
Mutable Lists and Call-by-Reference with SOSSubC

OLIVIER PONSINI
Laboratoire I3S - UNSA - CNRS
2000 route des lucioles, B.P. 121
06 903 Sophia Antipolis Cedex

FRANCE
ponsini@i3s.unice.fr

CARINE FÉDÈLE
Laboratoire I3S - UNSA - CNRS
2000 route des lucioles, B.P. 121
06 903 Sophia Antipolis Cedex

FRANCE
carine.fedele@unice.fr

Abstract: -SubC is a study imperative language around which we build theSOSSubC system as an attempt to
help the development of certified programs. It allows formalreasoning about imperative programs by translating
programs into equations, with which proofs can be carried out. In this paper, we add to the SubC language two
important imperative features: mutable lists and call-by-reference passing mode. We present their implementation
and semantics in SubC , as well as their translation into conditional equations bytheSOSSubC system.

Key–Words: -Program analysis, formal methods, correctness proofs, algebraic semantics, logics

1 Introduction

In computer science, formal methods provide a math-
ematical framework to logically reason about com-
puter programs and systems.

Thanks to formal methods, designers gain an in-
comparable degree of confidence in their critical ap-
plications where human safety, security or financial
costs are involved (cf. [3] for case studies). As com-
puter aided tools appear and the range of applica-
tions widens, formal methods incite interest in indus-
try. Still, in practice, they are often reproached a com-
plicated and unusual implementation which prevents
their actual and effective use.

We think thatequational logicis well suited to
serve as a mathematical foundation underlying formal
methods. Indeed, equational logic is well understood,
amenable to automation and existing tools are mature
enough to conduct proofs within it, possibly with-
out user interaction [4]. Moreover, it has the advan-
tage of being well known by industry engineers. And
since the imperative paradigm is the most widespread
among industrial languages, we developedSOSSubC
to fill the gap between imperative programs and equa-
tional logic.

SOSSubC translates programs written in SubC , a
simple yet powerful imperative language, into condi-
tional equations. Specifications of programs are writ-
ten, within equational logic, as properties on programs
inputs and outputs. Thus, if it can be proved that the
properties are deduced from the equations of the pro-
grams, it has been proved that the programs meet their
specification.SOSSubC can be associated with a the-
orem prover or a proof checker to form a framework

within which developers can program and prove prop-
erties of their programs.

In the preceding version ofSOSSubC [12], the
SubC language comprised the basics of imperative lan-
guages: sequence of statements, assignments, condi-
tionals andwhile loops. It also provided procedure
abstraction and call-by-value passing mode. The two
data types were integers and functional-style lists (i.e.,
the value of a list could not be changed).

The contributions of this paper are:
◦ the introduction of new imperative constructs in

SubC : mutable lists (i.e., in-place modification of
lists) and call-by-reference parameters;

◦ the semantic interpretation of these constructs and of
their associated side effects, within equational logic;

◦ the automatic transformation into equations of SubC

programs using these constructs.
In this paper, we assume some familiarity with

equational logic andC. Section 2 presents an exam-
ple which motivates the introduction of the new con-
structs in SubC . We give an overview ofSOSSubC in
Sect. 3. In Sect. 4, we briefly discuss the background
and main results which conduct to the method imple-
mented inSOSSubC . The method itself is explained in
Sect. 5. Section 6 presents the equations generated by
our system for the example of Sect. 2. Finally, Sect. 7
concludes and gives some perspectives of this work.

2 Motivation

We want to be able to reason about imperative pro-
grams. In practice and in our framework, this means



being able to prove properties of SubC programs with
side effects on lists and function parameters.

