a totally ordered set with a least element 0. We say that T is
discrete if for each pair u, v ∈T there are only finitely many w ∈T such that u < w < v.

Definition 28 (Timed labelled transition system (Van der Zwaag, 2001)). A
timed labelled transition system (TLTS) (Groote et al., 2002) is a triple (S , T , U ),
where:

1. S is a set of states, including a special state
p

to represent successful termination;

2. T ⊆ S × Aτ ×T× S is a set of transitions;

3. U ⊆ S ×T is a delay relation, which satisfies:

• if T (s,`, u, r), then U (s, u);
• if u < v and U (s, v), then U (s, u).

Transitions (s, `, u, s′) express that state s evolves into state s′ by the execution of
action ` at (absolute) time u. It is assumed that the execution of transitions does not
consume any time. A transition (s,`, u, s′) is denoted by s `−→u s′. If U (s, u), then state
s can let time pass until time u; these predicates are used to express time deadlocks.
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11.3 Van der Zwaag’s Timed Branching Bisimulation
Van Glabbeek and Weijland (1996a) introduced the notion of a branching bisimulation
relation for untimed LTSs. Intuitively, a τ-transition s τ−→ s′ is invisible if it does
not lose possible behaviour (i.e., if s and s′ can be related by a branching bisimulation
relation). See the work of Van Glabbeek (1994) for a lucid exposition on the motivations
behind the definition of a branching bisimulation relation.

The reflexive transitive closure of τ−→ is denoted by =⇒ .

Definition 29 (Branching bisimulation (Van Glabbeek and Weijland, 1996a)).
Assume an untimed LTS. A symmetric binary relation B ⊆ S ×S is a branching bisim-
ulation if s B t implies:

1. if s `−→ s′, then

i either ` = τ and s′ B t,

ii or t =⇒ t̂ `−→ t′ with s B t̂ and s′ B t′;

2. if s ↓, then t =⇒ t′ ↓ with s B t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching
bisimulation B with s B t.

Van der Zwaag (2001) defined a timed version of branching bisimulation, which takes
into account time stamps of transitions and ultimate delays U (s, u).

For u ∈ T, the reflexive transitive closure of τ−→u is denoted by =⇒u .

Definition 30 (Timed branching bisimulation (Van der Zwaag, 2001)). Assume
a TLTS (S , T , U ). A collection B of symmetric binary relations Bu ⊆ S × S for u ∈ T
is a timed branching bisimulation if s Bu t implies:

1. if s `−→u s′, then

i either ` = τ and s′ Bu t,

ii or t =⇒u t̂ `−→u t′ with s Bu t̂ and s′ Bu t′;

2. if s ↓, then t =⇒u t′ ↓ with s Bu t′;

3. if u ≤ v and U (s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and
U (tn, v), and u0 < · · · < un ∈ T with u = u0 and v = un, such that for i < n,
ti =⇒ui ti+1, s Bui ti+1 and s Bui+1 ti+1.

Two states s and t are timed branching bisimilar at u, denoted by s ↔Z,u
tb t, if there

is a timed branching bisimulation B with s Bu t. States s and t are timed branching
bisimilar, denoted by s ↔Z

tb t,1 if they are timed branching bisimilar at all u ∈ T.

1The superscript Z refers to van der Zwaag, to distinguish it from the adaptation of his definition of timed
branching bisimulation that we will define later.
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Transitions can be executed at the same time consecutively. By the first clause in
Definition 30, the behaviour of a state at some point in time is treated like untimed
behaviour. The second clause deals with successful termination.2 By the last clause,
time passing in a state s is matched by a related state t with a “τ-path” where all
intermediate states are related to s at times when a τ-transition is performed.3

In the following examples, Z≥0 ⊆ T, and, for any states s0, s1 ∈ S , if s0
`−→u s1, then

U (s0, u) and for all v > u, ¬U (s0, v).

Example 1. Consider the following two TLTSs: s0
a−→2 s1

b−→1 s2, t0
a−→2 t1, U (s1, 1),

and U (t1, 1). We have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t1 for w > 1, and

s2 Bw t1 for w ≥ 0 is a timed branching bisimulation.

Example 2. Consider the following two TLTSs: s0
a−→1 s1

τ−→2 s2
b−→3 s3, t0

a−→1 t1
b−→3

t2, U (s3,4), and U (t2,4). We have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t1 for w ≤ 2,

s2 Bw t1 for w ≥ 0, and s3 Bw t2 for w ≥ 0 is a timed branching bisimulation.

Example 3. Consider the following two TLTSs: s0
a−→u s1

τ−→v s2 ↓ and t0
a−→u t1 ↓. If

u = v, we have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bu t1, and s2 Bw t1 for w ≥ 0 is

a timed branching bisimulation. If u 6= v, we have s0 6↔Z
tb t0, because s1 and t1 are not

timed branching bisimilar at time u; namely, t1 has a successful termination, and s1
cannot simulate this at time u, as it cannot do a τ-transition at time u.

Example 4. Consider the following two TLTSs: s0
τ−→u s1

a−→v s2 ↓ and t0
a−→v t1 ↓. If

u = v, we have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t0 for w ≥ 0, and s2 Bw t1 for

w ≥ 0 is a timed branching bisimulation. If u 6= v, we have s0 6↔Z
tb t0, because s0 and t0

are not timed branching bisimilar at time u+v
2 .4

Van der Zwaag (2001, 2002) wrote about his definition: “It is straightforward to
verify that branching bisimilarity is an equivalence relation.” However, we found that
in general this is not the case. A counter-example is presented below. Note that it uses
a non-discrete time domain.

Example 5. Let p, q, and r defined as in Figures 11.1, 11.2 and 11.3, with T = Q≥0.
We depict s a−→u s′ as s a(u)−→ s′.
2Van der Zwaag does not take into account successful termination, so the second clause is missing in his

definition.
3In the definition of Van der Zwaag, instead of u ≤ v and n ≥ 0, u < v and n > 0 are written, respectively. The

change is needed in order to deal correctly with the deadlock process δ(u) and the parallel composition
operator || later on, when we come to the congruence proof in Section 11.6. According to the old definition,
δ(1)↔Z,2

tb δ(2), but then, since a(2) || δ(1) 6↔Z,2
tb a(2) || δ(2), the congruence proof would be broken. Instead,

it is desirable that δ(1) 6↔Z,2
tb δ(2). Van der Zwaag did not consider deadlock explicitly; in the absence of

deadlock, the two definitions (with ‘u < v’ and ‘u ≤ v’) coincide.
4s0 ↔Z

tb t0 would hold for u ≤ v if in Definition 30 we would require that they are timed branching bisimilar
at 0 (instead of at all u ∈ T).
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Figure 11.1: A timed process p

p ↔Z
tb q, since p Bw q for w ≥ 0, pi Bw qi for w ≤ 1

i+2 , and p′
i Bw qi for w > 0 (for

i ≥ 0) is a timed branching bisimulation.
Moreover, q ↔Z

tb r, since q Bw r for w ≥ 0, qi Bw r i for w ≥ 0, qi B0 r j, and qi Bw r∞
for w = 0 ∨ w > 1

i+2 (for i, j ≥ 0) is a timed branching bisimulation. (Note that qi and
r∞ are not timed branching bisimilar in the time interval 〈0, 1

i+2 ].)
However, p 6↔Z

tb r, due to the fact that none of the pi can simulate r∞. Namely, r∞
can idle until time 1; pi can only simulate this by executing a τ at time 1

i+2 , but the
resulting process

∑i+1
n=1 a( 1

n ) is not timed branching bisimilar to r∞ at time 1
i+2 , since

τ(0)

q1 q2 . . .
τ(0)

τ(0)

a( 1
2 )a(1) a(1) a( 1

2 ) a( 1
3 )

pp

τ(0)

q

τ(0)
q0

a(1)

p

Figure 11.2: A timed process q
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Figure 11.3: A timed process r

only the latter can execute action a at time 1
i+2 .

11.4 A Strengthened Timed Branching Bisimulation
In this section, we propose a way to fix the definition of Van der Zwaag (see Defini-
tion 30). Our adaptation requires the stuttering property (Van Glabbeek and Weijland,
1996a) (see Definition 33) at all time intervals. That is, in the last clause of Defini-
tion 30, we require that s Bw ti+1 for ui ≤ w ≤ ui+1. Hence, we achieve a stronger
version of Van der Zwaag’s definition. We prove that this new notion of timed branch-
ing bisimilarity is an equivalence relation.

11.4.1 Timed Branching Bisimulation
Definition 31 (Timed branching bisimulation). Assume a TLTS (S , T , U ). A col-
lection B of binary relations Bu ⊆ S ×S for u ∈T is a timed branching bisimulation if
s Bu t implies:

1. if s `−→u s′, then

i either ` = τ and s′ Bu t,

ii or t =⇒u t̂ `−→u t′ with s Bu t̂ and s′ Bu t′;

2. if t `−→u t′, then

i either ` = τ and s Bu t′,

ii or s =⇒u ŝ `−→u s′ with ŝ Bu t and s′ Bu t′;

3. if s ↓, then t =⇒u t′ ↓ with s Bu t′;
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4. if t ↓, then s =⇒u s′ ↓ with s′ Bu t;

5. if u ≤ v and U (s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and
U (tn, v), and u0 < · · · < un ∈ T with u = u0 and v = un, such that for i < n,
ti =⇒ui ti+1 and s Bw ti+1 for ui ≤ w ≤ ui+1;

6. if u ≤ v and U (t, v), then for some n ≥ 0 there are s0, . . . , sn ∈ S with s = s0
and U (sn, v), and u0 < · · · < un ∈ T with u = u0 and v = un, such that for i < n,
si =⇒ui si+1 and si+1 Bw t for ui ≤ w ≤ ui+1.

Two states s and t are timed branching bisimilar at u, denoted by s ↔u
tb t, if there is

a timed branching bisimulation B with s Bu t. States s and t are timed branching
bisimilar, denoted by s ↔ tb t, if they are timed branching bisimilar at all u ∈ T.

It is not hard to see that the union of timed branching bisimulations is again a timed
branching bisimulation.

Note that states q and r from Example 5 are not timed branching bisimilar according
to Definition 31. Namely, none of the qi can simulate r∞ in the time interval 〈0, 1

i+2 ],
so that the stuttering property is violated.

Starting from this point, we focus on timed branching bisimulation as defined in
Definition 31. We did not define this new notion of timed branching bisimulation as
a symmetric relation (like in Definition 30), in view of the equivalence proof that we
are going to present. Namely, in general the relation composition of two symmetric
relations is not symmetric. Clearly any symmetric timed branching bisimulation is
a timed branching bisimulation. Furthermore, it follows from Definition 31 that the
inverse of a timed branching bisimulation is again a timed branching bisimulation,
so the union of a timed branching bisimulation and its inverse is a symmetric timed
branching bisimulation. Hence, Definition 31 and the definition of timed branching
bisimulation as a symmetric relation give rise to the same notion.

Example 6. Consider the following two TLTSs: s0
a−→1 s1 and t0

a−→1 t1, with U (s1, 0)
and U (t1, 1) We have s0 6↔ tb t0, because s1 and t1 are not timed branching bisimilar
at time 1; namely, t1 can delay until time 1, and s1 can neither delay until time 1, nor
simulate this by doing τ-transitions at time 1 to a state which can delay until time 1.
(Note that s0 and t0 are timed branching bisimilar according to the original definition
of Van der Zwaag; see footnote 3).

11.4.2 Timed Semi-branching Bisimulation
Basten (1996) showed that the relation composition of two (untimed) branching bisim-
ulations is not necessarily again a branching bisimulation. Figure 11.4 illustrates an
example, showing that the relation composition of two timed branching bisimulations
is not always a timed branching bisimulation. It is a slightly simplified version of
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an example from Basten (1996), here applied at time 0. Clearly, B and D are timed
branching bisimulations. However, B◦D is not, and the problem arises at the transi-
tion r0

τ−→0 r1. According to case 1 of Definition 30, since r0 (B◦D) t0, either r1 (B◦D) t0,
or r0 (B◦D) t1 and r1 (B◦D) t2, must hold. But neither of these cases hold, so B◦D is not
a timed branching bisimulation.

r3

r2

r1

r0

t2

t1

t0

s3

s2

s1

s0

r3

r2

r1

r0

B

t0

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

τ(0)

B◦D

τ(0)

τ(0)

τ(0)

τ(0) τ(0)

τ(0)

t2

t1

D

Figure 11.4: Composition does not preserve timed branching bisimulation

Semi-branching bisimulation (Van Glabbeek and Weijland, 1996a) relaxes case 1i of
Definition 29: if s τ−→ s′, then it is allowed that t =⇒ t′ with s B t′ and s′ B t′. Basten
proved that the relation composition of two semi-branching bisimulations is again a
semi-branching bisimulation. It is easy to see that semi-branching bisimilarity is re-
flexive and symmetric. Hence, semi-branching bisimilarity is an equivalence relation.
Then he proved that semi-branching bisimilarity and branching bisimilarity coincide,
that means two states in an (untimed) LTS are related by a branching bisimulation
relation if and only if they are related by a semi-branching bisimulation relation. We
mimic the approach of Basten (1996) to prove that timed branching bisimilarity is an
equivalence relation.

