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ABSTRACT
This paper describes a system for automatically trans-
forming programs written in a simple imperative language
(called C--), into a set of first-order equations. This
means that a set of first-order equations used to represent a
C-- program already has a precise mathematical meaning;
moreover, the standard techniques for mechanizing equa-
tional reasoning can be used for verifying properties of pro-
grams. This work shows that simple imperative programs
can be seen as fully formalized logical systems, within
which theorems can be proved. The system itself is formu-
lated abstractly as a set of first-order rewrite rules. Then,
it is proven to be terminating and confluent using the RRL
system.
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1. Introduction

The need to be able to reason about computer programs in
a rigorous formal way is self evident. In order to increase
confidence in code production, efforts should be focused
on verifying that programs meet their requirements, that is,
that they are sound with respect to their specification. In
a previous work [1], F́EDÈLE and KOUNALIS introduced a
theoretical framework for proving automatically properties
of C-- programs, a simple imperative language. The idea
was to translate source code into a set of first order equa-
tions expressing the program algebraic semantics. The use
of equational logic, has some advantages over other, more
complex logics:

1. it is very simple — the logic of substituting equals for
equals;

2. many problems associated with equations, that are not
decidable in more complex logics, are decidable in
equational logic;

3. there are efficient algorithms for deciding many of
these problems.

The general outline of our framework is shown in
Fig. 1. Users write down the C-- code of a program; they
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Figure 1. Proof process overview

also write the program specification as a set of properties
expressed in equational logic.The source code is then trans-
formed automatically, by the SOS C-- system, into a set of
equations. The equations of the program can be seen as the
axioms, and the properties to be proved as the conjectured
theorems of the axioms. Therefore, the proof of these theo-
rems from the axioms is equivalent to the proof that the pro-
gram meets its specification. This last part may be done au-
tomatically usingtheorem proversable to do mathematical
induction like NICE [2] or interactively usingproof check-
ers like COQ [3].

This approach is conceptually different from other
recent developments like COGITO [4] or SPECWARE [5],
since these systems generate code from specifications. It
also differs from [6] and [7] since they useannotationsto
prove the program behavior. Our approach is conceptually
similar to the systems [8] and [9]. However, [9] can not
treat programs with loops and [8] works in logics not eas-
ily amenable to automation.

In this paper, we extend [1] in various directions:

1. We give an abstract framework to theprogram to-
wards equationprocess. In [1], there was only the
basis of a rewrite system and no property had been
proved on the system.



• In particular we formulate the SOS C-- system
as a rewrite system. We refine the rules to enrich
and be closer to the C-- semantics.

• We prove the rewrite systemcompleteness(i.e.
termination and confluence) using the RRL1.
Roughly speaking, this kind of completeness
means that every C-- program can be trans-
formed into a unique equational program.

• We give a formal description of how equations
are generated from environments.

2. In [1], no implementation had been done. We now
assert that the axiomatization process can be automa-
tized since we made an implementation in Java.

• JavaCC2, a parser and scanner generator, has
been used for the term generation step.

• We developed a Java version of agenericrewrit-
ing algorithm. The rewrite rules are loaded sepa-
rately from a file so as to elaborate the rules with
ease.

• We worked out an algorithm to generate equa-
tions from environments.

In what follows, we first introduce some basic defini-
tions and notations. Then, section 3 gives a general outline
of the SOS C-- system and illustrates it with an example;
the section uses the following scheme:

1. programs are terms;

2. terms produce environments;

3. environments generate equations.