ProgramMergeSortwill serve as a running ex-
ample to illustrate howmutable listsandreference pa-
rametersare handled inSOSSubC . Indeed, this pro-
gram makes an extensive use of side effects on lists.
This program is written in the SubC language. The
syntax is similar to theC language with some slight
differences (e.g., we useelement(L) instead of
L->element to read the element at the head of list
L).

list mergeSort(list & L) {
list secondList, l1, l2;
if(L == NULL) return NULL;
else if(next(L) == NULL) return L;
else {
secondList = split(L);
l1 = mergeSort(L);
l2 = mergeSort(secondList);
return merge(l1, l2); }

}
list merge(list & L1, list & L2) {
if(L1 == NULL) return L2;
else if(L2 == NULL) return L1;
else if(element(L1) <= element(L2)) {
L1->next = merge(next(L1), L2);
return L1;

} else {
L2->next = merge(L1, next(L2));
return L2; }

}
list split(list & L) {
list pSecondCell;
if(L == NULL)
return NULL;

else if(next(L) == NULL)
return NULL;

else {
pSecondCell = next(L);
L->next = next(pSecondCell);
pSecondCell->next =
split(next(pSecondCell));

return pSecondCell; }
}

Fig. 1: The MergeSort program in SubC .

Let us suppose we would like to make some as-
sertions on this program, such thatmerge returns an
ordered list, or more generally thatmergeSortactu-
ally sorts the list we give to it. We would then need to
have a comprehensive understanding of the program-
ming language used and also to do an in-depth analy-
sis of each statement appearing in the program.

If we do this informally, we will say that this re-
cursive sorting program consists of three functions:

◦ FunctionmergeSort takes a listL as parameter
and returns a sorted version of the list referenced
by L. The ampersand (&) preceding the parameter’s
name denotes that a side effect can occur on this pa-
rameter (not to be confused with the C address op-
erator). If the list contains less than two elements,

it is already sorted. Otherwise, half of the elements
is removed fromL and put insecondList, this is
done by the functionsplit. Both lists are then re-
cursively sorted before joining them again through
the call to functionmerge.

◦ Functionsplit takes a list as parameter and re-
moves one out of two elements from it and put them
in another list which is returned.

◦ Functionmerge takes two sorted lists and merges
them in one sorted list which is returned.

However, because this is informal, this is of lit-
tle help in proving the assertions which motivated
the analysis. And the formal counterpart of this
kind of analysis, i.e. deductive reasoning about
imperative programs as introduced by [7], is often
found tedious by programmers and rarely used in
practice. WithSOSSubC , we propose to translate
the SubC program into conditional equations. The
equations resulting from this translation are showed
in Fig. 5, 6 and 7. The assertions on programs
are expressed as formulae within equational logic.
From the conditional equations, we are then able
to reason and prove the assertions in a more natu-
ral way. For instance, we proved the two formulae
(cf. Sect. 6):permutation(l, mergeSort(l)) = true and
sorted(mergeSort(l)) = true.

In SubC , however, up to now, programs were
only allowed to manipulate single values—integers
and functional lists—and modify their state through
assignment. This means that, though a list is a se-
quence of elements, it was seen as an atomic type; for
instance, there was no way to change the value of a
particular element without building another list. But
this is not sufficient to support some of the most use-
ful features commonly found in imperative languages
and at work in theMergeSort program.

Indeed, the three functions of theMergeSort
program never duplicate nor create a list element (al-
though the algorithm is not constant in space), they
only rearrange the links between elements of the ini-
tial list passed tomergeSort. This way of proceed-
ing is very efficient and typical of imperative program-
ming. This relies on an important feature of impera-
tive languages:side effects. The objects considered in
imperative programs are mutable,i.e., their state can
change over the execution of the program. In order to
allow this in SubC , we add the following two features:
mutable lists and reference parameters.

We introducemutable listsin SubC , a data struc-
ture for lists in which a list is apointer to acell. A cell
is made up of two fields:elementwhich can be any
SubC data type, andnext which is a list. A cell is
not a type by itself and is only accessible through its



element andnext fields. We offer the following
operators on lists, assumingL is a list:

◦ as expected, operatorelement(L) returns the
head ofL, whilenext(L) returns the tail ofL;

◦ operator add(elt, L) allows to dynamically
create a new cell by specifying itselt andnext
fields;

◦ constructsL->element and L->next can be
used as left values in an assignment to modify the
element andnext fields, respectively, of the cell
referenced byL.

This models the linked list data structure of im-
perative languages. We find use of it in the three func-
tions of programMergeSort.