Definition 32 (Timed semi-branching bisimulation). Assume a TLTS (S , T , U ).
A collection B of binary relations Bu ⊆ S ×T× S for u ∈ T is a timed semi-branching
bisimulation if s Bu t implies:

1. if s `−→u s′, then

i either ` = τ and t =⇒u t′ with s Bu t′ and s′ Bu t′,

ii or t =⇒u t̂ `−→u t′ with s Bu t̂ and s′ Bu t′;

2. if t `−→u t′, then

i either ` = τ and s =⇒u s′ with s′ Bu t and s′ Bu t′,
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ii or s =⇒u ŝ `−→u s′ with ŝ Bu t and s′ Bu t′;

3. if s ↓, then t =⇒u t′ ↓ with s Bu t′;

4. if t ↓, then s =⇒u s′ ↓ with s′ Bu t;

5. if u ≤ v and U (s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and
U (tn, v), and u0 < · · · < un ∈ T with u = u0 and v = un, such that for i < n,
ti =⇒ui ti+1 and s Bw ti+1 for ui ≤ w ≤ ui+1;

6. if u ≤ v and U (t, v), then for some n ≥ 0 there are s0, . . . , sn ∈ S with s = s0
and U (sn, v), and u0 < · · · < un ∈ T with u = u0 and v = un, such that for i < n,
si =⇒ui si+1 and si+1 Bw t for ui ≤ w ≤ ui+1.

Two states s and t are timed semi-branching bisimilar at u if there is a timed semi-
branching bisimulation B with s Bu t. States s and t are timed semi-branching bisimi-
lar, denoted by s ↔ tsb t, if they are timed semi-branching bisimilar at all u ∈ T.

It is not hard to see that the union of timed semi-branching bisimulations is again
a timed semi-branching bisimulation. Furthermore, any timed branching bisimulation
is a timed semi-branching bisimulation.

Definition 33 (Stuttering property (Van Glabbeek and Weijland, 1996a)). A
timed semi-branching bisimulation B is said to satisfy the stuttering property if:

1. s Bu t, s′ Bu t and s τ−→u s1
τ−→u · · · τ−→u sn

τ−→u s′ implies that si Bu t for 1≤ i ≤ n;

2. s Bu t, s Bu t′ and t τ−→u t1
τ−→u · · · τ−→u tn

τ−→u t′ implies that s Bu ti for 1 ≤ i ≤ n.

Lemma 7. Any timed semi-branching bisimulation satisfying the stuttering property
is a timed branching bisimulation.

Proof. Let B be a timed semi-branching bisimulation that satisfies the stuttering prop-
erty. We prove that B is a timed branching bisimulation.

Let s Bu t. We only consider case 1i of Definition 32, because cases 1ii, 2ii and 3-6
are the same for both timed semi-branching and branching bisimulation. Moreover,
case 2i can be dealt with in a similar way as case 1i. So let s τ−→u s′ and t =⇒u t′ with
s Bu t′ and s′ Bu t′. We distinguish two cases.

1. t = t′. Then s′ Bu t, which agrees with case 1i of Definition 31.

2. t 6= t′. Then t =⇒u t′′ τ−→u t′. Since B satisfies the stuttering property, s Bu t′′. This
agrees with case 1ii of Definition 31.
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11.4.3 Timed Branching Bisimilarity is an Equivalence

Our equivalence proof consists of the following main steps:

1. We first prove that the relation composition of two timed semi-branching bisim-
ulation relations is again a semi-branching bisimulation relation (Proposition 1).

2. Then we prove that timed semi-branching bisimilarity is an equivalence relation
(Theorem 1).

3. Finally, we prove that the largest timed semi-branching bisimulation satisfies
the stuttering property (Proposition 2).

According to Lemma 7, any timed semi-branching bisimulation satisfying the stutter-
ing property is a timed branching bisimulation. So by the 3rd point, two states are
related by a timed branching bisimulation if and only if they are related by a timed
semi-branching bisimulation.

Lemma 8. Let B be a timed semi-branching bisimulation, and s Bu t.

1. s =⇒u s′ =⇒ (∃t′ ∈ S : t =⇒u t′ ∧ s′ Bu t′);

2. t =⇒u t′ =⇒ (∃s′ ∈ S : s =⇒u s′ ∧ t′ Bu s′).

Proof. We prove the first part, by induction on the number of τ-transitions at u from s
to s′.

1. Base case: The number of τ-transitions at u from s to s′ is zero. Then s = s′. Take
t′ = t. Clearly t =⇒u t′ and s′ Bu t′.

2. Inductive case: s =⇒u s′ consists of n ≥ 1 τ-transitions at u. Then there exists
an s′′ ∈ S such that s =⇒u s′′ in n − 1 τ-transitions at u, and s′′ τ−→u s′. By the
induction hypothesis, t =⇒u t′′ with s′′ Bu t′′. Since s′′ τ−→u s′ and B is a timed
semi-branching bisimulation:

• either t′′ =⇒u t′ and s′′ Bu t′ and s′ Bu t′;
• or t′′ =⇒u t̂ τ−→u t′ with s′′ Bu t̂ and s′ Bu t′.

In both cases t =⇒u t′ with s′ Bu t′.

The proof of the second part is similar.

Proposition 1. The relation composition of two timed semi-branching bisimulations
is again a timed semi-branching bisimulation.
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Proof. Let B and D be timed semi-branching bisimulations. We prove that the com-
position of B and D (or better, the compositions of Bu and Du for u ∈ T) is a timed
semi-branching bisimulation. Suppose that r Bu s Du t for r, s, t ∈ S . We check that
the conditions of Definition 32 are satisfied with respect to the pair r, t. We distinguish
four cases.

• r τ−→u r′ and s =⇒u s′ with r Bu s′ and r′ Bu s′. Since s Du t and s =⇒u s′, Lemma 8
yields that t =⇒u t′ with s′ Du t′. Hence, r Bu s′ Du t′ and r′ Bu s′ Du t′.

• r `−→u r′ and s =⇒u s′′ `−→u s′ with r Bu s′′ and r′ Bu s′. Since s Du t and s =⇒u s′′,
Lemma 8 yields that t =⇒u t′′ with s′′ Du t′′. Since s′′ `−→u s′ and s′′ Du t′′:

– Either ` = τ and t′′ =⇒u t′ with s′′ Du t′ and s′ Du t′. Then t =⇒u t′ with
r Bu s′′ Du t′ and r′ Bu s′ Du t′.

– Or t′′ =⇒u t′′′ `−→u t′ with s′′ Du t′′′ and s′ Du t′. Then t =⇒u t′′′ `−→u t′ with
r Bu s′′ Du t′′′ and r′ Bu s′ Du t′.

• r ↓. Since r Bu s, s =⇒u s′ ↓ with r Bu s′. Since s Du t and s =⇒u s′, Lemma 8 yields
that t =⇒u t′′ with s′ Du t′′. Since s′ ↓ and s′ Du t′′, t′′ =⇒u t′ ↓ with s′ Du t′. Hence,
t =⇒u t′ ↓ with r Bu s′ Du t′.

• u ≤ v and U (r, v). Since r Bu s, for some n ≥ 0 there are s0, . . . , sn ∈ S with s = s0
and U (sn, v), and u0 < · · · < un ∈T with u = u0 and v = un, such that si =⇒ui si+1
and r Bw si+1 for ui ≤ w ≤ ui+1 and i < n.

For i ≤ n we show that for some mi ≥ 0 there are ti
0, . . . , ti

mi
∈ S with t = t0

0 and
U (tn

mn , v), and vi
0 ≤ · · · ≤ vi

mi
∈ T with (Ai) ui−1 = vi

0 (if i > 0) and (Bi) ui = vi
mi

,
such that:

(Ci) ti
j =⇒vi

j
ti

j+1 for j < mi;

(Di) ti−1
mi−1

=⇒ui−1 ti
0 (if i > 0);

(Ei) si Dui−1 ti
0 (if i > 0);

(Fi) si Dw ti
j+1 for vi

j ≤ w ≤ vi
j+1 and j < mi.

We apply induction with respect to i.

– Base case: i = 0.
Let m0 = 0, t0

0 = t and v0
0 = u0. Note that B0, C0 and F0 hold.

– Inductive case: 0 < i ≤ n.
Suppose that mk, tk

0, . . . , tk
mk

, vk
0 , . . . , vk

mk
have been defined for 0 ≤ k < i.

Moreover, suppose that Bk, Ck and Fk hold for 0 ≤ k < i, and that Ak, Dk
and Ek hold for 0 < k < i.
Fi−1 for j = mi−1 − 1 together with Bi−1 yields si−1 Dui−1 ti−1

mi−1
. Since

si−1 =⇒ui−1 si, Lemma 8 implies that ti−1
mi−1

=⇒ui−1 t′ with si Dui−1 t′. We define
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ti
0 = t′ [then Di and Ei hold] and vi

0 = ui−1 [then Ai holds]. si =⇒ui · · · =⇒un−1 sn

with U (sn, v) implies that U (si, ui). Since si Dui−1 ti
0, according to case 5 of

Definition 32, for some mi > 0 there are ti
1, . . . , ti

mi
∈ S with U (ti

mi
, ui), and

vi
1 < · · · < vi

mi
∈ T with vi

0 < vi
1 and ui = vi

mi
[then Bi holds], such that for

j < mi, ti
j =⇒vi

j
ti

j+1 [then Ci holds] and si Dw ti
j+1 for vi

j ≤ w ≤ vi
j+1 [then Fi

holds].

Concluding, for i < n, r Bui si+1 Dui ti+1
0 and r Bw si+1 Dw ti+1

j+1 for vi+1
j ≤ w ≤ vi+1

j+1
and j < mi. Since vi

j ≤ vi
j+1, vi

mi
= ui = vi+1

0 , t = t0
0, u = u0 = v0

0, ti
j =⇒vi

j
ti

j+1,

ti
mi

=⇒ui ti+1
0 , and U (tn

mn , v), we are done.

So cases 1,3,5 of Definition 32 are satisfied. Similarly it can be checked that cases
2,4,6 are satisfied. So the composition of B and D is again a timed semi-branching
bisimulation.

Theorem 1. Timed semi-branching bisimilarity, ↔ tsb, is an equivalence relation.

Proof. Reflexivity: Obviously, the identity relation on S is a timed semi-branching
bisimulation.
Symmetry: Let B a timed semi-branching bisimulation. Obviously, B−1 is also a timed
semi-branching bisimulation.
Transitivity: This follows from Proposition 1.

Proposition 2. The largest timed semi-branching bisimulation satisfies the stuttering
property.

Proof. Let B be the largest timed semi-branching bisimulation on S . Let s τ−→u s1
τ−→u

· · · τ−→u sn
τ−→u s′ with s Bu t and s′ Bu t. We prove that B′ = B ∪ {(si, t) | 1 ≤ i ≤ n} is a

timed semi-branching bisimulation.
We check that all cases of Definition 32 are satisfied for the relations siB′

u t, for
1 ≤ i ≤ n. First we check that the transitions of si are matched by t. Since s =⇒u si and
s Bu t, by Lemma 8 t =⇒u t′ with si Bu t′.

• If si
`−→u s′′, then it follows from si Bu t′ that:

– Either ` = τ and t′ =⇒u t′′ with si Bu t′′ and s′′ Bu t′′. Since t =⇒u t′ =⇒u t′′,
this agrees with case 1i of Definition 32.

– Or t′ =⇒u t′′′ `−→u t′′ with si Bu t′′′ and s′′ Bu t′′. Since t =⇒u t′ =⇒u t′′′, this
agrees with case 1ii of Definition 32.

• If si ↓, then it follows from si Bu t′ that t′ =⇒u t′′ ↓ with si Bu t′′. Since t =⇒u t′ =⇒u
t′′, this agrees with case 3 of Definition 32.
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• If u ≤ v and U (si, v), then it follows from si Bu t′ that for some n ≥ 0 there are
t0, . . . , tn ∈ S with t′ = t0 and U (tn, v), and u0 < · · · < un ∈ T with u = u0 and
v = un, such that for i < n, ti =⇒ui ti+1 and si Bw ti for ui ≤ w ≤ ui+1. Since
t =⇒u t′ =⇒u t1, this agrees with case 5 of Definition 32.

Next we check that the transitions of t are matched by si.

• If t `−→u t′, then it follows from s′ Bu t that:

– Either ` = τ and s′ =⇒u s′′ with s′′ Bu t and s′′ Bu t′. Since si =⇒u s′ =⇒u s′′,
this agrees with case 2i of Definition 32.

– Or s′ =⇒u s′′′ `−→u s′′ with s′′′ Bu t and s′′ Bu t′. Since si =⇒u s′ =⇒u s′′′, this
agrees with case 2ii of Definition 32.

• If t ↓, then it follows from s′ Bu t that s′ =⇒u s′′ ↓ with s′′ Bu t. Since si =⇒u s′ =⇒u s′′,
this agrees with case 4 of Definition 32.

• If u ≤ v and U (t, v), then it follows from s′ Bu t that for some n ≥ 0 there are
s′0, . . . , s′n ∈ S with s′ = s′0 and U (sn, v), and u0 < · · · < un ∈ T with u = u0 and
v = un, such that for i < n, s′i =⇒ui s′i+1 and s′i+1 Bw t for ui ≤ w ≤ ui+1. Since
si =⇒u s′ =⇒u s′1, this agrees with case 6 of Definition 32.

Hence B′ is a timed semi-branching bisimulation. Since B is the largest, and B ⊆ B′,
we find that B = B′. So B satisfies the first requirement of Definition 33.

Since B is the largest timed semi-branching bisimulation and ↔ tsb is an equivalence,
B is symmetric. Then B also satisfies the second requirement of Definition 33. Hence
B satisfies the stuttering property.

As a consequence, the largest timed semi-branching bisimulation is a timed branch-
ing bisimulation (by Lemma 7 and Proposition 2). Since any timed branching bisimu-
lation is a timed semi-branching bisimulation, we have the following two corollaries.

Corollary 1. Two states are related by a timed branching bisimulation if and only if
they are related by a timed semi-branching bisimulation.

Corollary 2. Timed branching bisimilarity, ↔ tb, is an equivalence relation.

We note that for each u ∈ T, timed branching bisimilarity at time u is also an equiv-
alence relation.

