On-the-Fly Equivalence Checking using Distributed Local Resolution of Boolean Equation Systems

Christophe Joubert (joint work with Radu Mateescu and Nicolas Descoubes) INRIA / VASY http://www.inrialpes.fr/vasy

Outline

Introduction

• Distributed local resolution of BES

- Implementation and experiments
- Conclusion and future work

Equivalence checking using BES resolution

Equivalence relation in terms of BES

Relation	Encoding
Strong	$X_{p,q} =_{v} (\bigwedge_{p \to a p'} \bigvee_{q \to a q'} X_{p',q'}) \land (\bigwedge_{q \to a q'} \bigvee_{p \to a p'} X_{p',q'})$
Observational	$\begin{vmatrix} X_{p,q} =_{v} (\bigwedge_{p \to \tau p'} \bigvee_{q \to \tau^{*} q'} X_{p',q'}) \wedge (\bigwedge_{p \to a p'} \bigvee_{q \to \tau^{*} . a. \tau^{*} q'} X_{p',q'}) \\ \wedge (\bigwedge_{q \to \tau q'} \bigvee_{p \to \tau^{*} p'} X_{p',q'}) \wedge (\bigwedge_{q \to a q'} \bigvee_{p \to \tau^{*} . a. \tau^{*} p'} X_{p',q'}) \end{vmatrix}$
Tau*.a	$X_{p,q} =_{v} (\bigwedge_{p \to \tau^{*}.a p'} \bigvee_{q \to \tau^{*}.a q'} X_{p',q'}) \land (\bigwedge_{q \to \tau^{*}.a q'} \bigvee_{p \to \tau^{*}.a p'} X_{p',q'})$
Safety	$\begin{vmatrix} X_{p,q} &=_{v} Y_{p,q} \wedge Y_{q,p} \\ Y_{p,q} &=_{v} (\wedge_{p \to \tau^{*}.a p}, \vee_{q \to \tau^{*}.a q}, Y_{p',q'}) \end{vmatrix}$

Boolean graphs (running example)

BES

boolean graph

$$\begin{cases} x_1 =_{v} x_2 \land x_5 \\ x_2 =_{v} x_3 \land x_4 \\ x_3 =_{v} x_1 \lor x_3 \\ x_4 =_{v} F \\ x_5 =_{v} x_2 \lor x_4 \lor x_6 \\ x_6 =_{v} x_5 \end{cases}$$

Distributed local BES resolution algorithm

Distributed environment

- P computers (with own CPU and memory)
 - NOWs and clusters of PCs
- Strongly connected network topology
- P processes performing the distributed BES resolution (SPMD model) + 1 *coordinator* process (configuration, launching, collection of statistical data, termination detection)

Distributed algorithm

- DSOLVE (x, (V,E,L), h, i) => Bool
 - Inputs:
 - Variable of interest x
 - Implicit boolean graph (V,E,L) (successor function)
 - Static hash function h
 - Index of current node i ($i \in [0, P-1]$
 - Principle:
 - BFS forward exploration of boolean graph (V,E,L) starting at $x \in V$
 - Backward propagation of stable (computed) variables
 - Distribution (communication) of remote data
 - Termination when x is stable or the entire boolean graph has been explored
 - Diagnostic by keeping relevant successors
 - Ouput:
 - Boolean value of x

Distributed execution

Synchronization and communication

- Asynchronous (overlapping of communication with computations)
- Both blocking and non-blocking communication (avoiding synchronization and busy waiting)
- Fine tuned loosely coupled distributed communication library (CAESAR_NETWORK)
 - UNIX sockets with bounded buffers
 - TCP/IP protocol
- => Reducing memory consumption

Termination detection

Complexity

- Theory of boolean graphs [Andersen-Vergauwen-95][Vergauwen-Lewi-94]
 - Worst case time complexity = O (|V|+|E|)
 - 2 intertwined graph traversals (forward and backward)
 - Worst case memory complexity = O (|V|+|E|)
 - Dependencies stored during graph exploration
 - Worst case message complexity = O (|E|)
 - 2 messages (expansion and stabilization) exchanged by edges
 - Distributed termination detection = O(|E|)
 - Practically, only 0.01% of total exchanged messages used for termination detection

Implementation and experiments

Parallel architecture

- 48 * Bi-Xeon 2.4 GHz + 1.5 GB of RAM + 80 GB
- 1 * switch 48 ports Gigabit
- 1 * switch 10 ports Gigabit
- Debian 2.4.26
- OAR batch scheduler
- <u>http://idpot.imag.fr/</u>

Software architecture

- Highly modular, allowing to separate:
 - The front-end (encoding of the equivalence relations as BESs), from
 - The back-end (BES resolution)
- DSOLVE :
 - 7500 lines of C code
 - Integrated to the BES resolution library CAESAR_SOLVE
 - Developed using the OPEN/CAESAR environment
 - Gives a immediate distributed version of BISIMULATOR which uses CAESAR_SOLVE as verification engine

