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Abstract—The development of embedded systems requires the devel-
opment of increasingly complex software and hardware platforms. Full
system simulation makes it possible to run the exact binary embedded
software including the operating system on a totally simulated hardware
platform. Whereas most simulation environments do not support full
system simulation, or do not use any hardware modeling techniques, or
have combined different types of technology, SimSoC is developing a
full system simulation architecture with an integrated approach relying
only upon SystemC hardware modeling and transaction-level modeling
abstractions (TLM) for communications. To simulate processors at
reasonably high speed, SimSoC integrates instruction set simulators
(ISS) as SystemC modules with TLM interfaces to the other platform
components. The ISS’s use a variant approach of dynamic translation
to run binary code. The dynamic translator uses pre-compiled code that
consists of specialized functions for instruction execution, using partial
evaluation techniques. It is generated by a configurable code generator,
which makes it possible to tune the generated code to optimize simulation
speed for the target software application.

I. INTRODUCTION

The development of embedded systems platforms requires increas-
ingly large pieces of software running on complex System On Chips.
A simulation environment is necessary to simulate the system under
design so that software developers can test the software and hardware
developers can investigate design alternatives.

For the embedded software developers, the simulation environment
must achieve full system simulation: it must run the exact binary
software that will be shipped with the product, including the operating
system and the embedded application; and the simulation must be fast
enough for interactive testing and fast software verification cycles. A
full system simulation at low level of hardware detail (cycle accurate)
is much too slow for software testing.

These requirements call for an integrated, modular, full simulation
environment where already proven components can be simulated
quickly whereas new IP under design can be tested more thoroughly.
Modularity and fast prototyping also have become important aspects
of simulation frameworks, for investigating alternative designs with
easier re-use and integration of third party IPs.

The SimSoC project1 is developing a framework geared towards
full system simulation, mixing hardware simulation and one or more
ISSs, able to simulate complete System-on-Chips. The SimSoC simu-
lation environment combines two technologies in a single framework:
SystemC/TLM to model the new IPs and interconnects, and one or
more instruction set simulators (ISS). Each ISS is designed as a TLM
model.

In this paper, we present the overall system architecture and the
ISS technology. To achieve fast processor simulation, the SimSoC

1This project has been partly funded with a grant from Schneider Electric
Corporation in China

ISS technology uses a form of dynamic translation, using an inter-
mediate representation and pre-generated code using specialization,
a technique already used within virtual machines.

The hardware models are standard SystemC TLM abstractions
and the simulator uses the standard SystemC kernel. Therefore,
the simulation host can be any commodity commercial off-the-shelf
computer and yet provide reasonable simulation performance.

The rest of the paper is organized as follows. Section II describes
related work in the area of full system simulation, instruction set
simulation and SystemC TLM. Section III explains the overall
structure of the simulator, the integration between SystemC, TLM
and the ISS, and it describes the dynamic translation technology.
Section IV details some benchmarking. Finally the conclusion offers
perspectives for improving simulation speed.

II. RELATED WORK

Simulation platforms can be characterized by the technologies
they use for simulating hardware components, either some Hardware
Description Language (HDL) or only software emulation; and the
extent of the simulation with regard to the overall platform, whether
or not a complete software binary such as an operating system can
be run over the simulator.

To support simulation at reasonable speed for the software develop-
ers FPGA solutions can be used [1]. These solutions tend to present
slow iteration design cycles, they are costly, and anyway they can
only be used when the hardware design has reached enough maturity
to be modeled in FPGA.

Other approaches using software based simulation usually implies
two separate technologies, typically one using a Hardware Descrip-
tion Language, and another one using an instruction set simulator
(ISS). Then some type of synchronization and communication be-
tween the two must be designed and maintained using some inter-
process communication. Gerin et. al. [2] have presented such a
SystemC co-simulation environment. It offers modularity and flexible
usage but it uses an external ISS. Fummi et. al have implemented [3]
an integrated simulation environment that reaches fair integration,
however there are still two main simulation software interconnected
through the use of external GDB debugger program, and the SystemC
kernel has to be modified. In SimSoC, we use standard, unmodified,
SystemC, and no additional synchronization mechanism is required.

A. Overview of SystemC-TLM

SystemC has become the standard to represent hardware models, as
it is suitable for several levels of abstraction, from functional models
to synthetizable descriptions. It is defined by an IEEE standard [4],
and comes with an open-source implementation.