11.5 Discrete Time Domains
Theorem 2. In case of a discrete time domain, ↔Z

tb and ↔ tb coincide.
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Proof. Clearly ↔ tb ⊆↔Z
tb. We prove that ↔Z

tb ⊆↔ tb. Suppose B is a timed branching
bisimulation relation according to Definition 30. We show that B is a timed branching
bisimulation relation according to Definition 31. B satisfies cases 1-4 of Definition 31,
since they coincide with cases 1-2 of Definition 30. We prove that case 5 of Definition 31
is satisfied.

Let s Bu t and U (s, v) with u ≤ v. Let u0 < · · · < un ∈ T with u0 = u and un = v,
where u1, . . . , un−1 are all the elements from T that are between u and v. (Here we use
that T is discrete.) We prove by induction on n that there are t0, . . . , tn ∈ S with t = t0
and U (tn, v), such that for i < n, ti =⇒ui ti+1 and s Bw ti+1 for ui ≤ w ≤ ui+1.

• Base case: n = 0. Then u = v. By case 3 of Definition 30, U (t, u).

• Inductive case: n > 0. Since U (s, v), clearly also U (s, u1). By case 3 of Defini-
tion 30 there is a t1 ∈ S such that t =⇒u t1, s Bu t1 and s Bu1 t1. Hence, s Bw t1
for u ≤ w ≤ u1. By induction, s Bu1 t1 together with U (s, v) implies that there
are t2, . . . , tn ∈ S with U (tn, v), such that for 1 ≤ i < n, ti =⇒ui ti+1, s Bui ti+1 and
s Bui+1 ti+1. Hence, s Bw ti+1 for ui ≤ w ≤ ui+1.

We conclude that case 5 of Definition 31 holds. Similarly it can be proved that B satis-
fies case 6 of Definition 31. Hence B is a timed branching bisimulation relation accord-
ing to Definition 31. So ↔Z

tb ⊆↔ tb.

11.6 Rooted Timed Branching Bisimilarity as a
Congruence

11.6.1 Rooted Timed Branching Bisimilarity
In this section, we prove that a rooted version of the timed branching bisimulation as
defined in Definition 31 is a congruence over a given basic process algebra with se-
quential, alternative, and parallel composition. Like (untimed) branching bisimilarity,
timed branching bisimilarity is not a congruence over most process algebras from the
literature. A rootedness condition has been introduced for branching bisimilarity to
remedy this imperfection (Bergstra and Klop, 1985; Milner, 1989). First, we provide
a related definition of rooted timed branching bisimulation in Definition 34. Follow-
ing, we introduce the transition rules of a basic process algebra, encompassing atomic
actions, including τ and δ, and the alternative, sequential, and parallel composition
process operators. Next, we define what a congruence is. After that, the congruence
proof is presented.

Definition 34 (Rooted timed branching bisimulation). Assume a TLTS (S ,T ,U ).
A binary relation B ⊆ S ×S is a rooted timed branching bisimulation if s B t implies:

1. if s `−→u s′, then t `−→u t′ with s′ ↔u
tb t′;
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2. if t `−→u t′, then s `−→u s′ with s′ ↔u
tb t′;

3. s ↓ iff t ↓;

4. U (s, u) iff U (t, u).

Two states s and t are rooted timed branching bisimilar, denoted by s ↔rtb t, if there is
a rooted timed branching bisimulation B with s B t.

Note that ↔rtb⊆↔ tb. A rooted timed branching bisimulation relation is a timed
branching bisimulation relation, where in cases 1 to 4 of Definition 31 ‘=⇒u ’ constitutes
zero τ-steps, and in cases 5 and 6 n = 0.

11.6.2 A Basic Process Algebra

In the following, x, y are variables, p, q, r are process terms, and s, t are process terms
or

p
, with

p
a special state representing successful termination.

Here, we present a basic process algebra, which we will use in subsequent sections in
our congruence proof. It is based on the process algebra BPAρδU (Baeten and Bergstra,
1991). We consider the following transition rules for the process algebra used, where
the synchronisation of two actions a and b resulting in an action c, denoted by a | b = c,
is defined by means of a function C : A × A → A ∪ {τ,δ}. Whenever two actions a and
b should never synchronise, we define that a | b = δ.

Termination : p ↓ Atomic :
a(u) a−→u

p

Alt1 :
x a−→u x′

x + y a−→u x′
Alt2 :

x a−→u
p

x + y a−→u
p

Alt3 :
y a−→u y′

x + y a−→u y′
Alt4 :

y a−→u
p

x + y a−→u
p

Seq1 :
x a−→u x′

x·y a−→u x′·y
Seq2 :

x a−→u
p

x·y a−→u y

Par1 :
x a−→u x′ U (y, u)

x || y a−→u x′ || y
Par2 :

y a−→u y′ U (x, u)

x || y a−→u x || y′

Par3 :
x a−→u

p
U (y, u)

x || y a−→u y
Par4 :

y a−→u
p

U (x, u)

x || y a−→u x
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Par5 :
x a−→u x′ y b−→u y′ a | b = c c 6= δ

x || y c−→u x′ || y′

Par6 :
x a−→u

p
y b−→u y′ a | b = c c 6= δ

x || y c−→u y′

Par7 :
x a−→u x′ y b−→u

p
a | b = c c 6= δ

x || y c−→u x′

Par8 :
x a−→u

p
y b−→u

p
a | b = c c 6= δ

x || y c−→u
p

U (
p

, 0)
U (a(u), v) if v ≤ u
U (δ(u), v) if v ≤ u
U (x·y, v) ⇔ U (x, v)
U (x + y, v) ⇔ U (x, v) ∨ U (y, v)
U (x || y, v) ⇔ U (x, v) ∧ U (y, v)

Definition 35 (Congruence). An equivalence relation R ⊆ S × S over a process al-
gebra with sequential composition (‘·’), alternative composition (‘+’) , and parallel com-
position (‘||’) is called a congruence if s1 R t1 and s2 R t2 implies:

1. s1·s2 R t1·t2;

2. s1 + s2 R t1 + t2;

3. s1 || s2 R t1 || t2.

11.6.3 Congruence Proof for Sequential Composition
First, we prove that rooted timed branching bisimilarity is a congruence for the se-
quential composition operator.

We give an example to show that if p0 ↔u
tb q0 and p1 ↔u

tb q1, then not necessarily
p0·p1 ↔u

tb q0·q1.

Example 7. Let p0 = q0 = a(1), p1 = τ(0)·b(1), q1 = b(1), and u = 0. Clearly, a(1) ↔0
tb

a(1). Also, τ(0)·b(1) ↔0
tb b(1). However, clearly, a(1)·τ(0)·b(1) ↔0

tb a(1)·b(1) does not
hold.

From Example 7, it follows that the standard approach to prove that untimed rooted
branching bisimilarity is a congruence, i.e. take the smallest congruence closure and
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prove that this yields a branching bisimulation (see Fokkink (2000a)), fails for timed
rooted branching bisimilarity when considering sequential composition. This moti-
vates the usage of p1 ↔rtb q1 in Definition 36.

Definition 36 (Relation Cu). Let Cu ⊆ S × S for u ∈ T denote the smallest relation
such that:

1. ↔u
tb ⊆ Cu;

2. if p0 Cu q0 and p1 ↔rtb q1, then p0·p1 Cu q0·q1;

3. if p0 Cu
p

and p1 ↔rtb q1, then p0·p1 Cu q1;

4. if
p

Cu q0 and p1 ↔rtb q1, then p1 Cu q0·q1.

Proposition 3. The relations Cu constitute a timed branching bisimulation.

Proof. The proof consists of three parts (plus three symmetric parts).

A If s Cu t and s `−→u s′, then we must prove, that

i either ` = τ and s′ Cu t,

ii or t =⇒u t̂ `−→u t′ with s Cu t̂ and s′ Cu t′.

We apply induction on the structure of s and t. Since s Cu t, by Definition 36, we
can distinguish four cases.

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed

branching bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. Since p0·p1
`−→u

s′, by the transition rules, we can distinguish two cases:

1. Let p0
`−→u p′

0 and s′ = p′
0·p1. Since p0 Cu q0, by Definition 36, we can

distinguish four cases:

(a) p0 ↔u
tb q0. Since p0

`−→u p′
0, by Definition 31, we can again distinguish

two cases:
i ` = τ and p′

0 ↔u
tb q0. Then p′

0·p1 Cu q0·q1.

ii q0 =⇒u q̂ `−→u t0, with p0 ↔u
tb q̂ and p′

0 ↔u
tb t0. Then,

* either t0 6= p
and q0·q1 =⇒u q̂·q1

`−→u t0·q1, p0·p1 Cu q̂·q1 and
p′

0·p1 Cu t0·q1;

* or t0 = p
and q0·q1 =⇒u q̂·q1

`−→u q1, p0·p1 Cu q̂·q1 and
p′

0·p1 Cu q1.

258



11.6 Rooted Timed Branching Bisimilarity as a Congruence

(b) p0 = p00·p01 and q0 = q00·q01 with p00 Cu q00 and p01 ↔rtb q01. Since
p00·p01

`−→u p′
0, by the transition rules, either p00

`−→u p′
00 with p′

0 =
p′

00·p01, or p00
`−→u

p
and p′

0 = p01.

In the first case, since p00 Cu q00 and p00
`−→u p′

00, by induction,
i either ` = τ and p′

00 Cu q00. Then p′
00·p01·p1 Cu q00·q01·q1.

ii or q00 =⇒u q̂00
`−→u t00, with p00 Cu q̂00 and p′

00 Cu t00. Then,

* either t00 6= p
and q00·q01 =⇒u q̂00·q01

`−→u t00·q01, so
q00·q01·q1 =⇒u q̂00·q01·q1

`−→u t00·q01·q1. Furthermore
p00·p01·p1 Cu q̂00·q01·q1 and p′

00·p01·p1 Cu t00·q01·q1.

* or t00 = p
and q00·q01 =⇒u q̂00·q01

`−→u q01, so
q00·q01·q1 =⇒u q̂00·q01·q1

`−→u q01·q1. Furthermore
p00·p01·p1 Cu q̂00·q01·q1 and p′

00·p01·p1 Cu q01·q1.

In the second case, since p00 Cu q00 and p00
`−→u

p
, by induction,

i either ` = τ and
p

Cu q00. Then p01·p1 Cu q00·q01·q1.
ii or q00 =⇒u q̂00

`−→u t00 with p00 Cu q̂00 and
p

Cu t00. Then,

* either t00 6= p
and q00·q01·q1 =⇒u q̂00·q01·q1

`−→u t00·q01·q1. Fur-
thermore p00·p01·p1 Cu q̂00·q01·q1 and p01·p1 Cu t00·q01·q1.

* or t00 = p
and q00·q01·q1 =⇒u q̂00·q01·q1

`−→u q01·q1. Further-
more p00·p01·p1 Cu q̂00·q01·q1 and p01·p1 Cu q01·q1.

(c) p0 = p00·p01 with p00 Cu
p

and p01 ↔rtb q0. Since p00·p01
`−→u p′

0, by

the transition rules, either p00
`−→u p′

00 with p′
0 = p′

00·p01, or p00
`−→u

p
and p′

0 = p01.
In the first case, since p00 Cu

p
, by induction, `= τ and p′

00 Cu
p

. Then
p′

00·p01·p1 Cu q0·q1.
In the second case, since p00 Cu

p
, by induction, ` = τ. Moreover,

p01·p1 Cu q0·q1.
(d) q0 = q00·q01 with

p
Cu q00 and p0 ↔rtb q01. Since p0 ↔rtb q01 and

p0
`−→u p′

0, by induction, q01
`−→u q′

01 with p′
0 ↔u

tb q′
01. Then

p′
0·p1 Cu q00·q′

01·q1.

2. Let p0
`−→u

p
and s′ = p1. Since p0 Cu q0, by induction,

i either ` = τ and
p

Cu q0. Then p1 Cu q0·q1.
ii or q0 =⇒u q̂0

`−→u t0 with p0 Cu q̂0 and
p

Cu t0. Then,

* either t0 6= p
and q0·q1 =⇒u q̂0·q1

`−→u t0·q1. Furthermore
p0·p1 Cu q̂0·q1 and p1 Cu t0·q1.

* or t0 = p
and q0·q1 =⇒u q̂0·q1

`−→u q1. Furthermore p0·p1 Cu q̂0·q1
and p1 Cu q1.
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Thirdly, s = p0·p1, with p0 Cu
p

and p1 ↔rtb t. Since p0·p1
`−→u s′, by the

transition rules, we can distinguish two cases:

1. p0
`−→u p′

0 and s′ = p′
0·p1. Since p0 Cu

p
, by induction, ` = τ and p′

0 Cu
p

.
Then p′

0·p1 Cu t.

2. p0
`−→u

p
and s′ = p1. Since p0 Cu

p
, by induction, ` = τ. And p1 ↔rtb t

clearly implies p1 Cu t.

Fourthly, t = q0·q1, with
p

Cu q0 and s ↔rtb q1. Since
p ↓, by induction,

q0 =⇒u t0 ↓. Clearly, t0 = p
. Since s ↔rtb q1, s `−→u s′ implies q1

`−→u t′ with
s′ ↔u

tb t′. So q0·q1 =⇒u q1
`−→u t′.

B If s Cu t and s ↓, then we must prove, that t =⇒u t′ ↓, with s Cu t′.

We apply induction on the structure of s and t. Since s Cu t, by Definition 36, we
can distinguish four cases:

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed

branching bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. This case is
vacuous, since s = p0·p1 contradicts s ↓.

Thirdly, s = p0·p1, with p0 Cu
p

and p1 ↔rtb t. This case is vacuous, since
s = p0·p1 contradicts s ↓.

Fourthly, t = q0·q1, with
p

Cu q0 and s ↔rtb q1. This case is vacuous, since s ↓
and s ↔rtb q1 implies q1 ↓, which is not possible.