2. Definitions

2.1 Rewrite Systems

We assume familiarity with the basic notions of equational
logic and rewrite systems (see [11] for instance). Let
T (F, X) denote the set of terms built out of function sym-
bols taken from the finitevocabularyF and a denumer-
able setX of variables. If t is a term andθ is a substi-
tution of terms for variables int, thentθ is an instanceof
t. An equatione is an elementT (F, X) × T (F, X) and is
written ast = s. A rewrite systemR is a set of oriented
equationsl → r, called rewrite rules. A rule is applied
to a termt by finding a subterms of t that is an instance
of the left sidel (i.e. s = lθ) and replacings with the
corresponding instance (rθ) of the rule’s right side. One
computes withR by repeatedly applying rules to rewrite
(or reduce) an input term until anormal form(irreducible
term) is obtained. LetA be a set of equations, in the case

1Rewrite Rule Laboratory [10]. The proof is part of the full version of
this paper.

2Java Compiler Compiler, Metamata.

whereA can be compiled into acomplete(i.e. terminating
andconfluent) rewrite systemR, we can decidet =A s

by testing for identity theR-normal forms oft ands (i.e.

nf(t)
?
= nf(s), where nf(t) (resp. nf(s)) denotes the normal

form of t (resp.s)).

2.2 The C-- Language

For our experiments we use a very simple imperative lan-
guage. The C-- syntax is similar to the C one. The main
features of the language are:

• assignment;

• control flow statements:if . . . else, whileandreturn;

• two predefined types: integers (int), and lists of inte-
ger (list);

• usual arithmetic operators;

• operators on lists:getHeadwhich returns the first ele-
ment of a list,getQueuewhich returns a copy of a list
except for the first element,NULL which represents
an empty list, andconswhich inserts an element at
the beginning of a list.

However, several common features in imperative languages
are unavailable in C--: no user’s defined types; no global
variables; no pointers directly accessible — of course some
are used in the predefined typelist.

3. A General Outline of the SOS C-- System

The SOS C-- system can be represented as a rewrite sys-
tem R over a first-order languageL built out from a set
of function symbols. These symbols are translations of the
constructs of the source language (C--). For instance, the
assignmentstatement, writtenx = y in C--, is translated
into Assign(x, y), whereAssignbelongs to the vocabulary
of L.

The system takes as input aC-- programand returns
as output aset of equationssemantically equivalent to the
program: the result of the execution of the C-- program
with input I is identical to the result (i.e. theorem) of the
equational deduction, started with the very same input. The
transformation process, calledC-- axiomatization, is done
in three steps and is carried out without any user interac-
tion. Figure 2 shows the steps involved in the C-- axioma-
tization.

To illustrate these steps, we will use thesorting pro-
gram of listing 1. This program is a C-- version of the
insertion sort. Functionins takes an integere and a sorted
list L and returns a new sorted list which is a copy ofL

containinge. ISort takes a listL as argument and returns
a sorted copy ofL by inserting at the right position (call
to functionins) the first element ofL in the already sorted
queue ofL.
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3.1 Programs are Terms

The first step consists in analyzing the functions of the
source programP . The result of this syntactic analysis is
a list of termT

f
P overL; one term for each functionf of

P . Intuitively, a term is equivalent to a source function and
suitable for rewriting.

Each C--function is seen as a list of statements and
an initial environment gathered in aGE3 term. The initial
environment is made up of the function formal parameters
combine in aPair term with EP4 terms. AnEP term de-
notes an effective parameter. Thus, formal parameters be-
have like local variables to which are assigned the effective
parameters.

Variable declarationsare considered as assignments
and are therefore added to the list of statements of the func-
tion.

A sequenceof statements is simulated by a list of
terms.

Returnstatements engender a pair linking the name of
the function and its return expression.

Expressionsappearing as right value in an assignment
or as value in a function call are left as is.

The other constructs of the C-- language are sim-
ply matched with equivalent terms of the rewrite sys-
tem: theif statement, if(c) s1 elses2, is translated into
If(c, s1, s2); thewhile statement,while(c) s, is translated
into While(while number , c, s).

For instance, the term which corresponds to theISort
function of thesorting programis:

GE({ Assign(ret, NULL),
If(L = NULL,
{Assign(ret, NULL)},
{Assign(ret, ins(getHead(L),

ISort(getQueue(L))))}),
Return(ISort(L), ret) }, { Pair(L, EP(L)) } ) .