SystemC is a C++ library that provides classes to describe the
architecture (sc_module...) of heterogeneous systems and their
behavior thanks to processes (SC_THREAD...) and synchronization
mechanisms (sc_event...). The architecture is built by executing
the elaboration phase, which instantiates modules and binds their
ports. Next, the SystemC simulator schedules the SystemC processes.
A SystemC process is either eligible or running or waiting for a
SystemC event. There is at most one running process at a time. A
process moves from eligible to running when it is elected by the
scheduler. The elected process explicitly suspends itself when execut-
ing a wait instruction (i.e. the scheduling policy is not preemptive).
If the running process notifies an event, then all processes waiting
for this event move from waiting to eligible.

Transactional level modeling (TLM) refers both to a level of
abstraction [5] and to the SystemC-based library used to implement
transactional models [6]. The transaction mechanism allows a process
of an initiator module to call methods exported by a target module,
thus allowing communication between TLM modules with very few
synchronization code.

B. Dynamic translation

An extensive body of work has addressed instruction set simulation
(ISS). Early instruction set simulation experiments used interpretive
simulation of each instruction. It suffers from a performance penalty
due to the tedious decoding sequence repeated uselessly. The decod-
ing phase can be removed thanks to a preliminary compilation phase,
also called translation, that preserves this work for later re-execution
of the code.

One can directly translate the target binary into software for the
simulation host machine. This technique is known as static transla-
tion. Reports [7], [8] show dramatic performance improvements, but
static translation does not work well when simulating applications
with self-modifying code, or applications like Java Virtual Machines
that include a compiler itself generating new code [9].

In the past decade, dynamic translation technology has been
favored, such as [10]–[12] . The target code to be executed is
dynamically translated into an executable representation. Although
dynamic translation introduces a compile time phase as part of the
overall simulation time it is expected that this translation time is
amortized over time.

Full system simulation is also achieved in so called Virtual
Machines such as QEMU [13] and GXemul [14] that emulate the
behavior of a particular hardware platform. These emulators are each
using ad-hoc techniques to simulate hardware components. Although
they contain many hardware components emulation, these models are
non standard and non interoperable. For example any of each device
model from one emulator cannot be reused into the other emulator.
In particular, simulating parallel system on one computer requires
some form of scheduling. How these tools schedule parallel entities
is not well specified enough to guarantee the compatibility between
third-party models. SimSoC relies on the SystemC norm to avoid this
problem.

III. SIMSOC

SimSoC is implemented as a set of SystemC TLM modules. The
global architecture is depicted in figure 1. The hardware components
are modeled as TLM models, therefore the SimSoC simulation is
driven by the SystemC kernel. The interconnection between compo-
nents is an abstract bus. Each processor simulated in the platform is
abstracted as a particular class.
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Fig. 1. SimSoC architecture

The goal of the SimSoC ISS is to simulate the behavior of the
target processor with instruction accuracy. It emulates execution of
instructions, exceptions, interrupts and virtual to physical memory
mapping. The processor drives the translation of binary code. When
the program counter points to an instruction that has not been
translated yet, the translation is called, otherwise the cached translated
code is executed. The translation is actually achieved on a memory
page basis.

A. Dynamic translation

SimSoC dynamic translation uses an intermediate representation
that is partly dependent on the target architecture, but does not
involve the maintenance cost of a compiler, similar to [14]. SimSoC
intermediate representation is totally independent of the host (both
machine architecture and operating system), as long as the host
platforms supports the C++ language.

To optimize performance, we have pursued two paths. First, offload
most of the compiling work by pre-compiling most of the simulation
code with maximum optimization. Second, exploit partial evaluation
specialization techniques to optimize generated code.

The SimSoC binary decoder is actually generated by a decoder
generator, the Instruction Set Compiler. It takes as input a spec-
ification file and produces the C++ architecture specific decoder.
This decoder computes every possible value that can be statically
determined at that time for partial evaluation and caches re-used
values into the data structure of the intermediate representation. For
example some ARM architecture instructions may have an immediate
value argument shifted by another immediate value and the carry of
the resulting shifted value is used in computing the carry bit resulting
from that instruction. Such values can be pre-computed at decoding
time to select the partially evaluated code that should be used as
described below.

A SimSoC ISS includes pre-compiled code loaded at start-up time.
Therefore, it is not dependent upon the host binary format and op-
erating system. The decoder dynamically constructs an intermediate
representation that maps the binary instructions to this precompiled
code.