C If s Cu t and u ≤ v and U (s, v), then we must prove, that for some n ≥ 0 there are
t0,. . .,tn ∈ S with t = t0 and U (tn, v), and u0,. . . , un ∈ T with u = u0 and v = un,
such that for i < n, ti =⇒ui ti+1 and s Cw ti+1 for ui ≤ w ≤ ui+1.

We apply induction on the structure of s and t. Since s Cu t, by Definition 36, we
can distinguish four cases:

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed

branching bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. Since U (p0·p1,
v), also U (p0, v). Since p0 Cu q0 and u ≤ v, by induction, for some n ≥ 0 there
are q̂0, . . . , q̂n ∈ S with q0 = q̂0 and U (q̂n, v), and u0, . . . , un ∈T with u = u0 and
v = un, such that for i < n, q̂i =⇒ui q̂i+1 and p0 Cw q̂i+1 for ui ≤ w ≤ ui+1. Clearly,
t = q̂0·q1 and U (q̂n·q1, v), and for i < n, q̂i·q1 =⇒ui q̂i+1·q1 and p0·p1 Cw q̂i+1·q1
for ui ≤ w ≤ ui+1.
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Thirdly, s = p0·p1 with p0 Cu
p

and p1 ↔rtb t. Since U (s, v), also U (p0, v). Since
v > u, by case C, this contradicts p0 Cu

p
, so this case is vacuous.

Fourthly, t = q0·q1 with
p

Cu q0 and s ↔rtb q1. Since
p

Cu q0, by case C,
q0 =⇒u

p
and ¬U (q0, v) for v ≥ u. So q0·q1 =⇒u q1. Since s ↔rtb q1 and U (s, v),

also U (q1, v). Clearly, the proof obligation holds with n = 1.

Theorem 3. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0·p1 ↔rtb q0·q1.

Proof. By Definition 34, we distinguish four cases:

1. Let p0·p1
`−→u s. By the transition rules, we can distinguish two cases:

a) p0
`−→u p′

0 and s = p′
0·p1. Since p0 ↔rtb q0, q0

`−→u t with p′
0 ↔u

tb t. By the
transition rules, we can distinguish two cases:

i. Either t 6= p
and q0·q1

`−→u t·q1. By proposition 3, p′
0·p1 ↔u

tb t·q1.

ii. Or t = p
and q0·q1

`−→u q1. By proposition 3, p′
0·p1 ↔u

tb q1.

b) p0
`−→u

p
and s = p1. Since p0 ↔rtb q0, q0

`−→u t with
p ↔u

tb t. By the
transition rules, we can distinguish two cases:

i. Either t 6= p
and q0·q1

`−→u t·q1. By proposition 3, p1 ↔u
tb t·q1.

ii. Or t = p
and q0·q1

`−→u q1. Since p1 ↔rtb q1, p1 ↔u
tb q1.

2. Let q0·q1
`−→u t. Similar to the previous case.

3. Let U (p0·p1, u). Then U (p0, u). Since p0 ↔rtb q0, U (q0, u). This means that
U (q0·q1, u).

4. Let U (q0·q1, u). Similar to the previous case.

11.6.4 Congruence Proof for Alternative Composition
Next, we prove that rooted timed branching bisimilarity is a congruence for the alter-
native composition operator.

Theorem 4. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0 + p1 ↔rtb q0 + q1.

Proof. By Definition 34, we distinguish four cases:

1. Let p0 + p1
`−→u s. By the transition rules, we can distinguish two cases:
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a) p0
`−→u s. Since p0 ↔rtb q0, q0

`−→u t with s ↔u
tb t. Then q0 + q1

`−→u t.

b) p1
`−→u s. Similar to the previous case.

2. Let q0 + q1
`−→u t. Similar to the previous case.

3. Let U (p0 + p1, u). Since U (p0 + p1, u), either U (p0, u) or U (p1, u). Since p0 ↔rtb
q0 and p1 ↔rtb q1, either U (q0, u), or U (q1, u), respectively. Hence, U (q0+q1, u).

4. Let U (q0 + q1, u). Similar to the previous case.

11.6.5 Congruence Proof for Parallel Composition
Finally, we indicate how to prove that rooted timed branching bisimilarity is a con-
gruence for the parallel composition operator. This proof largely follows the one for
sequential composition.

Definition 37 (Relation Du). Let Du ⊆ S × S for u ∈ T denote the smallest relation
such that:

1. ↔u
tb ⊆ Du;

2. if p0 Du q0 and p1 Du q1, then p0 || p1 Du q0 || q1;

3. if p0 Du
p

and p1 Du q1, then p0 || p1 Du q1;

4. if p0 Du q0 and p1 Du
p

, then p0 || p1 Du q0;

5. if
p

Du q0 and p1 Du q1, then p1 Du q0 || q1;

6. if p0 Du q0 and
p

Du q1, then p0 Du q0 || q1;

7. if p0 Du
p

and p1 Du
p

, then p0 || p1 Du
p

;

8. if
p

Du q0 and
p

Du q1, then
p

Du q0 || q1.

Lemma 9. If p Du q and U (p, u), then U (q, u).

Proof. By Definition 37, we can distinguish six cases (the last two of Definition 37 are
not applicable):

1. p ↔u
tb q. Then it follows immediately from Definition 31, case 6, that U (q, u).5

5Note that this holds due to ‘u ≤ v’ and ‘n ≥ 0’ in case 6, because in the original definition of Van der Zwaag,
we would have δ(1) ↔Z,2

tb δ(2); see footnote 3.
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2. p = p0 || p1 and q = q0 || q1, with p0 Du q0 and p1 Du q1. Since U (p0 || p1, u),
we have U (p0, u) and U (p1, u). Therefore, by induction, U (q0, u) and U (q1, u).
From this, it follows that U (q0 || q1, u).

3. p = p0 || p1, with p0 Du
p

and p1 Du q. Since U (p0 || p1, u), we have U (p1, u).
Therefore, by induction, U (q, u).

4. p = p0 || p1, with p0 Du q and p1 Du
p

. Similar to the previous case.

5. q = q0 || q1, with
p

Du q0 and p Du q1. By Definition 37,
p↔u

tb q0. Since q0 6= p
,

it follows from Definition 31, case 3, that U (q0, u). Since U (p, u), by induction,
U (q1, u). From U (q0, u) and U (q1, u), it follows that U (q0 || q1, u).

6. q = q0 || q1, with p Du q0 and
p

Du q1. Similar to the previous case.

In the forthcoming proofs of Proposition 4 and Theorem 5, all cases that involve
successful termination have been discarded. We point out that the full proof contains
at least 528 different cases.

Proposition 4. The relations Du constitute a timed branching bisimulation.

Proof. The proof consists of two parts (plus two symmetric parts); The proof consists
of three parts (plus three symmetric parts) if we would take into account successful
termination.

A If s Du t and s `−→u s′, then we must prove, that

i either ` = τ and s′ Du t,

ii or t =⇒u t̂ `−→u t′ with s Du t̂ and s′ Du t′.

We apply induction on the structure of s and t. Since s Du t, by Definition 37, we
can distinguish two cases (eight if we consider successful termination).

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed

branching bisimilarity.

Secondly, s = p0 || p1 and t = q0 || q1, with p0 Du q0 and p1 Du q1. Since p0 ||
p1

`−→u s′, by the transition rules, we can distinguish three cases (eight if we
consider successful termination):

1. Let p0
`−→u p′

0, U (p1, u) and s′ = p′
0 || p1. By Lemma 9, since U (p1, u), also

U (q1, u). Since p0 Du q0, by Definition 37, we can distinguish two cases
(eight if we consider successful termination):

(a) p0 ↔u
tb q0. Since p0

`−→u p′
0, by Definition 31, we can again distinguish

two cases:
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i ` = τ and p′
0 ↔u

tb q0. Then p′
0 || p1 Du q0 || q1.

ii q0 =⇒u q̂ `−→u t0, with p0 ↔u
tb q̂ and p′

0 ↔u
tb t0. Then, since U (q1, u)

(and we do not consider successful termination, hence t0 6= p
), it

follows that q0 || q1 =⇒u q̂ || q1
`−→u t0 || q1, p0 || p1 Du q̂ || q1 and

p′
0 || p1 Du t0 || q1.

(b) p0 = p00 || p01 and q0 = q00 || q01 with p00 Du q00 and p01 Du q01. Since
p00 || p01

`−→u p′
0, by the transition rules (not considering successful

termination), either p00
`−→u p′

00 and U (p01, u) with p′
0 = p′

00 || p01, or

p01
`−→u p′

01 and U (p00,u) with p′
0 = p00 || p′

01, or p00 || p01
`−→u p′

00 || p′
01

with p′
0 = p′

00 || p′
01 if there exist `0, `1 ∈ A such that p00

`0−→u p′
00,

p01
`1−→u p′

01, and `0 | `1 = `.
In the first case, by Lemma 9, since U (p01, u), also U (q01, u). Since
p00 Du q00 and p00

`−→u p′
00, by induction,

i either ` = τ and p′
00 Du q00. Then p′

00 || p01 || p1 Du q00 || q01 || q1.

ii or q00 =⇒u q̂00
`−→u t00, with p00 Du q̂00 and p′

00 Du t00. Then (we
do not consider successful termination here, hence t00 6= p

), q00 ||
q01 =⇒u q̂00 || q01

`−→u t00 || q01, so, since U (q01 || q1, u), q00 || q01 ||
q1 =⇒u q̂00 || q01 || q1

`−→u t00 || q01 || q1. Furthermore p00 || p01 ||
p1 Du q̂00 || q01 || q1 and p′

00 || p01 || p1 Du t00 || q01 || q1.
The second case is similar to the first case.
In the third case, since p00 Du q00, p00

`0−→u p′
00, and `0 6= τ (since

`0 | `1 = `), by induction, q00 =⇒u q̂00
`0−→u t00, with p00 Du q̂00 and

p′
00 Du t00. Similarly, since p01 Du q01, p01

`1−→u p′
01, and `1 6= τ

(since `0 | `1 = `), by induction, q01 =⇒u q̂01
`0−→u t01. Then (we do

not consider successful termination here, hence t00 6= p
and t01 6= p

),
it follows that q00 || q01 =⇒u q̂00 || q̂01

`−→u t00 || t01. Since U (q1, u),
q00 || q01 || q1 =⇒u q̂00 || q̂01 || q1

`−→u t00 || t01 || q1. Furthermore p00 ||
p01 || p1 Du q̂00 || q̂01 || q1 and p′

00 || p′
01 || p1 Du t00 || t01 || q1.

2. Let p1
`−→u p′

1, U (p0, u) and s′ = p0 || p′
1. This case is similar to the previous

case.

3. Let p0 || p1
`−→u p′

0 || p1 with `0, `1 ∈ A such that p0
`0−→u p′

0, p1
`1−→u p′

1,

and `0 | `1 = `. Since p0 Du q0, p0
`0−→u p′

0, and `0 6= τ (since `0 | `1 = `),

by induction, q0 =⇒u q̂0
`0−→u t0, with p0 Du q̂0 and p′

0 Du t0. Similarly,

since p1 Du q1, p1
`1−→u p′

1, and `1 6= τ (since `0 | `1 = `), by induction,
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q1 =⇒u q̂1
`1−→u t1. Then (we do not consider successful termination here,

hence t0 6= p
and t1 6= p

), it follows that q0 || q1 =⇒u q̂0 || q̂1
`−→u t0 || t1.

Furthermore p0 || p1 Du q̂0 || q̂1 and p′
0 || p′

1 Du t0 || t1.

B If s Du t and u ≤ v and U (s, v), then we must prove, that for some n ≥ 0 there are
t0,. . .,tn ∈ S with t = t0 and U (tn, v), and u0,. . . , un ∈ T with u = u0 and v = un,
such that for i < n, ti =⇒ui ti+1 and s Dw ti+1 for ui ≤ w ≤ ui+1.

We apply induction on the structure of s and t. Since s Du t, by Definition 37, we
can distinguish two cases (eight if we consider successful termination).

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed

branching bisimilarity.

Secondly, s = p0 || p1 and t = q0 || q1, with p0 Du q0 and p1 Du q1. Since U (p0 ||
p1, v), also U (p0, v) and U (p1, v). Since p0 Du q0 and u ≤ v, by induction, for
some n ≥ 0 there are q̂0, . . . , q̂n ∈ S with q0 = q̂0 and U (q̂n, v), and u0, . . . , un ∈
T with u = u0 and v = un, such that for i < n, q̂i =⇒ui q̂i+1 and p0 Dw q̂i+1
for ui ≤ w ≤ ui+1. Similarly, since p1 Du q1 and u ≤ v, by induction, for some
m ≥ 0 there are q̂′

0, . . . , q̂′
m ∈ S with q1 = q̂′

0 and U (q̂′
m, v), and u′

0, . . . , u′
m ∈ T

with u = u′
0 and v = u′

m, such that for i < m, q̂′
i =⇒u′

i
q̂′

i+1 and p1 Dw q̂′
i+1 for

u′
i ≤ w ≤ u′

i+1. Clearly, these two sequences for q̂0, . . . , q̂n and for q̂′
0, . . . , q̂′

m
can in a straightforward fashion be transformed into a sequence, such that for
k = n + m there are q̄0, . . . , q̄k ∈ S and q̄′

0, . . . , q̄′
k ∈ S with q0 = q̄0, U (q̄k, v),

q1 = q̄′
0, U (q̄′

k, v), and u0, . . . , uk ∈ T with u = u0 and v = uk, such that for i < k,
q̄i || q̄′

i =⇒ui q̄i+1 || q̄′
i+1 and p0 || p1 Dw q̄i+1 || q̄′

i+1 for ui ≤ w ≤ ui+1.

Theorem 5. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0 || p1 ↔rtb q0 || q1.