CAESAR_SOLVE library

Random generation of BESs

- Small application (400 lines of C code)
- Successor function of a BES (edges going out of a variable in the boolean graph) characterized by a set of parameters:
 - % of variable kind alternation (i.e. proportion of \land (resp. \lor) variables going out of a \lor (resp. \land) variable)
 - % of boolean constants
 - Minimum number of variables
 - Average boolean equation length (branching factor of the boolean graph)
 - Random generation seed used for generating index and type of variables
- Function cost negligible w.r.t. distributed BES resolution

• $S_{P} = T_{s} / T_{P}$, 50 P number of nodes, 2e+06 4e+06 T_s sequential execution time (CAESAR_SOLVE A2), 45 T_{P} parallel execution time, 40 Node = 1 machine (=1 cpu) 1.60+07 35 ⊢Ideal speedup • 0% of variable kind 30 alternation, 0% of boolean constants, boolean equations with 10 variables on average 25 20 Resolution = forward 15 exploration of the boolean graph 10 Superlinearity = cost of updating hash tables divided by P² in the distributed solution 5 Й й 2 6 8 10 12 14 16 18 Number of nodes

- 100% of variable kind alternation, 10% of boolean constants
- Verification of nondeterministic systems (equivalence checking and partial order reduction)
- Overall communication cost doubled due to stabilization messages
- Stabilization bounded to immediate predecessors (e.g. a vvariable stabilized to T will not necessarily stabilize its ^predecessors)

- 2% of variable kind alternation, 1% of boolean constants
- Equivalence checking of deterministic systems and model-checking
- Long paths of ∨variable ended by T constants (∧-sinks)
- Better propagation mechanism in sequential algorithm (all information about predecessor dependencies stored locally)

- 0% of variable kind alternation, 0% of boolean constants
- 1 processor/machine up to 17 processors
- 1 processor/machine and few 2 processors/machine from 19 to 35 processors
- Noise and irregularities on graph due to :
 - cluster maintenance
 - asymmetric hardware configuration (few nodes with 1 running cpu and others with 2 running cpus)

Efficiency (Classes of BESs) - 5

- E_P = T_s / (T_P * P)
 P, T_s, and T_P same as previous
- No particular decrease in efficiency when using bi-processors
- Irregularities due to the same reasons
- BESs size from 2*10⁶ to 1.6*10⁷ variables

Scalability (Classes of BESs)

- Variation of processing speed (increasing the BES size on a fixed set of nodes)
- Execution time (increasing the number of nodes on a fixed BES size)
- 0% of variable kind alternation, 0% of boolean constants
- Curves shape close to linear good scalability on increasing BES size (up to 2.5*10⁸ variables !)

BISIMULATOR

Distributed BISIMULATOR

The VLTS benchmark suite

- Very Large Transition Systems (VLTS)
 - joint project of CWI/SEN2 and INRIA/VASY
 - collection of Labelled Transition Systems (in BCG format)
 - case studies about the modelling of communication protocols and concurrent systems
 - 40 real life, industrial systems with up to 33,949,609 states, 165,318,222 transitions

http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

Speedup (Bisimulation) - 1

- 3 factors:
 - Size of LTSs
 - % of Tau transitions
 - Degree of nondeterminism
- Strong equivalence
 - Best behavior (very few time spent in the front-end)
 - Linear speedups
 - BRPm3n30:
 - 332.53 s. in seq
 - 29.06 s. with 13 processors (speedup of 11.5)

Speedup (Bisimulation) - 2

- Observational equivalence
 - Large BES encoding
 - Vasy_8082_42933:
 - LSY_8∪ο∠_ .. Speedup of 10.99 processors
 - Branching equivalence not yet implemented but similar results expected

Speedup (Bisimulation) - 3

- Tau*.a equivalence
 - Similar results for safety equivalence
 - Worst behavior (extensive transitive closures on Tau transitions)
 - Very small BES encoding for high % of Tau transitions
 - Vasy_6120_11031:
 - Speedup of 8.22 with 13 processors

Speedup (VLTS Bisimulation) - 4

Scalability (Bisimulation) - 1

- BRPm3nK (K ∈ [4,30]):
 - Strong equivalence
 - Fixed p number of processors (p ∈ [3,15])
 - Adapted to increases in problem size
- B200:
 - 2.4 10⁸ variables (max of 1.6 10⁷ achieved in seq)
 - 24 minutes
 - 15 processors

Scalability (Bisimulation) - 2

Conclusion

- DSOLVE, a distributed algorithm for local resolution of BESs
- A distributed version of BISIMULATOR and a distributed generation of diagnostic for equivalence checking
- Generic implementation running on widely-used looselycoupled parallel machines (clusters and NOWs)
- Extensive set of experiments performed on large BESs (VLTS benchmark suite)
 - Linear speedups (even superlinear for large BESs with particular forms)
 - Scalability w.r.t. BES size and number of processors

Future work

- Verification:
 - Tau-confluence reduction
 - Mu-calculus model-checking
 - Markovian bisimulation
- Other applications:
 - Horn clauses resolution
 - Abstract interpretation
 - Data flow analysis

For more information ...

Christophe Joubert

Radu Mateescu

Nicolas Descoubes

http://www.inrialpes.fr/vasy