We also enrich the language SubC with a call-by-
referenceparameter passing mode denoted by an am-
persand before the name of a parameter.

Thanks to these additions, the SubC language em-
braces a wider class of algorithms. Above all, algo-
rithms can be expressed as naturally as it would be
done with a standard imperative language, while we
are still able to restrict the use of pointers in SubC . For
instance, there is no generic pointer type, nor pointer
arithmetic. Nevertheless, even this restrictive usage
of pointers in SubC leads to difficult problems arising
from aliasing. An alias occurs at some point during
execution of a program when two or more names ex-
ist for the same storage location. There are two ways
to create aliases in SubC :

◦ Explicitly, since variables of type list are pointers,
the assignment of two expressions of type list cre-
ates an alias,e.g., L1 = L2 creates an alias be-
tweenL1 andL2.

◦ Through call-by-reference parameters, if the same
variable is passed several times in a function call,
then all the formal parameters are aliases in the body
of the function. For instance, as a consequence
to the callmerge(L, L), L1 andL2 would be
aliases inmerge.

The reason why we are interested in aliases lies
on the propagation of side effects. If a side effect oc-
curs on an object aliased, then the side effect must be
propagated to all the aliases holding the value of the
object whose state has changed.

3 Our Framework
We designed the programming language SubC as a
subset of the imperative languageC. The syntax and
constructs are very similar though limited in SubC .
The principle of our approach for proving properties
of imperative programs is to translate the SubC source

code into conditional equations.SOSSubC is the sys-
tem which performs the translation automatically (un-
der the assumptions discussed in Sect. 5.4). This pro-
cess is called the axiomatization. This expresses the
semantics of SubC programs in equational logic. Next,
the equations are used in a proof system to derive
properties of the source program. The whole process
is illustrated by Fig. 2.

4 Related Work

Reasoning about pointers in programs has been chal-
lenging static analysis for decades and is still an active
research area. One way to tackle the problem, while
being of practical interest, is to focus on (recursive)
pointer data structures. The various models proposed
for reasoning about pointer data structures differen-
tiate on the specific balance between expressiveness
and efficient decision procedures.

Separation logic [10] is an extension to Hoare’s
logic for reasoning about programs with pointers. It
postulates that concentrating on the memory cells a
program actually accesses is sufficient for reasoning
about mutable data structures and simpler than the
previous attempts to axiomatize pointer operations.
Separation logic introduces an ad hoc logic supposed
to cope with the complexity arising from aliasing.

PAL [9] is a decidable logic to reason about struc-
tural aspects of a class of data structures. The trade-off
for decidability is less expressiveness in the assertions
which can be checked and the need to supply detailed
valid invariants whose validity cannot always be auto-
matically guaranteed.

Separation logic or PAL are specifically designed
for reasoning about pointer data structures. With
SOSSubC , our ambition is to deal with more general
program properties. As a consequence, we are inter-
ested in a more general logic. Indeed, we want to de-
scribe mutable lists and reference parameters within
equational logics. But these mechanisms are not part,
as such, of equational logic: in equational logic, the
state of a variable cannot change and the only parame-
ter passing mode available is call-by-value. Moreover,
with mutable lists and theadd operator, we introduce
dynamic memory and, as stated in [8], a static analy-
sis of programs with dynamic memory needs the no-
tion of memory cell because the program variables are
not sufficient to name all the accessible memory loca-
tions. These considerations lead us to a representation
of memory cellsin equational logic.

One way to handle memory cells in equational
logic is to model the memory by astore, as done by
Goguen and Malcolm in [5] for instance. A store is an
abstraction which associates values to indices. How-



Proof System

provednot proved

✍
Checking

Assumptions

✍
Properties

✍

Desired

Theory
Equational
Program

Axiomatization

SOSSubC

SubC Code

Fig. 2: The proof process.

ever, adopting this view of the memory would compli-
cate the theory within which program proofs are car-
ried out. For instance, within a theory provided with
a store, the induction scheme on lists is not as natural
as structural induction on the simple list data type.