Proof. By Definition 34, we distinguish four cases:

1. Let p0 || p1
`−→u s. By the transition rules, we can distinguish three cases (eight

if we consider successful termination):

a) p0
`−→u p′

0 and s = p′
0 || p1. Since p0 ↔rtb q0, q0

`−→u t with p′
0 ↔u

tb t. Since
we do not consider successful termination (t 6= p

), by the transition rules,
q0 || q1

`−→u t || q1. By proposition 4, p′
0 || p1 ↔u

tb t || q1.

b) p1
`−→u p′

1 and s = p0 || p′
1. Similar to the previous case.

c) p0 || p1
`−→u p′

0 || p′
1 with `0, `1 ∈ A such that p0

`0−→u p′
0, p1

`1−→u p′
1, and

`0 | `1 = `. Since p0 ↔rtb q0, q0
`0−→u t0 with p′

0 ↔u
rtb t0. Since p1 ↔rtb q1,

265



Chapter 11 Is Timed Branching Bisimilarity a Congruence Indeed?

q1
`0−→u t1 with p′

1 ↔u
rtb t1. Since we do not consider successful termina-

tion (t0 6= p
and t1 6= p

), by the transition rules, q0 || q1
`−→u t0 || t1. By

proposition 4, p′
0 || p′

1 ↔u
tb t0 || t1.

2. Let q0 || q1
`−→u t. Similar to the previous case.

3. Let U (p0 || p1, u). Then U (p0, u) and U (p1, u). Since p0 ↔rtb q0 and p1 ↔rtb q1,
U (q0, u) and U (q1, u). This means that U (q0 || q1, u).

4. Let U (q0 || q1, u). Similar to the previous case.

11.7 Future Work
We conclude the chapter by pointing out some possible research directions for the fu-
ture.

1. Van der Zwaag (2001) extended the cones and foci verification method of Groote
and Springintveld (2001) to TLTSs. Fokkink and Pang (2005) proposed an adap-
tation of this timed cones and foci method. Both papers take ↔Z

tb as a starting
point. It should be investigated whether a timed cones and foci method can be
formulated for ↔ tb as defined in the current chapter.

2. Van Glabbeek (1993) presented a wide range of concurrency semantics for un-
timed processes with the silent step τ. It would be a challenge to try and for-
mulate timed versions of these semantics, and prove equivalence and congruence
properties for the resulting timed semantics.
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Appendix A

Preserving Behaviour when
Transforming µCRLtick to µCRL

I
N THIS APPENDIX, WE PROVE that the behaviour of a µCRLtick specification
MT is preserved in a µCRL specification M resulting from a transforma-
tion of MT. Since the sets of axioms and transition rules of µCRL are
subsets of the sets of axioms and transition rules of µCRLtick, the majority

of the work here involves proving that the axioms and transition rules concerning the
clock actions, as stated in Tables 5.1 and 5.2, can be ‘observed’ in µCRL specifications
stemming from the transformation of a µCRLtick specification, i.e. even though these
axioms and transition rules do not explicitly exist for µCRL, in this particular subclass
of µCRL specifications they do hold. We denote the transition rules as TR1,. . .,TR26. If
X = a(i), Y (m) = a(m) and m = i, we say that X = Y (m). Furthermore, since in prac-
tice, µCRL (and therefore µCRLtick) processes do not (syntactically) contain successful
termination, we restrict the proof to those cases in Table 5.2 where the process terms
x and y do not lead to

p
after firing a transition. First focussing on the axioms and

transition rules shared by µCRL and µCRLtick, we begin by proving that an untimed
system remains unchanged after transformation. This relates to semantics conserva-
tion as defined by Nicollin and Sifakis (1991). This notion is defined in Definition 38.
Following, Proposition 5 describes what needs to be shown to prove that semantics
conservation holds for µCRLtick.

Definition 38 (Semantics conservation (Nicollin and Sifakis, 1991)). Consider-
ing an untimed process algebra UPA and a timed version of this algebra TPA, seman-
tics conservation holds for these algebras iff an untimed UPA process and its time-
equivalent TPA process have the same behaviour as long as we observe execution of
actions only. This imposes that the rules of UPA remain valid in TPA, as far as they are
applied on terms of UPA.

Proposition 5 (Semantics conservation of µCRLtick). Given a µCRLtick specifica-
tion MT without delays, then MT behaves as its transformation M.

Proof. Follows from the form of the TX ∈ P and I. Say that MT consists of a number
of processes without delays. For each process P, in the transformed process TP, all
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Appendix A Preserving Behaviour when Transforming µCRLtick to µCRL

actions, with their corresponding parameters, conditions and recursive calls are copied
from P. Since IP

C = ;, furthermore, all other lines in TP are disabled, except for the
tock alternatives. Since this holds for all processes in MT, communications of clock
actions can only result in tock actions, which are in the end encapsulated in I.

Proposition 6 (DRT1). Given a µCRLtick process X = tick(n)·Y , with n < 0. Then TX
behaves as Tδ.

Proof. If we transform X to TX , we get TX = ring·TX̂ /n=0.δ+tick(θ(T,n))·TX ′(T→
n − t, n) / θ(T, n) 6= c . δ + ∑

t∈T tock(t)·TX ′(T → n − t, n) / 0 < t < θ(T, n) . δ. Since
n 6= 0, the ring option is disabled. Furthermore, since θ(T, n) = c, the tick option is
also disabled. So, practically, TX = ∑

t∈T tock(t)·TX ′(n − t) / 0 < t < c . δ. Sim-
ilarly, the ring and tick options in TX ′ are disabled, and since IX

D = ;, we prac-
tically have TX ′ = ∑

t∈T tock(t)·TX ′(n − t) / 0 < t < c . δ. Clearly, we have Tδ =
δ + ∑

t∈T tock(t)·Tδ′ / 0 < t < c . δ, and Tδ′ = δ + ∑
t∈T tock(t)·Tδ′ / 0 < t < c . δ.

Since the parameter of TX ′ does not have any behavioural effect and δ is never an
option to fire, these two systems behave in the same way.

Proposition 7 (DRT2). Given two µCRLtick processes Z0 = tick(n)·X + tick(n)·Y and
Z1 = tick(n)·(X + Y ). Then, TZ0 behaves as TZ1.

Proof. The transformation leads to the following:

TZ0 = ring·TẐ0 / n = 0 . δ+
tick(θ(T, n))·TZ′

0(n − θ(T, n), n − θ(T, n)) / θ(T, n) 6= c. δ+∑
t∈T

tock(t)·TZ′
0(n − t, n − t) / 0 < t < θ(T, n) . δ

TẐ0 = T(X [n = 0] + Y [n = 0])

TZ′
0(ct0 : T, ct1 : T) = ring·TẐ′

0(ct0, ct1)/ ct0 = 0 ∨ ct1 = 0 . δ+
tick(θ(T, ct0, T, ct1))·TZ′

0(ct0 − θ(T, ct0, T, ct1), ct1 − θ(T, ct0, T, ct1)) / θ(T, ct0, T, ct1) 6= c. δ+∑
t∈T

tock(t)·TZ′
0(ct0 − t, ct1 − t) / 0 < t < θ(T, ct0, T, ct1) . δ

TẐ′
0(ct0 : T, ct1 : T) = T(X [ct0 = 0] + Y [ct1 = 0])

TZ1 = ring·TẐ1 / n = 0 . δ+
tick(θ(T, n))·TZ′

1(n − θ(T, n)) / θ(T, n) 6= c. δ+∑
t∈T

tock(t)·TZ′
1(n − t) / 0 < t < θ(T, n) . δ

TẐ1 = T(X [n = 0] + Y [n = 0])

TZ′
1(ct0 : T) = ring·TẐ′

1(ct0)/ ct0 = 0. δ+
tick(θ(T, ct0))·TZ′

1(ct0 − θ(T, ct0)) / ct0 6= c. δ+∑
t∈T

tock(t)·TZ′
1(ct0 − t) / 0 < t < ct0 . δ

TẐ′
1(ct0 : T) = T(X [ct0 = 0] + Y [ct0 = 0])
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Here, P[b], with b :B, refers to the process P, with all the conditions of its alternatives
extended with ‘∧b’. First of all, clearly TẐ0 = TẐ1. Furthermore, TZ0 = TZ1, TZ′

0 =
TZ′

1, and TẐ′
0 = TẐ′

1, considering that we can observe, that the two delays are initially
of equal length, and furthermore, at all times ct0 = ct1.

Proposition 8 (TR1, TR2). For X = tick(m)·Y with m > 0, ∃TX i.TX tick(m)−→ TX i with
TX i = TZ1, Z1 = tick(0)·Y and ∃TX j.TX tock(n)−→ TX j with 0 < n < m and TX j = TZ2,
Z2 = tick(m − n)·Y .

Proof. Consider a process X = tick(m)·Y with m>0. This transforms to TX = ring·TX̂ /

m= 0.δ+ tick(θ(T, m))·TX ′(m−θ(T, m))/θ(T, m) 6= c.δ+∑
t∈T tock(t)·TX ′(m− t)/0<

t < θ(T, m). δ with TX ′(ct0 :T) = ring·TX̂ ′(ct0)/ ct0 = 0. δ+ tick(θ(T, ct0))·TX̂ ′(ct0 −
θ(T, ct0))/θ(T, ct0) 6=c.δ+∑

t∈T tock(t)·TX ′(ct0− t)/0< t<θ(T, ct0).δ and TX̂ ′=TY .
Since θ(T, m) = m, TX can fire tick(m), leading to TX ′(m − m), which is clearly equal
to TZ1. Another possibility for TX is to fire tock(t), with 0 < t < m, leading to process
TX ′(m − t), which is clearly equal to TZ2.

Proposition 9 (TR3). Given a µCRLtick process X = a·Y , with a ∈ AD . Then
∃TX i.TX tock(m)−→ TX i, with 0 < m and TX i = TX .

Proof. We have TX = a·TY + tick(θ)·TX ′ / θ 6= c. δ+∑
t∈T tock(t)·TX ′ / 0 < t < θ . δ.

Since θ = c, tick 6∈ enA(TX ), but tock ∈ enA(TX ). We have (TX , tock(t), TX ′) ∈ en(TX ),
with 0< t< c, c being the reasonable upper-limit to the size of time steps. Furthermore,
TX ′ = a·TY + tick(θ)·TX ′ / θ 6= c . δ + ∑

t∈T tock(t)·TX ′ / 0 < t < θ . δ, so clearly
TX = TX ′.

Proposition 10 (TR4). Given a µCRLtick process X = a·Y , with a ∈ AU . Then
∃TX i.TX tock(m)−→ TX i, with 0 < m and TX i = Tδ.

Proof. We have TX = a·TY + tick(θ)·TX ′ / θ 6= c. δ+∑
t∈T tock(t)·TX ′ / 0 < t < θ . δ.

Since θ = c, tick 6∈ enA(TX ), but tock ∈ enA(TX ). We have (TX , tock(t), TX ′) ∈ en(TX ),
with 0< t< c, c being the reasonable upper-limit to the size of time steps. Furthermore,
TX ′ = tick(θ)·TX ′ / θ 6= c. δ+∑

t∈T tock(t)·TX ′ / 0 < t < θ . δ, which can only fire tock
steps. Clearly TX ′ behaves as Tδ with Tδ′.

Proposition 11 (TR5). Given a µCRLtick process X = tick(0)·TY . Then TX
ring−→ TY .

Proof. We have TX = ring·TX̂ / 0 = 0 . δ + tick(θ(T, 0))·TX ′(0 − θ(T, 0)) / θ(T, 0) 6=
c . δ + ∑

t∈T tock(t)·TX ′(0 − θ(T, 0)) / 0 < t < θ(T, 0) . δ. From this, it clearly follows
that TX can fire ring. Furthermore, since tick is a clock action, and there is only one
tick action in X , it follows that TX̂ = TY .
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Proposition 12 (TR6, TR7). Given two µCRLtick processes P and Q, such that
∃TPi.TP tick(m)−→ TPi and ∃TQ j.TQ tick(m)∨tock(m)−→ TQ j, then (1) T(P +Q) tick(m)−→ T(Pi +Q j)

and (2) T(Q + P) tick(m)−→ T(Q j + Pi).

Proof. We only prove (1) here. The proof for (2) is similar, due to the commutativity of
+. First of all, let R(d : D) = P + Q be of the following form:

R(d :D) = ∑
i∈IP

∑
eP

i ∈DP
i

aP
i (f P

i )·X P
i (gP

i ) / hP
i . δ+

∑
i∈IQ

∑
eQ

i ∈DQ
i

aQ
i (f Q

i )·XQ
i (gQ

i ) / hQ
i . δ

Now we have TR(d : D) as follows:

TR(d :D) =∑
i∈IP \IP

C

∑
eP

i ∈DP
i

aP
i (f P

i )·TX P
i (gP

i ) / hP
i . δ+

∑
i∈IQ\IQ

C

∑
eQ

i ∈DQ
i

aQ
i (f Q

i )·TXQ
i (gQ

i )/ hQ
i . δ+

ring·TR̂(d)/ F ∨ ∨
i∈IP

C

(f P
i = 0 ∧ hP

i ) ∨ ∨
i∈IQ

C

(f Q
i = 0 ∧ hQ

i ). δ+

tick(θ(hiP
c

, f iP
c

−−−−−−−→
, h

iQ
c

, f
iQ
c

−−−−−−−→
))·TR′(d, hiP

c
→ f iP

c
− θ(hiP

c
, f iP

c

−−−−−−−→
, h

iQ
c

, f
iQ
c

−−−−−−−→
), f iP

c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
,

h
iQ
c

→ f
iQ
c
− θ(hiP

c
, f iP

c

−−−−−−−→
, h

iQ
c

, f
iQ
c

−−−−−−−→
), f

iQ
c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
) / θ(hiP

c
, f iP

c

−−−−−−−→
, h

iQ
c

, f
iQ
c

−−−−−−−→
) 6= c . δ+∑

t∈T
tock(t)·TR′(d, hiP

c
→ f iP

c
− t, f iP

c

−−−−−−−−−−−−−−−−→
, h

iQ
c

→ f
iQ
c
− t, f

iQ
c

−−−−−−−−−−−−−−−−→
)/ 0 < t < θ(hiP

c
, f iP

c

−−−−−−−→
, h

iQ
c

, f
iQ
c

−−−−−−−→
) . δ

Since ∃TPi.TP tick(m)−→ TPi, by the form of TP, θ(hiP
c

, f iP
c

−−−−−−→
) = m and TPi = TP ′. We

can distinguish two cases:

1. ∃TQ j.TQ tick(m)−→ TQ j. Then, by the form of TQ, θ(hiQ
c

, f iQ
c

−−−−−−→
) = m and TQ j = TQ′.