3GE stands for Generate Environment.
4EP(x) stands for Effective Parameter x. It is the value given tothe

function parameter x when the function is called.

Listing 1. Sorting program.

list ins (int e , list L) {
list ret =NULL;
if (L==NULL) ret=cons(e, NULL);

else if(e<=getHead(L)) ret=cons(e, L);
else { ret =ins(e ,getQueue(L));

ret =cons(getHead(L), ret ); }
return ret ;}

list ISort ( list L) {
list ret =NULL;
if (L==NULL) ret=NULL;

else ret =ins(getHead(L), ISort (getQueue(L)));
return ret ;}

A GE term contains two elements. The first one rep-
resents the sequence of instructions of the source function:

• the declaration ofret gives the firstAssignterm;

• then comes theIf term with the condition and its two
lists of statements, one for each alternative;

• and finally theReturnterm.

The second one represents the function’s initial en-
vironment. It is a list ofPair terms. APair associates a
variable and a value. Thus, the initial environment is the
value of the function’s variables after the call but before
any instruction is evaluated.

Likewise, the term which corresponds to theins func-
tion is:

GE({Assign(ret, NULL) ,
If(L = NULL,

{Assign(ret, cons(e,NULL))},
{If(e ≤ getHead(L),

{Assign(ret, cons(e, L))},
{Assign(ret, ins(e,getQueue(L))),
Assign(ret, cons(getHead(L), ret))}) }

Return(ins(e, L), ret) },
{Pair(L, EP(L)) , Pair(e, EP(e))} ) .

3.2 Terms produce Environments

At the second step, the system transforms a termT
f
P into

an environmentE
T

f

P

. Intuitively, this environment contains
all information about the variables of functionf and their
corresponding expressions (the evaluation of which yields
the value off in an execution ofP ).

3.2.1 Description

To obtain this environment, each termT f
P is normalized

according to the rewrite rules5 of R. The rules are divided
5The complete set of rules can be found in the full version of this paper.



into two classes. The first class contains the rules that rep-
resent the C-- language operational semantics. The second
class contains rules for updating environments — mainly
syntax manipulating rules for list manipulation.

Function statements are executed in an order which
depends on the control flow statements and their associated
conditions. These different possible orderings constitute
the execution paths of a function. The environment pro-
duced by rewriting represents the distinct execution paths
of a function, along with their associated conditions and the
final expression of variables and function. The state of the
variables is represented by a list ofPair terms. ABranch
term associates a condition to a variables state. The paths
are enclosed inChoiceterms.

For instance, the environment of theISort function of
listing 1 is:

Choice(
[ Branch(L = NULL,
{Pair(L, L), Pair(ret, NULL),

Pair(ISort(L), NULL) } )],
[ Branch(L 6= NULL,
{Pair(L, L), Pair(ret, ins(getHead(L),

ISort(getQueue(L)))),
Pair(ISort(L), ins(getHead(L),

ISort(getQueue(L)))) } )] ) .

Function ISort comprises oneif statement, so we
find in the environment aChoiceterm composed of two
Branch terms. These latter terms partition the statements
of the function between those which are executed when the
condition L = NULL is true and those which are exe-
cuted when this same condition is false. In eachBranch
term there is a list ofPair terms which represents the
state of the variables at the end of an “abstract” execu-
tion of theISort function. For instance, in the case where
L = NULL, Pair(L, L) means thatL is not modified by the
function; Pair(ret, NULL) means that the value of variable
ret is NULL; the Pair term containing the function name,
Pair(ISort(L), NULL) means that the function return value
is NULL.