We address this problem by introducing anam-
ing schemefor memory cells dynamically allocated
(cf. Sect. 5). This allows to name every object ac-
cessible to the program and associate to it a variable
of the equational logic. Several schemes for naming
anonymous objects have already been proposed as in
[2]. Their goal is to model any kind of heap allo-
cated structures so as to detect dependences or per-
form shape analysis (e.g., is it a list? a tree?). More-
over, their naming scheme is designed to suit the static
representation of all the memory layouts yielded by
a given program. Thus, they are confronted to un-
bounded structures. As such, they can only approxi-
mate the actual layouts.

In our case, any approximation would just not
be precise enough since we intend to be semantically
equivalent to the source program. Conveniently, two
particularities of our method contribute to the design
of a simpler naming scheme for memory cells:
◦ In SubC , the only dynamically allocated structures

are lists, possibly lists of lists. This is expressive
enough to represent all kind of data structures while
keeping the naming scheme simple.

◦ Equational logic semantics is dynamic through re-
cursion. Thus, unbounded recursive structures find
a very natural expression in equational logic and do
not have to be represented in extension.

Nevertheless, this would not be sufficient to ensure
the correctness of the translation: we need some fur-
ther assumptions on the aliases in programs. Actually,
exactly determining aliases is a prerequisite for prop-
agating side effects to program values. Unfortunately,
this problem is known to be undecidable for languages
such as SubC [1]. All the existing alias analysis meth-
ods (cf. [6] for a survey) are approximations of the
actual aliases. However, approximations would lead
to erroneous translation of programs.

Our paper presents a method to address the trans-

lation into equational logic of an imperative language
with mutable lists and reference parameters:
◦ Mutable lists are handled by naming the memory lo-

cations accessed in programs. The naming scheme
also integrates a level of indirection which allows to
take into account alias relations (with the restrictions
which are discussed in Sect. 5.4).

◦ Call-by-reference is dealt with by generating spe-
cific functions describing the value of each parame-
ter after the call.

5 Translation into Equations
The translation process, calledaxiomatization, is a
static analysis of the source code. The goal of the
axiomatization is to produce, from each SubC func-
tion f of the source program, an equational defini-
tion of a function transferf t from input terms to out-
put terms. Letφ be an isomorphism between values
in SubC and terms in equational logic, the translation
must ensure thatf with input I gives outputO if and
only if f t(φ(I)) = φ(O).

Therefore, we are interested in how the statements
affect the values manipulated by a program through
its variables. All along the axiomatization, we keep a
state of the program variables in what we call anen-
vironment. Environments are sets of equations which
synthesize the current state of the computation in all
the execution paths of the program (cf. [12] for a
full description). The SubC semantics is expressed as
transformations of environments.

5.1 Mutable Lists Representation
A list value is a sequence of elements denoting the
chaining of the cells in the list. These elements can be
integer values, lists, or named list elements. A named
list element is introduced each time we need to refer
to a list cell with an unknown value, whether this is
an integer or a list. This occurs in a function with list
parameters because, as we do not always know the
context of the call, we do not have access to the value
of these parameters in the function and we deal with
them as unknown inputs. So, when we need to access



e1L
e2L

lLL

(a)
L

e1:1L
l1:2L

e2L
lL

(b)

Fig. 3: List decompositions.

a particular cell in a list parameter, wedecomposethis
list in as many named elements as needed to reach the
desired cell. The decomposition makes the shape of
the list apparent; moreover, the named elements keep
track of the memory cells accessible to the program.

For instance, if we need to access
next(next(L)), supposingL is a list param-
eter, we will decompose1 L in L = e1L

· e2L
· lL (see

Fig. 3(a)). This means thatL contains at least two
elements,e1L

ande2L
, which can be integer values or

lists. Then,next(next(L)) denoteslL. As a list,
lL can match the empty list (NULL ) or a non empty
list which could be further decomposed to show more
elements if need be. We calle1L

, e2L
and lL named

list elements.
As a second example, let us consider the case

whereL is a list of lists and its first element,e1L
, is

a list that we need to decompose. We simply append
another number to denote the decomposition:e1L

be-
comese1:1L

· l1:2L
. We readl1:2L

as the second ele-
ment of the first element ofL. We would then have
L = e1:1L

· l1:2L
· e2L

· lL (see Fig. 3(b)). This naming
scheme allows to represent any combination of list of
lists.