By the definition of θ, θ(b0, n0
−−−−→

, b1, n1
−−−−→

) = min{θ(b0, n0
−−−−→

),θ(b1, n1
−−−−→

)}, therefore
θ(hiP

c
, f iP

c

−−−−−−→
, hiQ

c
, f iQ

c

−−−−−−→
) = m. So TR(d) tick(m)−→ TR′(d, . . .).

2. ∃TQ j.TQ tock(m)−→ TQ j. Then, by the form of TQ, θ(hiQ
c

, f iQ
c

−−−−−−→
) > m and TQ j = TQ′.

By the definition of θ, θ(b0, n0
−−−−→

, b1, n1
−−−−→

) = min{θ(b0, n0
−−−−→

),θ(b1, n1
−−−−→

)}, therefore
θ(hiP

c
, f iP

c

−−−−−−→
, hiQ

c
, f iQ

c

−−−−−−→
) = m. So TR(d) tick(m)−→ TR′(d, . . .).

Finally, we show that TR′(d, ctiPc
: T

−−−−−→
, ctiQc

: T
−−−−−→

) = T(P ′ + Q′).

We have TR′(d, ctiPc
: T

−−−−−→
, ctiQc

: T
−−−−−→

) = T(P +Q)′. It follows directly that T(P +Q)′ = T(P ′ +
Q′). A similar argument holds for TR̂ and TR̂′.
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Proposition 13 (TR8). Given two µCRLtick processes P and Q, such that
∃TPi.TP tock(m)−→ TPi and ∃TQ j.TQ tock(m)−→ TQ j, then T(P + Q) tock(m)−→ T(Pi + Q j).

Proof. First of all, let R(d : D) = P + Q and TR(d : D) be of the forms as presented in
Proposition 12.

Since ∃TPi.TP tock(m)−→ TPi, by the form of TP, θ(hiP
c

, f iP
c

−−−−−−→
) > m and TPi = TP ′. Since

∃TQ j.TQ tock(m)−→ TQ j, by the form of TQ, θ(hiQ
c

, f iQ
c

−−−−−−→
) > m and TQ j = TQ′. By the defini-

tion of θ, θ(b0, n0
−−−−→

, b1, n1
−−−−→

) = min{θ(b0, n0
−−−−→

),θ(b1, n1
−−−−→

)}, therefore θ(hiP
c

, f iP
c

−−−−−−→
, hiQ

c
, f iQ

c

−−−−−−→
) > m.

So TR(d) tock(m)−→ TR′(d, . . .).
Finally, we show that TR′(d, ctiPc

: T
−−−−−→

, ctiQc
: T

−−−−−→
) = T(P ′ + Q′).

We have TR′(d, ctiPc
: T

−−−−−→
, ctiQc

: T
−−−−−→

) = T(P +Q)′. It follows directly that T(P +Q)′ = T(P ′ +
Q′). A similar argument holds for TR̂ and TR̂′.

Proposition 14 (TR9, TR10, TR11, TR12). Given two µCRLtick processes P and Q,

such that ∃TPi.TP
ring−→ TPi and ∃TQ j.TQ

ring−→ TQ j, then T(P + Q)
ring−→ T(Pi + Q j).

Proof. First of all, let R(d : D) = P + Q and TR(d : D) be of the forms as presented in
Proposition 12.

Since ∃TPi.TP
ring−→ TPi, by the form of TP, ∃k ∈ IP

C .f P
k = 0 ∧ hP

k and TPk = TP̂.

Since ∃TQ j.TQ
ring−→ TQ j, by the form of TQ, ∃l ∈ IQ

C .f Q
l = 0 ∧ hQ

l and TQl = TQ̂. By

the form of TR(d), it follows that TR(d)
ring−→ TR̂(d).

Finally, we show that TR̂(d) = T(P̂ + Q̂). We do that by comparing R̂(d) with P̂ + Q̂.
For R̂(d), we have:

R̂(d :D) = ∑
i∈IP

C

∑
j∈IX P

i

∑
ei,P

j ∈Di,P
j

ai,P
j ( f i,P

j (gP
i , ei,P

j ))·

X i,P
j (gi,P

j (gP
i , ei,P

j )) / hi,P
j (gP

i , ei,P
j ) ∧ f P

i = 0 ∧ hP
i . δ+∑

i∈IQ
C

∑
j∈IXQ

i

∑
ei,Q

j ∈Di,Q
j

ai,Q
j ( f i,Q

j (gQ
i , ei,Q

j ))·

X i,Q
j (gi,Q

j (gQ
i , ei,Q

j )) / hi,Q
j (gQ

i , ei,Q
j ) ∧ f Q

i = 0 ∧ hQ
i . δ

Clearly, this is equal to P̂ + Q̂.

Proposition 15 (TR13, TR14, TR15, TR16). Given two µCRLtick processes P and Q,
such that
∃TPi.TP

ring−→ TPi and TQ 6ring−→ , then (1) T(P + Q)
ring−→ TPi and (2) T(Q + P)

ring−→ TPi.
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Proof. We only prove (1) here. The proof for (2) is similar, due to the commutativity
of +. First of all, let R(d : D) = P + Q and TR(d : D) be of the forms as presented in
Proposition 12.

Since ∃TPi.TP
ring−→TPi, by the form of TP, ∃k ∈ IP

C .f P
k = 0∧hP

k and TPk = TP̂. Since

TQ 6ring−→ , by the form of TQ, ¬∃l ∈ IQ
C .f Q

l = 0∧ hQ
l . By the form of TR(d), it follows that

TR(d)
ring−→ TR̂(d).

Finally, we show that TR̂(d) = TP̂. We do that by comparing R̂(d) with TP̂. R̂(d) is
of the form as presented in Proposition 14. Since we know that ¬∃l ∈ IQ

C .f Q
l = 0 ∧ hQ

l ,
effectively, TR(d) = P̂.

Proposition 16 (TR17, TR18, TR19, TR20, TR21, TR22). Given a µCRLtick process
P, such that
∃TPi.TP

ring−→ TPi, then, for any other µCRLtick process Q, TP|T|TQ
ring−→ TPi|T|TQ,

TQ|T|TP
ring−→ TQ|T|TPi and TP·TQ

ring−→ TPi·TQ.

Proof. Follows from the transition rules for || and · in µCRL, since in the transformed
IT, ring actions are not treated in a special way, i.e. are not encapsulated or renamed.

Proposition 17 (TR23, TR24). Given two µCRLtick processes P and Q, such that
∃TPi.TP tick(m)−→ TPi and ∃TQ j.TQ tick(m)∨tock(m)−→ TQ j, then (1) TP|T|TQ tick(m)−→ TPi|T|TQ j

and (2) TQ j|T|TPi
tick(m)−→ TQ j|T|TPi.

Proof. We only prove (1) here. The proof for (2) is similar, due to the commutativity
of |T|. First of all, we have TP|T|TQ , ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TP || TQ)). We can
distinguish two cases:

1. ∃TQ j.TQ tick(m)−→ TQ j. Since (tick, tick, tick′) ∈ C, ∂{tick,tock}(TP || TQ)tick′(m)−→
∂{tick,tock}(TPi || TQ j), therefore ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TP || TQ))tick(m)−→
ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TPi || TQ j)).

2. ∃TQ j.TQ tock(m)−→ TQ j. Since (tick, tock, tick′) ∈ C, ∂{tick,tock}(TP || TQ)tick′(m)−→
∂{tick,tock}(TPi || TQ j), therefore ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TP || TQ))tick(m)−→
ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TPi || TQ j)).

Proposition 18 (TR25). Given two µCRLtick processes P and Q, such that
∃TPi.TP tock(m)−→ TPi and ∃TQ j.TQ tock(m)−→ TQ j, then TP|T|TQ tock(m)−→ TPi|T|TQ j.
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Proof. First of all, we have TP|T|TQ , ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TP || TQ)). Since

(tock, tock, tock′) ∈ C, ∂{tick,tock}(TP || TQ) tock′(m)−→ ∂{tick,tock}(TPi || TQ j), therefore

ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TP || TQ)) tock(m)−→ ρ{tick′→tick,tock′→tock}(∂{tick,tock}(TPi || TQ j)).

Proposition 19 (TR26). Given a µCRLtick process P, such that (1) ∃TPi.TP tick(m)−→ TPi,
then for any µCRLtick process Q, TP·TQ tick(m)−→ TPi·TQ, and (2) ∃TPi.TP tock(m)−→ TPi,
then for any µCRLtick process Q, TP·TQ tock(m)−→ TPi·TQ.

Proof. Both cases follow directly from the form of TP.
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Appendix B

Cannibals and Missionaries
Specifications

T
HIS APPENDIX PRESENTS all the technical details concerning the µCRL
and the PROMELA specifications of the Cannibals and Missionaries prob-
lem, as described in Section 10.3. Besides the specifications themselves, we
show the commands invoked at the command line to initiate the searches

performed.

B.1 The Experiments with SPIN

First of all, Figure B.1 presents the PROMELA specification of the Cannibals and Mis-
sionaries problem we used. It incorporates C-code, in order to facilitate BnB search as
described by Ruys (2003). The C-code near the end of the specification is invoked when
a violation to the checked property is found (the property to check will be presented
next). In a BnB search, the C-variable min_cost is used to keep track of the cumulated
cost along a trace. Note that besides the check if the latest result is the best result
found so far (‘now.cost < min.cost’), the C-code contains an additional check, since we
are only interested in violations of the property which represent successful termina-
tion. Whether a state represents successful termination or not is encoded by means of
the flag finished, which is set to true in successful termination states.

Next, Figure B.2 displays the property files used to search for optimal answers in
both the exhaustive and the BnB searches on the left and the right, respectively. The
difference between the two files lies in the fact that for the BnB searches, the prop-
erty contains C-code which accesses the variable min_cost; the actual result of this
technique is that the property to check changes during a search.

Finally, in Figure B.3 the commands are shown which were used to run the exhaus-
tive and the BnB searches, respectively, employing SPIN 4.2.7.
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B.2 The Experiments with µCRL
In the µCRL specification of the Cannibals and Missionaries problem, besides the usual
data types N and B, we defined two special data types, to make the specification more
intuitive. First of all, the data type Person distinguishes exactly two kinds of persons;
a person is either a cannibal (C) or a missionary (M). Second of all, with the data
type Shore, we differentiate between the Left shore and the Right shore. The µCRL
specification M = (D, F, A, C, P, I) for the Cannibals and Missionaries problem used in
our experiments is as follows:

• D = {N,B, Person, Shore}.

• F contains the usual operators for N and B, plus equality, negation, and if-then-
else for the data types Person and Shore.1 Furthermore, there is the function
noviolations, which checks for a given ‘snapshot’ of the problem, whether there is
a violation concerning the cannibals-missionaries ratio on either shore or in the
boat.

• A = {goright : N ×N, goleft : N ×N, getin : Person, getout : Person, finished, tick},
where tick and finished are used to represent the progress of time and successful
termination, respectively, and goright, goleft, getin, and getout are used to ex-
press the boat moving to the right and the left shore, and a person moving in and
out of the boat, respectively. The parameters of goright and goleft respectively
indicate the number of cannibals and missionaries occupying the boat.

• No communication is used, therefore C = ;.

• P = {Delay, CanMis}, with Delay and CanMis as presented in Figure B.4. The
process Delay is used to compactly describe delays in CanMis.

• I= CanMis(misnumber,cannumber,0,0,Left,0,0), with misnumber and cannum-
ber set to the initial number of missionaries and cannibals in the problem, respec-
tively, and the subsequent two 0 values indicating that there are no missionaries
and cannibals currently in the boat. Furthermore, Left in the initial setting ex-
presses that the boat starts at the left shore, and the final two arguments of
CanMis are used for delay and search guiding purposes.

Figure B.5 displays the commands to invoke linearisation of the µCRL specifica-
tion and exploration of the resulting state spaces, both using exhaustive (breadth-first)
search and g-synchronised flexible detailed beam search. For the experiments, we used
the µCRL toolset version 2.17.13.

