
Mutable Lists and Call-by-reference in Equational Logic

Olivier Ponsini Carine Fédèle
Laboratoire I3S - UNSA - CNRS

2000 route des lucioles
B.P. 121

06 903 Sophia Antipolis Cedex, FRANCE

{ponsini, carine}@i3s.unice.fr

ABSTRACT
As the interest for formal methods grows within industry,
the need for convenient and automated tools grows too.
SOSSubC is an attempt to help the development of certi-
fied programs. It allows formal reasoning about imperative
programs by translating programs written in SubC, a sim-
ple imperative language, into equations. Programs are then
axioms of a logical system within which proofs can be car-
ried out. In this paper, we add to the SubC language two
important imperative features: mutable lists and call-by-
reference passing mode. We present their implementation
and semantics in SubC, as well as their translation into con-
ditional equations by the SOSSubC system.

Categories and Subject Descriptors
F.3.1 [Logics And Meanings Of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics

And Meanings Of Programs]: Semantics of Program-
ming Languages—algebraic approaches to semantics, pro-
gram analysis; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—procedures, functions, and
subroutines, data types and structures; D.2.4 [Software En-

gineering]: Software/Program Verification—formal meth-
ods, correctness proofs

General Terms
Verification, Languages

1. INTRODUCTION
In computer science, formal methods provide a mathemati-
cal framework to logically reason about computer programs
and systems. They contribute both theories and tools to the
specification and verification of these systems. Their rigor-
ous approach to programming, and more widely to software
engineering, gives an invaluable understanding of programs
and allows to prove that an implementation meets its spec-
ification.

Thanks to formal methods, designers gain an incompara-
ble degree of confidence in their critical applications where
human safety, material security or financial costs are in-
volved. As computer aided tools appear and the range of
applications widens, formal methods incite interest in in-
dustry. Still, in practice, they are often reproached a com-
plicated and unusual implementation which prevents their
actual and effective use.

From the beginning of this work [4], we think that equational
logic is well suited to serve as the mathematical foundations
underlying formal methods. And it would have the advan-
tage of being well known by industry engineers. Equational
logic is well understood and existing tools are mature enough
to conduct proofs within it, possibly without user interac-
tion. Since imperative paradigm is the most widespread
among industrial languages, we developed SOSSubC to fill
the gap between imperative programs and equational logic.

When associated with a theorem prover or a proof checker,
SOSSubC is a framework within which developpers can pro-
gram and prove properties of their programs. SOSSubC

translates programs written in SubC, a simple yet powerful
imperative language, into conditional equations. Specifica-
tions of programs are written, within equational logic, as
properties on programs inputs and outputs. Thus, if it can
be proved that the properties are deduced from the equa-
tions of the programs, it has been proved that the programs
meet their specification.

In the preceding version of SOSSubC [14], the SubC language
comprised the basics of imperative languages: sequence of
statements, assignments, conditionals and while loops. It
also provided procedure abstraction and call-by-value pass-
ing mode. The two data types were integers and functional-
style lists (i.e., the value of a list could not be changed).

The contributions of this paper are:

• the introduction of new imperative constructs in SubC:

– mutable lists (i.e., in-place modification of lists);

– call-by-reference parameters;

• the semantic interpretation of these constructs and of
their associated side effects, within equational logic;

• the automatic transformation into equations of SubC

programs using these constructs.



In this paper, we assume some familiarity with equational
logic and the C language. Section 2 presents an example
which motivates the introduction of the new constructs in
SubC and discusses their use. In Section 3, we briefly dis-
cuss the background and main results which conduct to the
method implemented in SOSSubC. The method itself is ex-
plained in Section 4. Section 5 presents the equations gen-
erated by our system for the example of Section 2. Finally,
Section 6 concludes and gives some perspectives of this work.

2. MOTIVATION
We want to be able to reason about imperative programs.
In practice and in our framework, this means being able to
prove properties of SubC programs with side effects on lists
and function parameters.

Program MergeSort, excerpted from Foundations of Com-
puter Science [1, Section 2.8 (page 84)], will serve as a run-
ning example to illustrate how mutable lists and reference
parameters are handled in SOSSubC. Indeed, this program
makes an extensive use of side effects on lists. The program
in [1] is written in the C language; in Figure 1, only the
syntax has changed, it is now the one of the SubC language
(e.g., we use element(L) instead of L−>element to read
the element at the head of a list L).