A SubC variable of type list is a reference to a list
cell. We use the special referenceNULL to indicate
that a reference is not associated to any actual cell.
We manage a set where each cell is uniquely assigned
a reference. New references are introduced when lists
are decomposed or new cells are dynamically created.

In order to reconstitute the list associated to a list
variable, one just has to follow the links from one ref-
erence to the other – starting with the reference which
is the value of the list variable – and concatenate el-
ements found in the cells on the path. If a cycle is
encountered, we isolate the corresponding part from
the main list as a new list with a recursive definition
(such asL = e1 · · · · · en · L). This new list can then
be used in the value of the main list.

We will use the listing of Fig. 4 to illustrate how
we handle mutable lists inSOSSubC . In the translation
environment, we are interested in three sets of values:
◦ the set of function variables and parameters;

1List elements are separated by a dot in our notation.

1 void f(list & L) {
2 list La, Lb;
3 La = next(L);
4 Lb = add(1, add(2, La));
5 La->element = 3;
6 L->next = next(La);
7 }

Fig. 4: Mutable lists.

◦ the set of cells;

◦ the set of the decompositions of function parame-
ters.

At line 3, after the declarations of the function and
local variables, we have:
variables: L = ref L La = null Lb = null

cells: ref L = lL
Thus, after the initializations, we only have one named
element,lL, for the list parameterL. Next, before
line 4 and after accessingnext(L), L is decomposed
asL = e1L

· lL and we have:
variables: L = ref L La = ref 1 Lb = null

cells: ref 1 = lL ref L = e1L
· ref 1

At line 4, two cells are dynamically created and we
obtain:
variables: L = ref L La = ref 1 Lb = ref 2

cells: ref 2 = 1 · ref 3 ref 3 = 2 · ref 1

ref L = e1L
· ref 1 ref 1 = lL

5.2 Side Effects on Mutable Lists

Side effects on lists find a natural expression within
the chosen representation of mutable lists. A modi-
fication of theelement field, L->element = x,
will replace byx theelement in the cell referenced
byL, i.e., the first element ofL. If necessary,Lwill be
decomposed so as to make its first element apparent.
A modification of thenext field, L->next = x,
will replace byx the reference to the next cell in the
cell referenced byL, i.e., the tail ofL. If necessary,L
will be decomposed so as to make its reference to the
next cell apparent.

With the example of the listing in Fig. 4, we
would obtain at the end of the function:
variables: L = ref L La = ref 1 Lb = ref 2

cells: ref 1 = 3 · ref 4 ref 2 = 1 · ref 3

ref 3 = 2 · ref 1 ref 4 = lL
ref L = eL:1 · ref 4

And L is decomposed asL = e1L
· e2L

· lL.
We can now reconstitute the value of the lists by

following the linking. If at the moment of the call we
hadL = e1L

· e2L
· lL, then at the end of the function,

we have:L = ref L = e1L
·ref 4 = e1L

·lL; La = 3·lL;
Lb = 1 · 2 · 3 · lL.



5.3 Call-by-Reference Parameters
In the case of a SubC function without reference pa-
rameters, the semantics of the SubC function is ex-
pressed by the definition of an equational function.
Each execution path in the SubC function will generate
a conditional equation (see [12]). In order to express
the semantics of the call-by-reference passing mode in
equational logic, which only has call-by-value func-
tions, we generate in addition a different equational
definition for each reference parameter of the SubC

function.
In details, when a procedure is called with a refer-

ence parameterp referencing a program objecto, we
generate a call to an equational function whose result
is the value ofp at the end of the procedure. This re-
sult is then assigned too. This means that ifp is of
type integer, theno is an integer variable of the call-
ing function and the variableo will be modified. Ifp is
of type list, theno is a cell referenced by another cell
or by a list variable in the calling function. The cello

and/or the list variable referencing it may be modified
depending on the function statements. For instance,
SOSSubC generates two functions for the SubC func-
tion split of Fig. 1: split for the return value, and
splitL for the reference parameter as shown in Fig. 5.