1The if-then-else operator is written as b → x, y, with b :B and x, y : Person (or Shore), where T → x, y , x
and F → x, y , y.
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#define CAPBOAT 2
#define PPNUMBER 3
#define MISNUMBER PPNUMBER
#define CANNUMBER PPNUMBER
// For BoatPos: true is left shore, false is right shore
int MisLeft = MISNUMBER;
int CanLeft = CANNUMBER;
int MisBoat, CanBoat, cost;
bool BoatPos = true;
bool finished = false;
c_state "int min_cost" "Hidden" "200"

active proctype CANMIS()
{
new: if
:: MisBoat>0 && BoatPos && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft + MisBoat >= CanLeft

+ CanBoat || MisLeft + MisBoat == 0) && (MISNUMBER - MisLeft - MisBoat >= CANNUMBER - CanLeft -
CanBoat || MISNUMBER - MisLeft - MisBoat == 0) -> d_step{MisLeft++ ; MisBoat--}; goto new

:: MisBoat>0 && !BoatPos && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft >= CanLeft || MisLeft
== 0) && (MISNUMBER - MisLeft >= CANNUMBER - CanLeft || MISNUMBER - MisLeft == 0)
-> d_step{MisBoat--}; goto new

:: CanBoat>0 && BoatPos && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft + MisBoat >= CanLeft +
CanBoat || MisLeft + MisBoat == 0) && (MISNUMBER - MisLeft - MisBoat >= CANNUMBER - CanLeft -
CanBoat || MISNUMBER - MisLeft - MisBoat == 0) -> d_step{CanLeft++ ; CanBoat--}; goto new

:: CanBoat>0 && !BoatPos && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft >= CanLeft || MisLeft
== 0) && (MISNUMBER - MisLeft >= CANNUMBER - CanLeft || MISNUMBER - MisLeft == 0)
-> d_step{CanBoat--}; goto new

:: MisLeft > 0 && MisBoat + CanBoat < CAPBOAT && BoatPos && (MisBoat >= CanBoat || MisBoat == 0)
&& (MisLeft + MisBoat >= CanLeft + CanBoat || MisLeft + MisBoat == 0) && (MISNUMBER - MisLeft -
MisBoat >= CANNUMBER - CanLeft - CanBoat || MISNUMBER - MisLeft - MisBoat == 0)
-> d_step{MisLeft-- ; MisBoat++}; goto new

:: MisLeft + MisBoat < MISNUMBER && MisBoat + CanBoat < CAPBOAT && !BoatPos && (MisBoat >= CanBoat
|| MisBoat == 0) && (MisLeft >= CanLeft || MisLeft == 0) && (MISNUMBER - MisLeft >= CANNUMBER -
CanLeft || MISNUMBER - MisLeft == 0) -> d_step{MisBoat++}; goto new

:: CanLeft > 0 && MisBoat + CanBoat < CAPBOAT && BoatPos && (MisBoat >= CanBoat || MisBoat == 0)
&& (MisLeft + MisBoat >= CanLeft + CanBoat || MisLeft + MisBoat == 0) && (MISNUMBER - MisLeft -
MisBoat >= CANNUMBER - CanLeft - CanBoat || MISNUMBER - MisLeft - MisBoat == 0)
-> d_step{CanLeft-- ; CanBoat++}; goto new

:: CanLeft + CanBoat < CANNUMBER && MisBoat + CanBoat < CAPBOAT && !BoatPos && (MisBoat >= CanBoat
|| MisBoat == 0) && (MisLeft >= CanLeft || MisLeft == 0) && (MISNUMBER - MisLeft >= CANNUMBER -
CanLeft || MISNUMBER - MisLeft == 0) -> d_step{CanBoat++}; goto new

:: BoatPos && MisBoat + CanBoat >= 1 && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft + MisBoat
>= CanLeft + CanBoat || MisLeft + MisBoat == 0) && (MISNUMBER - MisLeft - MisBoat >= CANNUMBER -
CanLeft - CanBoat || MISNUMBER - MisLeft - MisBoat == 0)
-> d_step{cost = cost + MisBoat + CanBoat ; BoatPos = false}; goto new

:: !BoatPos && MisBoat + CanBoat >= 1 && (MisBoat >= CanBoat || MisBoat == 0) && (MisLeft >=
CanLeft || MisLeft == 0) && (MISNUMBER - MisLeft >= CANNUMBER - CanLeft || MISNUMBER - MisLeft
== 0) -> d_step{cost = cost + MisBoat + CanBoat ; BoatPos = true}; goto new

:: MisLeft == 0 && CanLeft == 0 && MisBoat == 0 && CanBoat == 0 -> finished = true; goto end

fi;

end: c_code {
if (now.cost < min_cost && now.finished) {

min_cost = now.cost;
printf(">min cost now: %d\n", min_cost);
putrail(); Nr_Trails--;

}
}}

Figure B.1: A PROMELA specification of the Cannibals and Missionaries problem
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#define q (cost >= 200)
/*
* Formula As Typed: <> q
* The Never Claim Below Corresponds
* To The Negated Formula !( <> q)
* (formalizing violations of the original)
*/
never { /* !( <> q) */
accept_init:
T0_init:
if
:: (! ((q))) -> goto T0_init
fi;
}
#ifdef NOTES
Use Load to open a file or a template.
#endif
#ifdef RESULT
#endif

#define q (c_expr {now.cost >= min_cost})
/*
* Formula As Typed: <> q
* The Never Claim Below Corresponds
* To The Negated Formula !( <> q)
* (formalizing violations of the original)
*/

never { /* !( <> q) */
accept_init:
T0_init:
if
:: (! ((q))) -> goto T0_init
fi;
}
#ifdef NOTES
Use Load to open a file or a template.
#endif
#ifdef RESULT
#endif

Figure B.2: CM property files for SPIN exhaustive and BnB search

spin -a -N property.ltl canmis.pml && gcc -w -o pan -D_POSIX_SOURCE -DMEMLIM=900 -DNOREDUCE
-DNOFAIR pan.c && time ./pan -v -m100000 -w20 -a -c0

spin -a -N bnb_property.ltl canmis.pml && gcc -w -o pan -D_POSIX_SOURCE -DMEMLIM=900
-DNOREDUCE -DNOFAIR pan.c && time ./pan -v -w20 -a -m100000 -c0

Figure B.3: Commands to invoke CM SPIN exhaustive (top) and BnB (bottom) search
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Delay(t :N) = tick·Delay(t − 1) / t > 1 . δ+ tick / t = 1 . δ

CanMis(MisLeft :N, CanLeft :N, MisBoat :N, CanBoat :N, BoatPos : Shore, d :N, f :N) =
Delay(d)·CanMis(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos, 0, (MisLeft = CanLeft → 0, 1))/ d = 1 . δ+
Delay(d)·CanMis(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos, 0, (MisLeft = CanLeft → 0, 1))/ d > 1 ∧

noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos) . δ+
getout(M)·CanMis((BoatPos = Left → MisLeft + 1, MisLeft), CanLeft, MisBoat − 1, CanBoat, BoatPos, 0,

((BoatPos = Left → MisLeft + 1, MisLeft) = CanLeft → 0, 1)) /MisBoat > 0 ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos) ∧ d = 0 . δ+

getout(C)·CanMis(MisLeft, (BoatPos = Left → CanLeft + 1, CanLeft), MisBoat, CanBoat − 1, BoatPos, 0,

(MisLeft = (BoatPos = Left → CanLeft + 1, CanLeft) → 0, 1)) /CanBoat > 0 ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos)) ∧ d = 0. δ+

getin(M)·CanMis((BoatPos = Left → MisLeft − 1, MisLeft), CanLeft, MisBoat + 1, CanBoat, BoatPos, 0,

((BoatPos = Left, MisLeft − 1, MisLeft) = CanLeft → 0, 1))/ (BoatPos = Left → MisLeft > 0,

(MisLeft + MisBoat) < misnumber) ∧ (MisBoat + CanBoat) < capboat ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos)) ∧ d = 0 . δ+

getin(C)·CanMis(MisLeft, (BoatPos = Left → CanLeft − 1, CanLeft), MisBoat, CanBoat + 1, BoatPos, 0,

(MisLeft = (BoatPos = Left → CanLeft − 1, CanLeft), 0, 1)) / (BoatPos = Left → CanLeft > 0,

(CanLeft + CanBoat) < cannumber) ∧ (MisBoat + CanBoat) < capboat ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos) ∧ d = 0 . δ+

goright(MisBoat, CanBoat)·CanMis(MisLeft, CanLeft, MisBoat, CanBoat, Right, MisBoat + CanBoat,

(MisLeft = CanLeft) → 0, 1))/BoatPos = Left ∧ (MisBoat + CanBoat) ≥ 1 ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos) ∧ d = 0 . δ+

goleft(MisBoat, CanBoat)·CanMis(MisLeft, CanLeft, MisBoat, CanBoat, Left, MisBoat + CanBoat,

(MisLeft = CanLeft → 0, 1)) /BoatPos = Right ∧ MisBoat + CanBoat ≥ 1 ∧
noviolations(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos) ∧ d = 0 . δ+

finished·δ·CanMis(MisLeft, CanLeft, MisBoat, CanBoat, BoatPos, d, (MisLeft = CanLeft → 0, 1))

/MisLeft = 0 ∧ CanLeft = 0 ∧ MisBoat = 0 ∧ CanBoat = 0 ∧ d = 0. δ

Figure B.4: The µCRL process CanMis specifying the Cannibals and Missionaries
problem

mcrl -regular2 -binary canmis
time instantiators -tick -trace -action finished -local -stop canmis

mcrl -regular2 -binary canmis
time instantiators -tick -trace -action finished -stop -local -beam-width++ 3

-detailed-expr canmis<<EOF
(MisLeft+CanLeft+(f*(6)))
EOF

Figure B.5: Commands to invoke CM µCRL exhaustive search (top) and g-
synchronised flexible detailed beam search (bottom)
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Appendix C

Branching Tail Bisimulation

T
HE NOTION OF branching tail bisimulation was defined by Baeten and Mid-
delburg (2002), which is closely related to Van der Zwaag’s definition of
timed branching bisimulation. We show that in case of dense time, our
counter-example (see Example 5) again shows that branching tail bisimi-

larity is not an equivalence relation.
In the absolute time setting of Baeten and Middelburg, states are of the form <p, u>

with p a process algebraic term and u a time stamp referring to the absolute time.
They give an operational semantics to their process algebras such that if <p, u> v7−→
<p, u+v> (where v7−→ for v > 0 denotes a time step of v time units), then <p, u> w7−→
<p, u+w> for 0 < w < v; in our example this saturation with time steps will be mim-
icked. The reflexive transitive closure of τ−→ is denoted by � . The relation s

u7� s′ is
defined by: either s� ŝ u7−→ s′, or s

v7� ŝ
w7� s′ with v + w = u.1

Branching tail bisimulation is defined as follows.2

Definition 39 (Branching tail bisimulation (Baeten and Middelburg, 2002)).
Assume a TLTS in the style of Baeten and Middelburg. A symmetric binary relation
B ⊆ S × S is a branching tail bisimulation if sBt implies:

1. if s `−→ s′, then

i either ` = τ and t� t′ with sBt′ and s′Bt′;
ii or t� t̂ a−→ t′ with sBt̂ and s′Bt′;

2. if s `−→<p, u>, then t� t′ `−→<p, u> with sBt′;

3. if s u7−→ s′, then

i either t� t̂ v7−→ t̂′
w7� t′ with v + w = u, sBt̂ and s′Bt′;

ii or t� t̂ u7−→ t′ with sBt̂ and s′Bt′.
1Baeten and Middelburg also have a deadlock predicate ↑, which we do not take into account here, as it

does not play a role in our counter-example.
2Baeten and Middelburg define this notion in the setting with relative time, and remark that the adaptation

of this definition to absolute time is straightforward. Here we present this straightforward adaptation.
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Two states s and t are branching tail bisimilar, written s ↔BM
tb t, if there is a branching

tail bisimulation B with sBt.3

We proceed to transpose the TLTSs from Example 5 into the setting of Baeten and
Middelburg. We now have the following transitions, for i ≥ 0:

<p, 0> τ−→<p0, 0> <q, 0> τ−→<q0, 0>
<pi, 0> τ−→<pi+1, 0> <qi, 0> τ−→<qi+1, 0>
<pi+1, 0> τ−→<pi, 0> <qi+1, 0> τ−→<qi, 0>
<pi, u> v−u7−→ <pi, v>, 0 ≤ u < v ≤ 1

i+2 <qi, u> v−u7−→ <qi, v>, 0 ≤ u < v ≤ 1
<pi, 1

i+2>
τ−→<p′

i,
1

i+2> <qi, 1
n>

a−→<p, 1
n>, n = 1, . . . , i + 1

<p′
i, u> v−u7−→ <p′

i, v>, 1
i+2 ≤ u < v ≤ 1

<p′
i,

1
n>

a−→<p, 1
n>, n = 1, . . . , i + 1

<r, 0> τ−→<r0, 0>
<r i, 0> τ−→<r i+1, 0>
<r i+1, 0> τ−→<r i, 0>
<r i, u> v−u7−→ <r i, v>, 1

i+2 ≤ u < v ≤ 1
<r i, 1

n>
a−→<p, 1

n>, n = 1, . . . , i + 1
<r0, 0> τ−→<r∞, 0>
<r∞, 0> τ−→<r0, 0>
<r∞, u> v−u7−→ <r∞, v>, 0 ≤ u < v ≤ 1
<r∞, 1

n>
a−→<p, 1

n>, n ∈N

<p,0>↔BM
tb <q,0>, since <p, w>B<q, w> for w ≥ 0, <pi, w>B<qi, w> for w ≤ 1

i+2 , and
<p′

i, w>B<qi, w> for w > 0 (for i ≥ 0) is a branching tail bisimulation.
Moreover, <q, 0> ↔BM

tb <r, 0>, since <q, w>B<r, w> for w ≥ 0, <qi, w>B<r i, w> for
w ≥ 0, <qi, 0>B<r j, 0>, and <qi, w>B<r∞, w> for w = 0 ∨ w > 1

i+2 (for i, j ≥ 0) is a
branching tail bisimulation.

However, <p, 0> 6↔BM
tb <r, 0>, since p cannot simulate r. This is due to the fact

that none of the pi can simulate r∞. Namely, r∞ can idle until time 1. pi can only
simulate this by executing a τ at time 1

i+2 , but the resulting process <p′
i,

1
i+2> is not

timed branching bisimilar to <r∞, 1
i+2>, since only the latter can execute action a at

time 1
i+2 .