Suppose we would like to make some assertions on this pro-
gram, such that merge returns an ordered list or more gen-
erally that mergeSort actually sorts the list we give to it.
We would then need to have a comprehensive understand-
ing of the programming language used and also to do an
in-depth analysis of each statement appearing in the pro-
gram.

If we do this informally, we will say that this recursive sort-
ing program consists of three functions:

• Function mergeSort takes a list L as parameter and
returns a sorted version of the list referenced by L.
The ampersand (&) preceding the parameter’s name
denotes that a side effect can occur on this parameter.
If the list contains less than two elements, it is already
sorted. Otherwise, half of the elements is removed
from L and put in secondList, this is done by the
function split. Both lists are then recursively sorted
before joining them again through the call to function
merge.

• Function split takes a list as parameter and removes
one out of two elements from it and put them in an-
other list which is returned.

• Function merge takes two sorted lists and merges them
in one sorted list which is returned.

However, because this is informal, this is of little help in
proving the assertions which motivated the analysis. And
the formal counterpart of this kind of analysis, i.e., deduc-
tive reasoning about imperative programs as introduced by
[9], is often found tedious by programmers and rarely used
in practice. With SOSSubC, we propose to translate the
SubC program into conditional equations. The equations

list split(list & L);
list merge(list & L1, list & L2);

list mergeSort(list & L)
{
list secondList, l1, l2;

if(L == NULL) return NULL;
else if(next(L) == NULL) return L;
else {
secondList = split(L);
l1 = mergeSort(L);
l2 = mergeSort(secondList);
return merge(l1, l2);

}
}

list merge(list & L1, list & L2)
{
if(L1 == NULL) return L2;
else if(L2 == NULL) return L1;
else if(element(L1) <= element(L2)) {
L1−>next = merge(next(L1), L2);
return L1;

}
else {
L2−>next = merge(L1, next(L2));
return L2;

}
}

list split(list & L)
{
list pSecondCell;

if(L == NULL)
return NULL;

else if(next(List) == NULL)
return NULL;

else {
pSecondCell = next(L);
L−>next = next(pSecondCell);
pSecondCell−>next =
split(next(pSecondCell));

return pSecondCell;
}

}

Figure 1: The MergeSort program in SubC.

resulting from this translation are showed in Figures 4, 5
and 6. The assertions on programs are expressed as formu-
lae within equational logic. From the conditional equations,
we are then able to reason and prove the assertions in a
more natural way. For instance, we proved the two formu-
lae (cf. Section 5):

permutation(l,mergeSort(l)) = true

and

sorted(mergeSort(l)) = true

In SubC however, up to now, the programmer was only al-
lowed to manipulate single values—integers and functional
lists—and modify their state through assignment (cf. [14]).
This means that, though a list is a sequence of elements, it
was seen as an atomic type; for instance, there was no way
to change the value of a particular element without build-
ing another list. But this is not sufficient to support some
of the most useful features commonly found in imperative
languages and at work in the MergeSort program.

Indeed, the three functions of the MergeSort program never



duplicate nor create a list element (although the algorithm
is not constant in space), they only rearrange the links be-
tween elements of the initial list passed to mergeSort. This
way of proceeding is very efficient and typical of imperative
language programming. This relies on an important feature
of imperative languages: side effects. The objects consid-
ered in imperative programs are mutable, i.e., their state
can change over the execution of the program. In order to
allow this in SubC, we add the following two features: mu-
table lists and reference parameters.

We introduce mutable lists in SubC, a data structure for
lists, in which a list is a pointer to a cell. A cell is made up
of two fields: element which can be any SubC data type,
and next which is a list. A cell is not a type by itself and
is only accessible through its element and next fields. We
offer the following operators on lists, assuming L is a list:

• as expected, operator element(L) returns the ele-
ment of the cell referenced by L (i.e., the head of L),
while next(L) returns the value of the next field of
the cell referenced by L (i.e., the tail of L);

• operator add(elt, L) allows to dynamically create
a new cell whose element is elt and next field is L;

• constructs L−>element and L−>next can be used
as left values in an assignment to modify the element
and next fields, respectively, of the cell referenced by
L.