On the side of a calling SubC function, when a
function with reference parameters is called, we add
to the translation environment fresh variables whose
values are those of the modified objects after the call.
We then substitute these fresh variables to the preced-
ing value of the modified objects. The return value is
also mapped to a fresh variable. For instance, in func-
tion mergeSort of Fig. 1, after the call tosplit
in secondList = split(L), we will add in the
environment two fresh variables:lv1

= splitL(L) and
lv2

= split(L). splitL(L) is the value of the object
referenced byL after the call tosplit. split(L) de-
notes the return value ofsplit. Next, the values of
L andsecondList are updated differently since one
update is done through an assignment to a variable,
and the other one is done through a side effect on a
cell. In the case of the assignment, we add to the en-
vironmentref v1

= lv1
and we setL = ref v1

. For the
reference parameter, we updateref 2 = lv2

provided
thatsecondList = ref 2.

5.4 Assumptions
In our method, undecidability of alias analysis (cf. [1])
and unknown function call contexts involve losing
alias relation through function calls andwhile loops
(which are translated into recursive functions). Thus,
in order to do an exact alias analysis, we must con-
sider the following assumptions on how aliases should
be used in SubC :

1. Different call-by-reference parameters should
not be aliases and if they are lists, their elements
should not be aliases; or there should be no am-
biguous use of the concerned formal parameters
in the callee and in the following code.

2. A list should not be a call-by-reference parame-
ter if there exists aliases for sublists of this list at
the moment of the call; or there should be no am-
biguous use of the concerned aliases in the callee
and in the following code.

3. The variables of type list modified inwhile
loops should not have aliases on them or on any
of their sublists; or there should be no ambigu-
ous use of the concerned variables in thewhile
loop and in the following code.

4. The statements in awhile loop body should not
create aliases; or there should be no ambiguous
use of the concerned variables after thewhile
loop.

By ambiguous use of two aliases, we mean applying a
side effect on one of them and then reading the value
of the other one.

Assumptions 1 and 2 ensure that function calls
do not interfere with aliasing. This comes from the
undecidability of aliasing, but also from the fact that
our method is designed to work with “incomplete”
programs,i.e., programs whose all input values are
not known before execution. Since we possibly do
not know the context of a function call, we enforce
the safest assumptions regarding aliases. Thewhile
loops are treated as recursive functions with one refer-
ence parameter for each function variable. This leads
to Assumptions 3 and 4.

Efficiency put aside, these assumptions can be
seen as good practice rules for programming, even
though expert programmers would occasionally find
them restricting the way they can express the algo-
rithms.

6 Example
We report here our experience on using theSOSSubC
system to prove the correctness of theMergeSort
program of Fig. 1. First, we have to check that the
four assumptions presented in Sect. 5.4 are not vio-
lated by the program. All the alias analysis tools we
tried were over-approximating the alias set and failed.
Consequently, the checking of the assumptions had to
be done manually. However, the translation into con-
ditional equations is automatic since we developed in
SOSSubC the algorithms designed from the principles
described in this paper.



Since there is no while loops in the
MergeSort program, we are only concerned
with the first two assumptions. The proof is straight-
forward for proceduremerge. For split and
mergeSort we first need to prove that the list
returned bysplit is not aliased to the parameter of
split.

Lemma 1 Let L be an acyclic list. LetLret be the
list returned bysplit(L) and letLmod be the listL
after the callsplit(L). Lret is not aliased toLmod.

Proof: We proceed by well-founded induction on the
length of the listL. The induction hypothesis is that
for all list L′ whose length is less than the one ofL,
L′

ret is not aliased toL′
mod. We continue by case anal-

ysis onL:
◦ L = NULL . The lemma is trivially true since the

returned value isNULL.

◦ L = e1 · L
′. Again, by case analysis onL′:

◦ L = e1 · NULL . The lemma is trivially true.

◦ L = e1 ·e2 ·L
′′. This corresponds to the lastelse

block in proceduresplit. Before the recursive
call tosplit, we have:p2ndCell= e2 ·L

′′ and
L= e1 · L

′′. Then,split is called onL′′ and we
havep2ndCell= e2 · L′′

ret andL= e1 · L′′
mod.

