Testing formal telecommunication feature specifications


This work is a proposal regarding the validation of telecommunication feature specifications. It is more precisely concerned with the detection of feature interactions, which is a problem that hinders the rapid introduction of new features in telecommunication systems. A feature interaction may occur when several features, developed in an independent manner are simultaneously available: this coexistence may alter the behavior of the features.

The validation of specifications requires modeling both the services and the underlying network. The proposed solution relies on a methodology for formally specifying and validating features. It is based on the use of a synchronous formal language for the specification part and of some specific testing methods for the validation part.

The thesis describes a new testing method called ``pattern-guided testing'', which we embedded in Lutess. Lutess is a testing tool for synchronous software, whose basic principle lies on a dynamic and random but constrained generation of test data.
Our testing method extends the notion of constraints in Lutess with guiding patterns. A pattern describes a class of environment behaviors which one wishes to favor. In the context of Lutess, patterns are seen as loose constraints: they influence the generation so as the behaviors they represent are more often produced.

This method has been formalized then validated on several case studies. The most important one has been conducted in the context of the ``First Feature Interaction Detection Contest'', held during the 5th Feature Interaction Workshop in 1998. On that occasion, Lutess won the Best Tool Award.
 

PhD examining board:

              Claude Jard, directeur de recherche CNRS, IRISA/INRIA
              Bruno Legeard, professeur, Université de Besançon 
              Paul Jacquet, professeur INPG, LSR-IMAG
              Françis Klay, expert confirmé, France Télécom R&D
              Farid Ouabdesselam, professeur UJF, LSR-IMAG
              Jean-Luc Richier, chargé de recherche CNRS, LSR-IMAG