This models the linked list data structure of imperative
languages. We find use of it in the three functions of the
MergeSort program.

We enrich the language SubC with a call-by-reference pa-
rameter passing mode denoted by an ampersand before the
name of a parameter. Depending on the type of the param-
eter, this means:

• either an integer passed by reference, i.e., modifica-
tions of the value of the parameter are propagated to
the corresponding object in the calling function;

• either a mutable list whose elements can be modified
by the callee (but the reference contained in the actual
parameter cannot be modified).

Thanks to these additions, the SubC language embraces a
wider class of algorithms. Above all, algorithms can be ex-
pressed as naturally as it would be done with a standard
imperative language, while we are still able to restrict the
use of pointers in SubC. For instance, there is no generic
pointer type, nor pointer arithmetic. Nevertheless, even this
restrictive usage of pointers in SubC leads to difficult prob-
lems arising from aliasing. An alias occurs at some point
during execution of a program when two or more names ex-
ist for the same storage location [11]. There are two ways
to create aliases in SubC:

• Explicitly, since variables of type list are pointers, the
assignment of two expressions of type list creates an
alias, e.g., L1 = L2 creates an alias between L1 and
L2; L1 = next(L2) creates an alias between L1 and
field next of L2.

• Through call-by-reference formal parameters, if the
same variable is passed several times in a function call,
then all the formal parameters are aliases in the body
of the function. For instance, consequently to the call
merge(L, L), L1 and L2 would be aliases in merge.

The reason why we are interested in aliases lies on the prop-
agation of side effects. If a side effect occurs on an ob-
ject aliased, then the side effect must be propagated to all
the aliases holding the value of the object whose state has
changed.

3. RELATED WORK
We designed the programming language SubC as a subset of
the imperative language C. The syntax and constructs are
very similar though limited in SubC. The principle of our
approach for proving properties of imperative programs is to
translate source code into conditional equations. SOSSubC

is the system which expresses the semantics of SubC pro-
grams in equational logic and performs the translation.

We want to describe mutable lists and reference parame-
ters within equational logics. But these mechanisms are
not part, as such, of equational logic: in equational logic,
the state of a variable cannot change and the only parame-
ter passing mode available is call-by-value. Moreover, with
mutable lists and the add operator, we introduce dynamic
memory and, as stated in [10], a static analysis of programs
with dynamic memory needs the notion of memory cell be-
cause the program variables are not sufficient to name all
the accessible memory locations. These considerations lead
us to a representation of memory cells in equational logic.

One way to handle memory cells in equational logic is to
model the memory by a store, as done by Goguen and Mal-
colm in [7] for instance. A store is an abstraction which asso-
ciates indices to memory cells. However, adopting this view
of the memory would complicate the theory within which
program proofs are carried out. For instance, within a the-
ory provided with a store, the induction scheme on lists is
not as natural as structural induction.

We address this problem by introducing a naming scheme
for memory cells dynamically allocated (cf. Section 4). This
allows to name every object accessible to the program and
associate to it a variable of the equational logic. Several
schemes for naming anonymous objects have already been
proposed as in [12, 6]. Their goal is to model any kind of
heap allocated structures so as to detect dependences or per-
form shape analysis (e.g., is it a list? a tree?). Moreover,
their naming scheme is designed to suit the static represen-
tation of all the memory layouts yielded by a given pro-
gram. Thus, they are confronted to unbounded structures.
As such, they can only approximate the actual layouts.

In our case, any approximation would just not be precise
enough since we intend to be semantically equivalent to the



source program. Conveniently, two particularities of our
method contribute to the design of a simpler naming scheme
for memory cells:

• In SubC, the only dynamically allocated structures are
lists, possibly lists of lists. This is expressive enough, if
not convenient, to represent all kind of data structures
while keeping the naming scheme simple.

• The representation language of programs is equational
logic whose semantics is dynamic through recursion.
Thus, unbounded recursive structures find a very nat-
ural expression in equational logic and do not have to
be represented in extension.