By induction hypothesis,L′′
ret is not aliased to

L′′
mod, sop2ndCell is not aliased toL, hence

the lemma. ⊓⊔

Theorem 2 The MergeSort program verifies the
assumptions.

Proof: We assume acyclic lists as the program
does. Lemma 1 ensures that the assumptions hold
for split. It also ensures thatsecondList is not
aliased toL in proceduremergeSort after the call
to split. Therefore,mergeSort verifies the as-
sumptions. The case ofmerge is simpler since there
is no alias in it and the call to it inmergeSort is not
ambiguous. ⊓⊔

Theorem 2 allows us to safely applySOSSubC on
programMergeSort, which yields the equations of
Fig. 5, 6 and 7. These natural equations can be ob-
tained thanks to a simple evaluation, based on boolean
simplification and on the structure of lists, of the con-
ditions of the equations.

We used the verification system PVS [11] to
prove with these equations several properties of the
MergeSort program. The proof of correctness
within PVS required a lot of interactions with the
system as can be expected with a program as opti-
mized asMergeSort. On simpler examples, an au-
tomatic theorem prover may be used. In our case,

mergeSort(NULL) = NULL

mergeSort(eL:1 · NULL) = eL:1 · NULL

mergeSort(eL:1 · eL:2 · lL:3) =
merge(mergeSort(splitL(eL:1 · eL:2 · lL:3)),

mergeSort(split(eL:1 · eL:2 · lL:3)))

split(NULL) = NULL

split(eL:1 · NULL) = NULL

split(eL:1 · eL:2 · lL:3) = eL:2 · split(lL:3)
splitL(NULL) = NULL

splitL(eL:1 · NULL) = eL:1 · NULL

splitL(eL:1 · eL:2 · lL:3) = eL:1 · splitL(lL:3)

Fig. 5:mergeSort andsplit equations.

merge(NULL , L2) = L2
merge

L1
(NULL , L2) = NULL

merge
L2

(NULL , L2) = L2
merge(eL1:1 · lL1:2, NULL) = eL1:1 · lL1:2

merge
L1

(eL1:1 · lL1:2, NULL) = eL1:1 · lL1:2

merge
L2

(eL1:1 · lL1:2, NULL) = NULL

Fig. 6:merge equations (part 1).

we had to introduce several difficult lemmas to guide
the proof. For instance, we proved thatsplit di-
vides into two partitions the list which is passed to
it. We proved that the result ofmerge is a permu-
tation of the concatenation of the two lists passed
to it. Moreover, we proved that if these latter are
sorted, then the result is sorted. Finally, we could
prove that theMergeSort program actually sorts
any list given to it. To this end, we proved the two
formulae: permutation(l, mergeSort(l)) = true and
sorted(mergeSort(l)) = true which state that the list
returned bymergeSort(l)is an ordered permutation of
l. Functionspermutationandsortedare also defined
by equations.

7 Conclusion

In this paper, we have presented an extension of
the SubC language which introduces the concepts of
pointer and reference in a limited way. The lan-
guage grants access to references through thecall-by-
referencemechanism and operators onmutable lists.
We have described the implementation of these new
constructs and the underlying semantics.

We also have presented how theSOSSubC system
translated these constructs into first-order conditional
equations. We have given an example of this pro-
cess with the equations obtained from the non trivial
programMergeSort. Thanks to these equations we
proved that this program was sound, with respect to its
specification, by showing that the desired properties
were inductive theorems of the program equations.



eL1:1 ≤ eL2:1 ⇒ merge(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL1:1 · merge(lL1:2, eL2:1 · lL2:2)

eL1:1 ≤ eL2:1 ⇒ merge
L1

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL1:1 · merge(lL1:2, eL2:1 · lL2:2)

eL1:1 ≤ eL2:1 ⇒ merge
L2

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
merge

L2
(lL1:2, eL2:1 · lL2:2)

eL1:1 > eL2:1 ⇒ merge(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL2:1 · merge(eL1:1 · lL1:2, lL2:2)

eL1:1 > eL2:1 ⇒ merge
L1

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
merge

L1
(eL1:1 · lL1:2, lL2:2)

eL1:1 > eL2:1 ⇒ merge
L2

(eL1:1 · lL1:2, eL2:1 · lL2:2) =
eL2:1 · merge(eL1:1 · lL1:2, lL2:2)

Fig. 7:merge equations (part 2).