The precompiled code consists of specialized code. Specializa-
tion is a compiling optimization technique, also known as partial
evaluation. The basic concept of specialization is to transform a
generic program P, when operating on some data d into a faster
specialized program Pd that executes (faster) specifically for this data.



Specialization can be advantageously used in processor simulation
with a dynamic translation phase.

When data can be computed at decoding time, a specialized version
of the generic instruction code can be used to execute it. For example,
if an instruction using register Ri operates with register Rj and some
immediate value V stored in the instruction, a specialized operation
can be generated using the constant values of Ri, Rj and V. The
simulation code then uses fewer tests, fewer memory accesses and
more immediate values. This technique has been used to some extent
in the IC-CS simulator [10] and SimSoC is moving it a step forward.
Potentially there are 232 specializations of a 32-bit instruction set,
which would lead to a huge amount of specialized code. In practice
however, many binary configurations are illegal and some instructions
are more frequently executed than others. By specializing the most
frequently used instructions to a higher degree than the less frequent
ones, one can reduce the number of specialized functions to a
manageable amount of code.

The code we are using in SimSoC can be more or less specialized
for each instruction class. For almost every variant of an instruction,
a specialized version of the code is maintained in a large multidimen-
sional table storing the specialized code for this particular case. Each
such element in the table is called a semantic function. The decoding
phase mostly amounts to locating the appropriate semantic function
for that specialized instruction. For example, regarding the ARM
architecture, it is worth specializing the move and load instructions
in the always condition code, and it is less valuable specializing
arithmetic instructions in the rare case the condition code is not
always and the S bit is set.

The specialized code is not manually coded. A code generator
generates it. It is then pre-compiled and loaded into the table by the
simulator. The code generator is parameterized to generate more or
less specialized instructions [15], which can be tuned based on the
analysis of the simulated application. For example, the SimSoC code
generator generates for the subset of data processing and simple load
store instructions 14280 semantic functions, and a total code size of
6.6 Megabyte of code for the entire simulator, which is reasonably
small compared to the available memory size on simulation hosts.

B. Transaction Level Modeling

The SimSoC ISS need to access memory and other devices:
1) when it fetches an instruction which is not translated yet; 2)
when it execute a load/store instruction (e.g. ldr, strh, ldm, etc).
The SimSoC provides two modes: one basic generic mode and an
optimized mode.

The basic mode uses the Blocking transport interface of the OSCI
TLM-2draft [6], which has been designed for untimed simulation
as our ISS. This interface requires that each target module ex-
ports a function void b_transport(TRANS &trans). We use
the default tlm_generic_payload for the transaction type, as
recommended by the OSCI to ease interoperability. Consequently,
to communicate to another component, the processor creates a
transaction object, by providing at least an address, a command
(read or write), a pointer to data and a data size. Next it calls the
b_transport function on this object. The bus will next forward
the transaction to the memory or a device according to the memory
map. Eventually, the b_transport method of the corresponding
target module will be executed. This way, the SimSoC ISS is
compatible with all untimed models of hardware which follows the
OSCI recommendation for transactional modeling.

The optimized mode uses the concept of Direct Memory Inter-
face (DMI) as suggested by the OSCI TLM-2draft documentation.

However, we do not use the OSCI implementation. Indeed, the
dynamic translation mechanism used by the ISS requires that the
translated code is stored in the memory TLM module in order to
accommodate multi-core platforms with shared memory, such that the
code translated by one processor may be used by another processor, or
invalidated if another initiator writes into the binary code location. We
wrote our own direct memory interface such that the processor can
fetch a previously translated instruction, and the memory can check
for code modification for each write access. The processor MMU
can then access memory directly when DMI is enabled, generating a
real transaction only for accesses to other devices. The DMI can be
reconfigured or disabled or enabled at runtime.

The ISS communicates with other components using interrupt
signals too. The OSCI TLM-2draft does not target interruption
modeling, so we had to define our own interface. Each interrupt
initiator (e.g. a timer) contains a port sc_port<IT>, and each
interrupt target (e.g. a processor) contains an sc_export<IT>,
where IT is the C++ interface struct IT {virtual
void interrupt(bool new_signal_state)=0};.
The interrupt method of our ISS sets a boolean member
irq_pending according to the new signal state and the
interruption masking bits (e.g. bits F and I of the CPSR for ARM
ISS), and notifies a SystemC event if required.