Nevertheless, this would not be sufficient to ensure the cor-
rectness of the translation: we need some further assump-
tions on the aliases in programs. Actually, exactly deter-
mining aliases is a prerequisite for propagating side effects
to program values. Unfortunately, this is a difficult prob-
lem. Indeed, this is known to be undecidable [11, 5] for lan-
guages, such as SubC, with dynamic memory, assignment,
conditional and loop statements. All the existing alias anal-
ysis methods (cf. [3, 2, 15] and [8] for a survey) are ap-
proximations of the actual aliases. Alias analysis has long
been studied in order to perform compiling optimization,
consequently, methods usually provide safe, from a compiler
perspective, approximations. Even so, an approximation
does not meet our requirements and would lead to erroneous
translation of programs.

Our paper presents a method to address the translation into
equational logic of an imperative language with mutable lists
and reference parameters:

• Mutable lists are handled by naming the memory loca-
tions accessed in programs. The naming scheme also
integrates a level of indirection that allows to take into
account alias relations (with the restrictions which are
discussed in Section 4.5). Thanks to this represen-
tation of lists, side effects on lists can be naturally
expressed.

• Call-by-reference is dealt with by generating specific
functions describing the value of each parameter after
the call.

4. TRANSLATION INTO EQUATIONS
The translation process, called axiomatisation, is a static
analysis of the source code. The goal of the axiomatisa-
tion is to produce, from each SubC function f of the source
program, an equational definition of a function transfer f t

from input terms to output terms. Let φ be an isomorphism
between values in SubC and terms in equational logic, the
translation must ensure that f with input I gives output O

if and only if f t(φ(I)) = φ(O).

Therefore, we are interested in how the statements affect the
values manipulated by a program through its variables. All
along the axiomatisation, we keep a state of the program
variables in what we call an environment. Environments
synthesize the current state of the computation in all the

execution paths of the program (cf. [14] for a full descrip-
tion). The SubC semantics is expressed as transformations
of the environment.

4.1 Mutable lists representation
A list value is a sequence of elements denoting the chaining
of the elements in a list. These elements can be integer
values, lists, or named list elements. A named list element
is introduced each time we need to refer to an unknown list
element, whether this is an integer or a list. This occurs in
a function with list parameters because we do not know the
value of these parameters in the function. We decompose a
list parameter in as many elements as needed by the function
statements. List elements are separated by a dot in our
notation.

For instance, if we need to access next(next(L)), we
will decompose parameter L in L = eL:1 · eL:2 · lL:3. This
means that L contains at least two elements, eL:1 and eL:2,
which can be integer values or lists. Then, lL:3 denotes
next(next(L)); this is the tail of the list L, which could
be further decomposed to show more elements; it can also
match the empty list (null).

In the case where L would be a list of lists and eL:1 would
be a list which needs to be decomposed, we would simply
append another number to denote the decomposition: eL:1

would become eL:1:1 · lL:1:2. We read lL:1:2 as the second
element of the first element of L. This naming scheme allows
to represent any combination of list of lists.

A SubC variable of type list is a reference to a cell. We
use the special reference NULL to indicate that a reference
is not associated to any actual cell. We manage a set where
each cell is uniquely assigned a reference. New references
are introduced when lists are decomposed or new cells are
dynamically created. In order to reconstitute the list asso-
ciated to a list variable, one just has to follow the links from
one reference to the other—starting with the reference which
is the value of the list variable—and concatenate elements
found in the cells on the path. If a cycle is encountered, we
isolate the corresponding part from the main list as a new
list with a recursive definition (such as L = e1 · · · · · en · L).
This new list can then be used in the value of the main list.

1 void f(list & L) {
2 list La, Lb;
3

4 La = next(L);
5 Lb = add(1, add(2, La));
6

7 La−>element = 3;
8 L−>next = next(La);
9 }

Figure 2: Mutable lists.

We will use the listing of Figure 2 to illustrate how we handle
mutable lists in SOSSubC. In the translation environment,
we are interested in three sets of values:

• the set of function variables;

• the set of cells;



• the set of the decompositions of function parameters.

At line 3, we have:

variables: L = refL La = null Lb = null

cells: refL = lL:1

Thus, L is decomposed as L = lL:1. Then, at line 6:

variables: L = refL La = ref1 Lb = ref2
cells: ref1 = lL:2 ref2 = 1 · ref3 ref3 = 2 · ref1

refL = eL:1 · ref1

And L is decomposed as L = eL:1 · lL:2.