3The superscript BM refers to Baeten and Middelburg, to distinguish it from the notion of timed branching
bisimulation as defined in Definition 31.
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N. Trčka. Silent Steps in Transition Systems and Markov Chains. PhD thesis, Techni-
cal University of Eindhoven, 2007.
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Index of Symbols

B Domain of the booleans 14
N Domain of the natural numbers 14
D A general data domain 15
P Domain of the µCRL process terms 15
T Time domain 44
Z Domain of the integers 104
K Domain of costs 122
nat χt domain of the natural numbers 40
bool χt domain of the booleans 40

T ∈ B true 14
F ∈ B false 14

M µCRL specification 14
D Set of data domains used in a µCRL specification 14
F Set of functions over data domains used in a µCRL specification 14
A Set of actions used in a µCRL specification 14
C Set of communication rules in a µCRL specification 14
P Set of recursive equations (processes) in a µCRL specification 14
I The initialisation line of a µCRL specification 14
τ Internal action 15
δ Process deadlock 15
a, b, c : type Actions in A of type type 15
(a, b, c) Communication rule in C 15
a | b Synchronisation 15
P + Q Alternative composition 16∑

d:DP Choice quantification 16
P·Q Sequential composition 16
P / b .Q Conditional 17
P || Q Parallel composition 18
∂H(P) Encapsulation operator 19
ρ f (P) Renaming operator 19

P a(e)−→ P ′ Transition from process term P to process term P ′, firing action a(e) 15
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Index of Symbols

enA(P) Set of enabled actions of process term P 18
enM(P) Set of transitions of process term P 18
IX Finite index set of LPE X 20
IH Finite index set of actions in an LPE to prioritise 45
I ′ Finite index set of successful terminations in an extended LPE 48
fX i (d, e i) Parameter of action ai in LPE X 20
gX i (d, e i) New state after executing action ai in LPE X 20
hX i (d, e i) Condition of action ai in LPE X 20
f X

i Short for fX i (d, e i) 105
gX

i Short for gX i (d, e i) 105
hX

i Short for hX i (d, e i) 105

MT µCRLtick specification 103
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Summary
The thesis consists of three parts:

Part I We provide an explanation of the discrete event subset of the hybrid mod-
elling language χt. Following that, we present an approach to model time in µCRL.
Such an approach allows to model timed systems using an untimed modelling lan-
guage, thereby enabling the reuse of existing model checking tools. Next, we extend
this approach, in order to subsequently provide a general scheme to translate χt spec-
ifications into µCRL specifications. This translation scheme can be seen as a bridge
between the areas of performance analysis and system verification, as χt is mainly tar-
geted to the former, while µCRL is mostly used for the latter. Next, the applicability
of the translation scheme is demonstrated by translating and verifying a number of
χt specifications, most notably the specification of a turntable system. Finally, the in-
sights gained by designing the translation scheme lead to an extension of µCRL with a
notion of discrete relative timing, called µCRLtick. It is shown that µCRLtick specifica-
tions can be translated to µCRL specifications, thereby (again) allowing the use of the
µCRL toolset for the verification of timed systems. The µCRLtick approach builds on
earlier proposals to model time with an untimed process algebra by emphasising ease
of use for the modeller, meaning that the modeller does not need to be concerned about
the correctness of the time mechanism in a specification, and incorporating time jumps
of arbitrary size.

Part II This part starts by providing a uniform presentation of the most prominent
state space search algorithms in the field of Directed Model Checking. Many of these
algorithms stem from the field of Artificial Intelligence, often incorporating additional
information about the problem at hand, such that the search can be directed to inter-
esting areas of the state space. In the presentation, connections between the searches
considered are accentuated, highlighting a framework in which many searches can be
placed. The overview is concluded by considering action-based guiding, and proposing
a further generalisation of best-first search, in which the search may consist of a num-
ber of sequential phases, giving rise to the compositionality of state space searches.
Finally, a glossary of Directed Model Checking terms is proposed.

After that, the focus is narrowed to the modelling and solving of scheduling prob-
lems by means of existing model checkers and their input languages. The techniques
available in the model checkers SPIN (with PROMELA) and UPPAAL CORA (with priced
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timed automata) for scheduling are discussed, and at times extended to improve ef-
ficiency or quality of the solution. Besides that, new techniques are proposed, which
have been implemented in the µCRL toolset.

The beam search algorithm is the subject of the next chapter. Traditionally, beam
search is applied on highly structured search trees. By extending the basic algorithm
in a number of ways, it can be efficiently applied on arbitrary state spaces. Both state-
based (detailed) beam searches and action-based (priority) beam searches are devel-
oped and discussed. This leads to a spectrum of beam searches. By applying a pro-
posed mechanism to compare search algorithms, we establish that several prominent
searches can be seen as specific instances of beam search in this spectrum. Finally,
it is shown how these beam search variants, and another, exhaustive, search useful
for scheduling, can be adapted to work in a distributed setting, in which a number of
computers work together in a cluster to generate, or search, a state space.

The part is concluded by presenting some case studies in which most of the proposed
search algorithms have been applied in practice. The most notable case study is a Clin-
ical Chemical Analyser. In all cases the efficiency and effectiveness of the techniques in
the µCRL toolset are analysed, while in one case, some of the techniques in the µCRL
toolset are compared with techniques available in the model checker SPIN.

Part III Timed behaviour of systems can be compared by means of timed versions of
bisimilarity relations. We look at the properties of timed branching bisimilarity, and
point out that the existing definition by Van der Zwaag is not transitive in an absolute,
continuous time setting. Therefore, the definition needs to be extended in order to
ensure that it is an equivalence in an absolute, continuous time setting. A stronger
notion is proposed (stronger in the sense that it relates fewer processes), and it is
proven that this timed branching bisimilarity is indeed an equivalence, even if the time
domain is continuous. Furthermore, we show that in case of a discrete time domain, the
notion by Van der Zwaag and our stronger notion coincide. As Appendix C shows, the
presented counter-example for transitivity also applies to the notion of timed branching
bisimilarity by Baeten & Middelburg in case of a continuous time domain. So that
notion does not constitute an equivalence relation as well.

After that, a rooted version of the extended timed branching bisimilarity is defined,
and proven to be a congruence over a process algebra with parallelism, successful ter-
mination, and deadlock. In a number of ways, the proof differs from the usual con-
gruence proof for untimed branching bisimilarity. For example, due to the presence of
successful termination, there is a large number of cases. In fact, the congruence proof
for the parallel composition operator is restricted to a setting without successful termi-
nation, since the number of cases in a proof considering successful termination is just
too large. Furthermore, it is demonstrated that the standard approach for untimed
branching bisimilarity, i.e. take the smallest congruence closure and prove that this
yields a branching bisimulation, falls short in a timed setting.
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Samenvatting

Wat nu? Het analyseren en optimaliseren van
systeemgedrag over tijd
Het proefschrift bestaat uit drie gedeelten:

Deel I We geven een uitleg van het discrete deel van de hybride modelleertaal χt.
Daarna presenteren we een aanpak om tijd te modelleren in µCRL. Een dergelijke aan-
pak maakt het mogelijk om getimede systemen te modelleren met een ongetimede mod-
elleertaal, waardoor de bestaande model checking tools kunnen worden hergebruikt.
Vervolgens breiden we de aanpak uit, om daaropvolgend een algemeen schema te lev-
eren om χt specificaties te vertalen naar µCRL specificaties. Dit vertalingsschema
kan worden beschouwd als een brug tussen de gebieden van performance analyse en
systeemverificatie, aangezien χt hoofdzakelijk gebruikt wordt voor het eerstgenoemde
gebied en µCRL over het algemeen voor het laatstgenoemde. Daarna wordt de toepas-
baarheid van het vertalingsschema gedemonstreerd door een aantal χt specificaties
te vertalen en te verifiëren, waaronder met name een draaitafelsysteem. Tenslotte
leiden de inzichten verkregen door het ontwerpen van het vertalingsschema tot een
uitbreiding van µCRL met een notie van discrete, relatieve tijd, genaamd µCRLtick.
Er wordt aangetoond dat µCRLtick specificaties kunnen worden vertaald naar µCRL
specificaties, waardoor het (opnieuw) mogelijk is om de µCRL toolset te hergebruiken
voor de verificatie van getimede systemen. De µCRLtick aanpak bouwt voort op eerdere
voorstellen om tijd te modelleren met een ongetimede procesalgebra door gebruiks-
gemak voor de modelleerder te benadrukken, wat wil zeggen dat de modelleerder zich
niet hoeft te bekommeren om de correctheid van het tijdmechanisme in een specificatie,
en door tijdstappen van variabele grootte te verwezenlijken.

Deel II Dit deel begint met het bieden van een uniforme presentatie van de meest
prominente algoritmen voor het doorzoeken van toestandsruimten in het gebied van
Directed Model Checking. Veel van deze algoritmen komen voort uit het gebied van de
Kunstmatige Intelligentie, en maken vaak gebruik van extra informatie over het prob-
leem in kwestie, zodat de zoektocht kan worden geleid naar interessante gedeelten van
de toestandsruimte. In de presentatie worden de overeenkomsten tussen de zoekmeth-
oden benadrukt, waardoor een kader wordt geschetst waarbinnen veel zoekmethoden
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kunnen worden geplaatst. Het overzicht wordt afgerond met het overwegen van het
sturen van een zoektocht op basis van acties, en het voorstellen van een verdere gen-
eralisatie van best-first search, waarbij de zoekmethode kan bestaan uit een aantal
sequentiële fasen, wat een principe van compositionaliteit van zoekmethoden voor toe-
standsruimten introduceert. Tenslotte wordt er een vakwoordenlijst voorgesteld voor
de termen in Directed Model Checking.

Vervolgens wordt de focus verlegd naar het modelleren en oplossen van scheduling-
problemen met behulp van bestaande model checkers en hun invoertalen. De tech-
nieken die beschikbaar zijn in de model checkers SPIN (met PROMELA) en UPPAAL

CORA (met geprijsde getimede automaten) voor scheduling worden besproken, en op
sommige punten uitgebreid om de efficiëntie van de technieken of de kwaliteit van
de resultaten te verbeteren. Daarnaast worden er nieuwe technieken voorgesteld, die
geïmplementeerd zijn in de µCRL toolset.

Het beam search algoritme is het onderwerp van het volgende hoofdstuk. Tradition-
eel wordt beam search toegepast op zeer gestructureerde zoekbomen. Door het basisal-
goritme op meerdere manieren uit te breiden kan het efficient worden toegepast op
willekeurige toestandsruimten. Zowel toestandsgerelateerde (detailed) beam searches
als actiegerelateerde (priority) beam searches worden ontwikkeld en besproken. Dit
leidt tot een spectrum van beam searches. Door een voorgesteld mechanisme om
zoekalgoritmen te vergelijken toe te passen, kunnen we vaststellen dat meerdere promi-
nente zoekmethoden kunnen worden beschouwd als specifieke instanties van beam
search in dit spectrum. Tenslotte wordt er aangetoond hoe deze beam search varianten,
en een andere, uitputtende, zoekmethode voor scheduling, kunnen worden aangepast
om te werken in een gedistribueerde omgeving, waarin een aantal computers samen-
werken in een cluster om een toestandsruimte te genereren, of te doorzoeken.

Het deel wordt afgesloten door een aantal casestudies te presenteren waarbij de
meeste voorgestelde zoekalgoritmen in de praktijk zijn toegepast. De meest opmerke-
lijke casestudie is een analysator van klinische chemicaliën. In alle gevallen is de
efficiëntie en effectiviteit van de technieken in de µCRL toolset geanalyseerd, terwijl
in één geval de technieken in de µCRL toolset zijn vergeleken met technieken beschik-
baar in de model checker SPIN.

Deel III Getimed gedrag van systemen kan worden vergeleken door middel van
getimede versies van bisimilariteitsrelaties. We kijken naar de eigenschappen van
getimede vertakkende bisimilariteit, en wijzen erop dat de bestaande definitie van Van
der Zwaag niet transitief is in een absolute, continue tijdomgeving. Dientengevolge
moet de definitie worden uitgebreid om te verzekeren dat het een equivalentie is in
een absolute, continue tijdomgeving. Een sterkere notie wordt voorgesteld (sterker in
de zin dat het minder processen met elkaar relateert), en er wordt bewezen dat deze
getimede vertakkende bisimilariteit inderdaad een equivalentie is, zelfs als het tijds-
domein continu is. Voorts laten we zien dat in het geval van een discreet tijdsdomein de
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notie van Van der Zwaag en onze sterkere notie overeenkomen. Zoals Appendix C laat
zien is het gepresenteerde tegenvoorbeeld voor transitiviteit ook van toepassing op de
notie van getimede vertakkende bisimilariteit van Baeten & Middelburg in het geval
van een continu tijdsdomein. Dus die notie vestigt ook niet een equivalentierelatie.

Daarna wordt er een gewortelde versie van de uitgebreide getimede vertakkende
bisimilariteit gedefinieerd, en wordt er bewezen dat het een congruentie is over een
procesalgebra met parallellisme, succesvolle terminatie, en deadlock. Op een aantal
punten wijkt het bewijs af van het gebruikelijke congruentiebewijs voor ongetimede
vertakkende bisimilariteit. Vanwege de aanwezigheid van succesvolle terminatie is
er bijvoorbeeld een groot aantal gevallen. Feitelijk is het congruentiebewijs voor de
parallelle-compositieoperator beperkt tot een situatie zonder succesvolle terminatie,
aangezien het aantal gevallen in een bewijs met succesvolle terminatie gewoonweg te
groot is. Bovendien wordt er gedemonstreerd dat de standaardaanpak voor ongetimede
vertakkende bisimilariteit, namelijk het nemen van de kleinste congruentiesluiting en
bewijzen dat deze een vertakkende bisimulatie levert, tekort schiet in een getimede
omgeving.
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