Likewise, the environment of theins function is:

Choice(
[ Branch(L = NULL,
{Pair(L, L), Pair(e, e), Pair(ret, cons(e, NULL)),

Pair(ins(e, L), cons(e, NULL)) } )],
[ Choice(

[ Branch(L 6= NULL ande ≤ getHead(L),
{ Pair(L, L), Pair(e, e), Pair(ret, cons(e, L)),

Pair(ins(e, L), cons(e, L)) } )],
[ Branch(L 6= NULL ande > getHead(L),
{ Pair(L, L), Pair(e, e),

Pair(ret, cons(getHead(L), ins(e, getQueue(L)))),
Pair(ins(e, L), cons(getHead(L),

ins(e, getQueue(L)))) } )] )] ) .

3.2.2 While Statements

We now turn our attention to the iterative constructwhile.
This section gives an insight into how we handlewhile
statements, and we then formalize it in sections 3.2.3 and
3.3.

The semantics ofwhile statements is quite specific.
Indeed, each loop is considered as a family of separate re-
cursive functions with their own parameters and body. The
idea is that a loop is a function which calls itself recursively
with the value of the variables modified accordingly to the
statements of the loop body. Such a loop function is de-
fined for each variable modified in a loop body. Then, in the
function containing the loop, the value of a variable mod-
ified in the loop body is the result of a call to the specific
loop function. Consequently, when a loop is encountered,
the environment is modified as follows:

• A newLT 6 term containing all the information need-
ed to generate the loop functions is created. The in-
formation is the loop number, the exit condition, the
statements of the loop body and the list of all the vari-
ables. This Loop Term will be used at the third step to
generate a family of equations (see section 3.3).

• Each variable modified in the loop body is assigned a
call to the corresponding loop function. This function
takes as argument the current state of the variables.

The following example shows howwhile statements
are handled. Let us suppose a C-- function declares three
variables —x, y, z — two of which are modified in a loop
body, like in listing 2. During rewriting of the term corre-

Listing 2. A loop.

int f () {
int x,y,z;

x=1; y=2; z=3;

while(y>0) {
x=x+z;
y=y−1;
}

. . .

}

sponding to functionf , the following Loop Term is created:

LT(1, y > 0, GE(statements, initial environment),
(x, y, z)) .

The statementsare the two assignments modifyingx and
y. The initial environmentis the list of pairs(x, EP(x)),
(y, EP(y)) and(z, EP(z)). The termGE means that a new

6Loop Term.



environment will be evaluated for the loop body. At the
third step of the process, this will lead to the definition of
two functions, LOOP1x and LOOP1y, one for each variable
modified in the loop.















If y > 0 then
LOOP1

x(x, y, z) = LOOP1
x(x + z, y − 1, z)

If not(y > 0) then
LOOP1

x(x, y, z) = x















If y > 0 then
LOOP1

y(x, y, z) = LOOP1
y(x + z, y − 1, z)

If not(y > 0) then
LOOP1

y(x, y, z) = y

In addition, the pairs
Pair(x, Loop1

x(current state of variables))
and

Pair(y, Loop1
y(current state of variables)),

are inserted in the environment of functionf to reflect the
new state of these variables. Thecurrent state of vari-
ables refers to the state of the variables just before the
while statement. This is just like replacing the loop in
function f by the function calls:x = LOOP1

x(1, 2, 3) and
y = LOOP1

y(1, 2, 3).

3.2.3 Rules

As we said formerly, rules are divided into two classes.
Among the rules describing the language operational se-
mantics, we find:

• GE rules: they are used to translate the behavior of
thesequenceinstruction;

• Comp rules: they are used to evaluate a new statement
in the current environment;

– Rules for theassignmentandreturn statements.
These rules add a new pairPair(variable, value)
to the environment or modify an existing pair.

– Rules for theif statement. These rules aim at di-
viding the environment into two parts through a
Choice term. Each part is included in aBranch

term and contains anif alternative depending on
whether the condition is valid or not.

– Rules to define thewhile statement. These rules
create anLT term and add a new pair to the en-
vironment for each variable modified in the loop
body.