4.2 Side effects on mutable lists
Side effects on lists find a natural expression within the cho-
sen representation of mutable lists.

A modification of the element field, L−>element = x,
will replace by x the element in the cell referenced by L,
i.e., the first element of L. If necessary, L will be decomposed
so as to make its first element apparent.

A modification of the next field, L−>next = x, will re-
place by x the reference to the next cell in the cell referenced
by L, i.e., the tail of L. If necessary, L will be decomposed
so as to make its reference to the next cell apparent.

With the example of the listing in Figure 2, we would obtain
at line 9:

variables: L = refL La = ref1 Lb = ref2
cells: ref1 = 3 · ref4 ref2 = 1 · ref3 ref3 = 2 · ref1

ref4 = lL:3 refL = eL:1 · ref4

And L is decomposed as L = eL:1 · eL:2 · lL:3.

We can now reconstitute the value of the lists by following
the linking; if at the moment of the call we had:

L = eL:1 · eL:2 · lL:3

then at the end of the function, we have:

L = refL = eL:1 · ref4 = eL:1 · lL:3

La = 3 · lL:3

Lb = 1 · 2 · 3 · lL:3

4.3 Call-by-reference parameters
When a procedure is called with a reference parameter p

referencing a program object o, we generate a call to an
equational function whose result is the value of p at the end
of the procedure. This result is then assigned to o. This
means that if p is of type integer, o is an integer variable of
the calling function and this latter will be modified. If p is
of type list, then o is the cell referenced by a list variable of
the calling function: the cell o is modified but not the list
variable of the calling function that reference it. There is
a different equational function for each reference parameter
of the procedure. And in the case of a SubC function, as
opposed to a procedure, we generate one more equational
function for the SubC function return value. Each execution
path in the procedure will generate a conditional equation.

The condition is built by merging the path conditions and
the list decompositions. Indeed, the list decompositions ex-
press the requirements on the structure of the lists (e.g., how
many elements) so that the procedure runs correctly.

For instance, SOSSubC generates two functions for the SubC

function split of Figure 1: split for the return value, and
splitlist for the reference parameter as shown in Figure 4.

When a procedure with reference parameters is called in a
SubC function, we add to the translation environment fresh
variables whose values are those of the modified objects after
the call. We then substitute these fresh variables to the
preceding value of the modified objects.

The return value is also assigned a fresh variable, but it is
dealt with as any other expression in SubC, i.e., there is no
specific substitution.

For instance, in function mergeSort of Figure 4, after the
call secondList = split(L), we will add in the envi-
ronment two fresh variables: lv1:1 = splitL(L) and lv2:1 =
split(L).

splitL(L) is the value of the object referenced by L after the
call to split. split(L) denotes the return value of split.
Next, the values of L and secondList are updated differ-
ently since one update is done through an assignment to
a variable, and the other one is done through a side effect
on a cell. In the case of the assignment, we add to the
environment refv1 = lv1:1 and we set L = refv1 . For the
reference parameter, we update ref2 = lv2:1 provided that
secondList = ref2 .

4.4 while loops
Loops in SubC are treated as special recursive functions.
They are special in two ways:

• They can return several values: one for each variable
modified by an assignment in the loop body.

• Each variable in the current context becomes a pa-
rameter of the functions; moreover, if it is a list, it
becomes a reference parameter. This is justified be-
cause the value of any variable may be use in a while
loop, and any list may be modified by side effects.

Therefore, we obtain two families of functions. The first one
is composed of functions which give the new value, after the
loop, of the variables in the current context. There is one
function for each variable modified by an assignment in the
loop body. The second one is made up of functions which
give the new value, after the loop, of lists (i.e., of their cells).
There is one function per variable of type list in the current
context.

For instance, the while loop of Figure 3 will generate three
function definitions:

• the definition of Loopi(L, i) which denotes the value of
variable i after the loop;



void g(void) {
list L;
int i;

.

.

.
while(element(L) != 0) {
i = i+1;
L−>element = 0;
L = next(L);

}

.

.

.
}

Figure 3: A while loop.