We have discussed what is needed to ensure the
correctness of the translation. We have showed how
undecidability of aliasing and design choices lead to
assumptions on the creation and use of aliases in SubC

programs. Unfortunately, the assumptions can not be
decided automatically and we could not enforce these
rules in the SubC syntax. The introduction of the as-
sumptions in the method does not invalidate our ap-
proach to formal program correctness. Simply, the
proof that the assumptions hold are a prerequisite to
proving other properties of programs. Obviously, this
proof cannot benefit from the equational definition of
the program produced bySOSSubC . This has to be
done using other suitable approaches,e.g., traditional
deductive reasoning if automated alias analyses failed.
We believe that the cost of proving that the assump-
tions are not violated is low comparatively to the ben-
efit from reasoning in equational logic for all the other
program properties.

Our method is successful in providing a formal
approach to reason about mutable lists and call-by-
reference parameters for a restricted, yet interest-
ing, class of imperative programs. In comparison to
more specialized approaches considering larger pro-
gram classes, ours integrates these aspects in the same
setting – equational logic – used for other program
properties. Future work should concentrate on refin-
ing the conditions of validity ofSOSSubC . The goal is
to accept a larger class of programs and make the con-
ditions easier to check. Techniques applied in alias
analysis are a good starting point to go beyond these
restrictions in particular cases.

The SubC language has still to be improved. Some
extensions, as array data type, are on hand. Indeed,
arrays can already be implemented over the list model.
Others, as offering a greater control to programmers

over references (e.g.through mechanisms like pointer
of pointer), require further study.

References:

[1] V. T. Chakaravarthy. New results on the com-
putability and complexity of points–to analy-
sis. ACM SIGPLAN Notices, 38(1):115–125,
Jan. 2003.

[2] J.-D. Choi, M. Burke, and P. Carini. Ef-
ficient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects.
In Twentieth ACM Symposium on Principles
of Programming Languages, pages 232–245,
Charleston, 1993. ACM Press.

[3] E. M. Clarke and J. M. Wing. Formal methods:
state of the art and future directions.ACM Com-
puting Surveys, 28(4):626–643, 1996.

[4] J. Field, J. Heering, and T. B. Dinesh. Equa-
tions as a uniform framework for partial evalua-
tion and abstract interpretation.ACM Computing
Surveys, 30(3es):2, 1998.

[5] J. A. Goguen and G. Malcolm.Algebraic Se-
mantics of Imperative Programs. Foundations
of Computing. The MIT Press, 1996.

[6] M. Hind. Pointer analysis: haven’t we solved
this problem yet? InACM Workshop on Pro-
gram analysis for software tools and engineer-
ing, pages 54–61. ACM Press, June 2001.

[7] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, 1969.

[8] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence
analysis for pointer variables. InACM Conf. on
Programming Language Design and Implemen-
tation, pages 28–40. ACM Press, 1989.

[9] A. Møller and M. I. Schwartzbach. The pointer
assertion logic engine. InACM Conf. on Pro-
gramming Language Design and Implementa-
tion, pages 221–231. ACM Press, 2001.

[10] P. W. O’Hearn, J. C. Reynolds, and H. Yang.
Local reasoning about programs that alter data
structures. In15th Internat. Workshop on
Computer Science Logic, pages 1–19. Springer-
Verlag, 2001.

[11] S. Owre, J. M. Rushby, and N. Shankar. PVS:
A prototype verification system. In11th Inter-
nat. Conf. on Automated Deduction, volume 607
of Lecture Notes in Artificial Intelligence, pages
748–752. Springer-Verlag, June 1992.

[12] O. Ponsini, C. Fédèle, and E. Kounalis. Rewrit-
ing of imperative programs into logical equa-
tions. Science of Computer Programming,
56(3):363–401, 2005.