• two moreComp rules to tell that the statements fol-
lowing anif statement must be executed whatever al-
ternative is chosen;

• Branch rules to group together two successiveif
statements by merging the conditions.

Among the rules updating an environment, we find:

• Merge env andMerge L var to merge two lists;

• Insert pair andInsert var to add a pair or a variable
to a list;

• GLOV , GLOMV andGLOE to run through a list
and build a new list by extracting, respectively, vari-
ables, modified variables or expressions from the ini-
tial list.

3.3 Environments generate Equations

At the last step, a set of equations is generated from each
E

T
f
P

. This set of equations defines the algebraic semantics
of P . In the example of thesorting program, we obtain:

L = NULL ⇒ ins(e, L) = cons(e, NULL)
L 6= NULL ande ≤ getHead(L) ⇒

ins(e, L) = cons(e, L)
L 6= NULL ande > getHead(L) ⇒

ins(e, L) = cons(getHead(L), ins(e, getQueue(L)))
L = NULL ⇒ ISort(L) = NULL

L 6= NULL ⇒
ISort(L) = ins(getHead(L), ISort(getQueue(L)))

Only a few elements in an environment will gener-
ate equations: these are the equation generators. The third
and final step of the axiomatization process refines environ-
ments, extracts equation generators from environments and
generates the corresponding equations.

The equation generators are:

• lists of pairs. They represent the state of the variables
at the end of the computation. But, only the function
return value is of interest, therefore, only the pair con-
taining the function name will generate an equation.

Generator :
Pair(. . . ) · . . . · Pair(func name, expression)

Equation : func name = expression

• Branchterms. They appear because of anif statement
and represent an alternative. They link a condition and
a list of pairs. Again, only the pair with the function
name is of interest. EachBranch term generates one
conditional equations.

Generator : Branch(condition ,

Pair(. . . ) · . . . · Pair(func name, exp))
Equation :
condition = True ⇒ func name = exp

• LT terms. They generate a family of conditional equa-
tions that defines recursively the loop functions — one
loop function for each modified variable in the loop
body. Two equations are needed, one for the recursive
call — with the variables state modified according to



the loop body — and one for the exit case which gives
the result of the loop function, that is the current value
of the considered modified variable.

Generator : LT(num, cond ,

Pair(v1, e1) · . . . · Pair(vn, en), {v1, . . . , vn})
Equation :

⋃

1≤i≤m























cond = True ⇒
LOOPnum

vmodi
(v1, . . . , vn) =

LOOPnum
vmodi

(e1, . . . , en) ,

cond = False ⇒
LOOPnum

vmodi
(v1, . . . , vn) = vmodi























Here,vmod1 , . . . , vmodm
are the variables modified in

the loop body andv1, . . . , vn are all the variables ap-
pearing in the C-- function. A variablev is known to
have been modified when its value differs from EP(v)
which is the value assigned to it before getting in the
loop.

4. Conclusion

In this paper we have discussed a system to automatically
obtain an equivalent equational formulation of a C-- pro-
gram from source code. The process leading to the equa-
tions requires three steps. The central point of the discussed
method is the generation of an environment by means of a
rewrite system which implements the operational seman-
tics of the C-- language. The first stage consists in building
a term suitable for rewriting through the syntactic analysis
of the program code. The last stage consists in translating
the environment into equations. An implementation of this
system has been carried out in Java. A lot of work has still
to be done. Future work includes:

• Adding functionalities to the C-- language in order to
come closer to real imperative languages. Indeed, de-
spite the use ofassignmentandwhile constructs, we
are still very close to a functional programming style.

• implementing interfaces towards proof systems, that
is, providing the equations in the specific proof system
syntax;

• experimenting on a larger scale proving properties
from the equations in proof systems. This in order
to identify a class of properties and programs that can
be proven sound using our system.

An extended version of this paper and a software im-
plementation of the SOS C-- system can be found at the
following address: http://www.i3s.unice.fr/˜ ponsini.

References
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