• the definition of LoopL(L, i) which denotes the value
of variable L after the loop;

• the definition of LooprefL (L, i) which denotes the value,
after the loop, of the list that was referenced by L

before the loop.

4.5 Assumptions
In our method, undecidability of alias analysis (cf. [11, 5]) in-
volves losing alias relation through function calls and while
loops (which are translated into recursive functions). Thus,
in order to do an exact alias analysis, we must consider
the following assumptions on how aliases should be used in
SubC:

1. Different call-by-reference parameters should not be
aliases and if they are lists, their elements should not
be aliases neither; or there should be no ambiguous
use of the concerned formal parameters in the callee
and in the following code.

2. A list should not be a call-by-reference parameter if
there exists aliases for sublists of this list at the mo-
ment of the call; or there should be no ambiguous use
of the concerned aliases in the callee and in the follow-
ing code.

3. The variables of type list modified in while loops
should not have aliases on them or on any of their
sublists; or there should be no ambiguous use of the
concerned variables in the while loop and in the fol-
lowing code.

4. The statements in a while loop body should not cre-
ate aliases; or there should be no ambiguous use of the
concerned variables after the while loop.

By ambiguous use of two aliases, we mean applying a side
effect on one of them and then reading the value of the other
one.

Assumptions 1 and 2 ensure that function calls do not in-
terfere with aliasing. This comes from the undecidability of
aliasing, but also from the fact that our method is designed
to work with “incomplete” programs, i.e., programs whose
all input values are not known before execution. Since we
possibly do not know the context of a function call, we en-
force the safest assumptions regarding aliases. The while

mergeSort(null) = null

mergeSort(eL:1 · null) = eL:1 · null

mergeSort(eL:1 · eL:2 · lL:3) =
merge(mergeSort(splitL(eL:1 · eL:2 · lL:3)),

mergeSort(split(eL:1 · eL:2 · lL:3)))

split(null) = null

split(eL:1 · null) = null

split(eL:1 · eL:2 · lL:3) = eL:2 · split(lL:3)
splitL(null) = null

splitL(eL:1 · null) = eL:1 · null

splitL(eL:1 · eL:2 · lL:3) = eL:1 · splitL(lL:3)

Figure 4: mergeSort and split equations.

merge(null, L2) = L2
merge

L1
(null, L2) = null

merge
L2

(null, L2) = L2
merge(eL1:1 · lL1:2, null) = eL1:1 · lL1:2

merge
L1

(eL1:1 · lL1:2, null) = eL1:1 · lL1:2

merge
L2

(eL1:1 · lL1:2, null) = null

Figure 5: merge equations (part 1).

loops are treated as recursive functions, but contrary to
SubC functions, they can modify the reference contained in
list variables. This leads to Assumptions 3 and 4.

These assumptions do not restrict the scope of the algo-
rithms which can be implemented in SubC, even though ex-
pert programmers would occasionally find them restricting
the way they can express the algorithms. On the other side,
these assumptions can be seen as good practice rules for
programming.

5. EXAMPLE
We developed in SOSSubC the algorithms designed from
the principles described in this paper. The checking of the
four assumptions presented in Section 4.5 has to be done
manually, but the translation into conditional equations is
automatic. SOSSubC gives for the MergeSort program of
Figure 1 the equations of Figures 4, 5 and 6. These very
natural equations can be obtained thanks to a simple evalu-
ation, based on boolean simplification and on the structure
of lists, of the conditions of the equations.

eL1:1 ≤ eL2:1 ⇒ merge(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL1:1 · merge(lL1:2, eL2:1 · lL2:2)

eL1:1 ≤ eL2:1 ⇒ merge
L1

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL1:1 · merge(lL1:2, eL2:1 · lL2:2)

eL1:1 ≤ eL2:1 ⇒ merge
L2

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
merge

L2
(lL1:2, eL2:1 · lL2:2)

eL1:1 > eL2:1 ⇒ merge(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL2:1 · merge(eL1:1 · lL1:2, lL2:2)

eL1:1 > eL2:1 ⇒ merge
L1

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
merge

L1
(eL1:1 · lL1:2, lL2:2)

eL1:1 > eL2:1 ⇒ merge
L2

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL2:1 · merge(eL1:1 · lL1:2, lL2:2)

Figure 6: merge equations (part 2).