C. Parallelism and Scheduling

Each instance of ISS contains a SystemC process, such as most
of the device models. A SystemC process must release control to
the scheduler (e.g. through the wait() primitive), otherwise it keeps
control and prevents other processes from executing. For example,
the code “while(!irq_pending){}” is wrong since it would
block the simulation if executed: since the other processes are not
executed, they cannot generate an interruption.

Concerning our ISS, we could simulate very faithfully the par-
allelism by executing a wait after each instruction, followed by an
interrupt test. Unfortunately, the wait instruction is very time costly
(at most a few millions per second with the QuickThread library used
by SystemC). We evaluate in section IV two solutions, that can be
combined: 1) executing a wait instruction every N instructions; 2)
placement of wait instructions based on the identification of logical
System Synchronization Points as explained in [16].

IV. EXPERIMENTS WITH ARM ISS

All experiments below are run on a Intel Quad@2.66GHz; the
whole simulator is compiled with g++-4.2 -O3. The embedded
software is cross-compiled with arm-elf-gcc version 4.1.1.

A. Application benchmark

We have developed a cryptographic benchmark using an open
source library from the XYSSL project [17]. This benchmark encrypts
and decrypts some data with the algorithms implemented by this
library. Results are given by table I, for arm32 mode and thumb mode
(16-bit instructions), for optimized and non-optimized embedded
code. We have run GXemul [14] on the same benchmark.

These experiments show that the dynamic translation can accelerate
the simulation by a factor of 10. When using DMI, SimSoC is more
efficient than GXemul, which uses a similar dynamic translation
technique, even though it uses SystemC/TLM interfaces and syn-
chronization. In thumb mode, the same source program compiles to
more instructions, hence a longer simulation duration whereas the
speed expressed in Mips is similar to arm32 mode.



TABLE I
RESULTS FOR THE crypto BENCHMARK

no dynamic transl. with dynamic transl.
no DMI DMI no DMIa DMI GXemul

arm32 479 s 291 s 108 s 28.1 s 58.1 s
-O0 7.2 Mips 11.8 Mips 32 Mips 123 Mips 59.4 Mips

arm32 123 s 86.5 s 12.8 s 6.85 s 18.7 s
-O3 7.8 Mips 11.1 Mips 75 Mips 140 Mips 51.2 Mips

thumb 1699 s 929 s 164 s 81 s thumb
-O0 5.9 Mips 10.8 Mips 61 Mips 123 Mips mode

thumb 275 s 161 s 21.6 s 14.7 s not
-O3 5.9 Mips 10 Mips 75 Mips 110 Mips available

aexcepted for the dynamic code translator

B. Transmission benchmark

We consider now a system composed of two subsystems linked
by a model of null-modem cable; each subsystem contains an ARM
processor, a bus, a memory and a model of UART, all described at
the TLM level of abstraction. This system is represented on figure 2.
The embedded software transmits data from one subsystem to the
other, using software flow control based on CTS and RTS signals.
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Fig. 2. Architecture of the transmission benchmark

The results displayed in table II show the influence of SystemC
synchronization. Using a wait after every simulated instruction
(most of these synchronization points are then useless), the speed
transfer between the two UARTS reaches a maximum of 49 Kb/s.
The speed reaches 1.46 Mb/s when synchronizing upon every 128
instructions. However a better result of 2.18 Mb/s can be obtained
by detecting idle loops in the binary code to replace them with
synchronization points and issuing the wait calls at appropriate
places in transaction operations. With only one wait instruction every
256 instructions, we observe a wrong behavior, meaning that the
simulation is not faithfull enough.

TABLE II
RESULTS FOR THE TRANSMISSION BENCHMARK

wait every N instructions wait on send
N=1 N=16 N=64 N=128 and idle loop

42.1 s 3.78 s 1.89 s 1.42 s 0.950 s
49 Kb/s 550 Kb/s 1.10 Mb/s 1.46 Mb/s 2.18 Mb/s

V. CONCLUSION

We have presented in this paper the SimSoC simulation framework
in order to run full system simulation, with a focus on the ISS tech-
nology. The SimSoC framework integrates into a single simulation
engine SystemC/TLM hardware models with a dynamic translation

ISS designed as a TLM model, remaining fully SystemC compliant,
requiring no further synchronization with additional outside compo-
nents.

A SimSoC ISS performs dynamic translation of the target code
into an internal representation, using specialized functions to opti-
mize performance. Our current developments of the technology are
experimenting with further improvements of the simulation speed,
in particular the idea of generating host machine code from the
intermediate representation in a parallell thread. SimSoC is planned
to be distributed as open source software.
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