We used the verification system PVS [13] to prove with these
equations several properties of the MergeSort program.
For instance, we proved that split divides into two parti-
tions the list which is passed to it. We proved that the result
of merge is a permutation of the concatenation of the two
lists passed to it. Moreover, if these latter are sorted, then
the result is sorted. Finally, we proved that the MergeSort
program actually sorts any list given to it. To this end,
we proved the two formulae: permutation(l,mergeSort(l)) =
true and sorted(mergeSort(l)) = true which state that the
list returned by mergeSort(l) is an ordered permutation of l.
Functions permutation and sorted are also defined by equa-
tions.

6. CONCLUSION
In this paper, we have presented an extension of the SubC

language which introduces the concepts of pointer and ref-
erence in a limited way. The language grants access to ref-
erences through the call-by-reference mechanism and opera-
tors on mutable lists. We have described the implementation
of these new constructs and the underlying semantics.

We also have presented how the SOSSubC system translated
these constructs into semantically equivalent first-order con-
ditional equations. We have given an example of this pro-
cess with the equations obtained from the non trivial pro-
gram MergeSort. Thanks to these equations we proved
that this program was sound, with respect to its specifica-
tion, by showing that the desired properties were inductive
theorems of the program equations.

We have discussed what is needed to ensure the correctness
of the translation. We have showed how undecidability of
aliasing and design choices lead to assumptions on the cre-
ation and use of aliases in SubC programs. Unfortunately,
the restrictions can not be decided automatically and we
could not enforce these rules in the SubC syntax.

Future work should concentrate on refining the conditions
of validity of SOSSubC. The goal is to accept a larger class
of programs and make the conditions easier to check. Tech-
niques applied in alias analysis are a good starting point to
go beyond these restrictions in particular cases.

The SubC language has still to be improved. Some exten-
sions, as array data type, are on hand. Indeed, arrays can
already be implemented over the list model. Others, as of-
fering a greater control to programmers over references (e.g.,
through mechanisms like pointer of pointer), require further
study.

7. REFERENCES
[1] A. V. Aho and J. D. Ullman. Foundations of

Computer Science : C edition. W. H. Freeman & Co.,
1994.

[2] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, may 1994.

[3] J. P. Banning. An efficient way to find the side effects
of procedure calls and the aliases of variables. In
POPL ’79: Proceedings of the 6th ACM

SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 29–41. ACM Press,
1979.

[4] F. C. and K. E. Automatic proofs of properties of
simple C−− modules. In 14th IEEE International
Conference on Automated Software Engineering,
October 1999.

[5] V. T. Chakaravarthy. New results on the
computability and complexity of points–to analysis.
ACM SIGPLAN Notices, 38(1):115–125, Jan. 2003.

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Conference
Record of the Twentieth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 232–245, Charleston, South Carolina, Jan.
10–13, 1993. ACM Press.

[7] J. A. Goguen and G. Malcolm. Algebraic Semantics of
Imperative Programs. Foundations of Computing. The
MIT Press, 1996.

[8] M. Hind. Pointer analysis: haven’t we solved this
problem yet? In ACM SIGPLAN–SIGSOFT workshop
on Program analysis for software tools and
engineering: June 18–19, 2001, Snowbird, Utah, USA:
PASTE’01, pages 54–61. ACM Press, 2001.

[9] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, 1969.

[10] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence
analysis for pointer variables. In PLDI ’89:
Proceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementation,
pages 28–40. ACM Press, 1989.

[11] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, Dec. 1992.

[12] J. R. Larus and P. N. Hilfinger. Detecting conflicts
between structure accesses. In PLDI ’88: Proceedings
of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation,
pages 24–31. ACM Press, 1988.

[13] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In D. Kapur, editor,
Proc. 11th Internat. Conf. on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, June 1992.
Springer-Verlag.

[14] O. Ponsini, C. Fédèle, and E. Kounalis. Rewriting of
imperative programs into logical equations. Science of
Computer Programming, 56(3):363–401, 2005.

[15] B. Steensgaard. Points-to analysis in almost linear
time. In POPL ’96, 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 32–41. ACM Press, Jan. 1996.


