
Automating Proofs of C-- ProgramsCarine F�ed�ele, Emmanuel Kounalis and Olivier PonsiniI3SLes Algorithmes2000, route des Colles 06410 Biot, FranceAbstract. This paper describes a method for deriving equations fromprograms written in C--, a simple imperative language. Programs areautomatically transformed from the source code, without any user anno-tation, in a set of conditional equations, equivalent to the program andsuitable to perform proofs in theorem provers.1 IntroductionIn most cases where a program speci�cation is done correctly, software de�cien-cies that come from the gap between the speci�cation and its actual coding areby far more numerous than errors due, for instance, to hardware failure or tothe compiler. In order to increase con�dence in code production, e�orts shouldcenter on verifying that programs meet their requirements, that is, that they aresound with regard to their speci�cation. When dealing with the problem of pro-gram soundness, developers usually tend to use empirical methods like test sets.But this is not su�cient for applications that need a high degree of reliability.This kind of applications strongly bene�ts from the use of formal methods forvalidation.Formal methods are mathematical tools and techniques aimed at specifyingand verifying software or hardware systems. By veri�cation, we mean the anal-ysis of a system so as to demonstrate it owns the desired properties. In thispaper, we endeavor to work on source code produced by programmers, in con-trast with systems that generate code from speci�cations. This way, the codecan be manually optimized. To carry out this task, most proof systems ask theuser to annotate the source code, mixing the speci�cation content with the code.Therefore, either the programmer must have a good understanding of the speci-�cation language or the speci�er su�cient knowledge in the coding language. Inboth cases, a same person must master two disparate languages and adopt twodi�erent points of view. To avoid this, we address the problem of a veri�cationmethod which distinguishes the two activities | specifying and coding.1.1 A Proof FrameworkIn a previous work [3], F�ed�ele and Kounalis introduced a framework for prov-ing automatically properties of C-- programs, a small imperative language. The

idea was to translate source code into �rst order equations. These equationswould constitute the axioms of a logic in which desired properties of the program,its speci�cation, could be proved. Since both the axioms and the speci�cationof the program would be written in equational logic, proofs could be conducted,whether automatically or no, through proof systems like theorem provers.

deduced from the
program?

properties
Are the properties

program

Equations
of the

Automated process

Automatic process
Manual process

Proof system

Axiomatization
C−−

code

Equations
of the

Fig. 1. Proof process overviewThe proof process is shown in Fig. 1. Users write the C-- code of a program.They also write the program speci�cation as a set of properties expressed inequational logic. The source code is then transformed automatically into equa-tions. The equations of the program are seen as the axioms, and the propertiesas the theorems of a logic. To prove the theorems deduce themselves from theaxioms is equivalent to prove that the program is correct regarding its speci�-cation. This last part is done automatically using theorem provers able to domathematical induction like Nice [6] or interactively using proof checkers likeCoq [2].In this paper, we focus on the program axiomatization: the operation whichderives equations from source code.1.2 The C-- LanguageFor our experiments we use a very simple imperative language. The C-- syntaxis similar to the C one. The main features of the language are:{ assignment;{ control
ow statements: if : : : else, while and return;

Listing 1. Identity function.int identity (int x) freturn x;g{ two prede�ned types: integers (int), and lists of integer (list);{ usual arithmetic operators;{ operators on lists: getHead which returns the �rst element of a list, getQueuewhich returns a copy of a list except for the �rst element, NULL whichrepresents an empty list, and cons which inserts an element at the beginningof a list.Several common features to imperative languages are unavailable:{ no user's de�ned types allowed;{ no global variables allowed;{ no pointers directly accessible to the user | of course some are used in theprede�ned type list.2 AxiomatizationThe axiomatization is the operation which takes as input a C-- program andgives as output a set of equations semantically identical to the program. Thistransformation is done in three steps and without any user interaction. Figure2 shows the steps involved in the axiomatization. The method is based on arewriting system whose role is to semantically analyze programs. A rewritingsystem substitutes equal terms depending on a set of rewriting rules (see [7] foran introduction).The goal of the �rst step is to provide a correct input for the rewriting, thatis a term over the rewriting system signature | a signature is a set of functionsymbols and arities. This term is then rewritten into another term which is theintermediate environment. Finally, the conditional equations are extracted fromthe environment.As an introductory example, let us see the di�erent stages of the axiomati-zation of the function of listing 1. The identity function will be transformed inthe term GE� Cons inst(Return(identity ; x);End inst);Cons env(Pair(x;EP(x));Empty env) � ;then, after rewriting, in the environmentCons env(Pair(x;EP(x));Cons env(Pair(identity ;EP(x));Empty env));and, �nally, in the equation identity(x) = x :

Equations

code

generation

C−−

Equation

Syntactic

analysis
Term

Rewriting

EnvironmentFig. 2. Axiomatization process overview2.1 Term GenerationInput : A C-- program.Output : A term over the rewriting system signature.A syntactic analysis is performed on each function of the C-- program to builda distinct term appropriate for rewriting.{ A C-- function is seen as a list of statements and an initial environment, con-tained in a GE 1 term. The initial environment is made up of the functionformal parameters combine with EP2 terms denoting the e�ective parame-ters | formal parameters behave like local variables to which are assignedthe e�ective parameters.{ A sequence of statements is simulated by a list of terms| whose constructorsare Cons inst and End inst .{ Return statements produce a pair linking the name of the function and itsreturn expression.{ Variable declarations are considered as assignments added to the list of state-ments of the function. If a variable is not initialized, a default value is at-tributed.{ Expressions | or right-values | are not parsed.{ The other constructs of the C-- language are simply matched with equivalentterms of the rewriting system, as for instance:x = y 7! Assign(x; y);if(c) insts1 else insts2 7! If(c; inst list1 ; inst list2);while(c)insts 7!While(while number ; c; inst list) :In the case of the identity function of listing 1, theGE term is composed of thesingle instruction Return(identity ; x) and the initial environment Pair(x;EP(x)),since x is the unique function parameter.1 Generate Environment.2 E�ective Parameter.

2.2 Environment GenerationInput : A term.Output : An environment.In this second step, the term produced by the code analysis is normalized3 ac-cording to the rewriting rules. The resulting term is a C-- function environment.Description. The rules of the rewriting system express the operational seman-tics of the C-- language. Thus, the environment produced by rewriting representsthe distinct execution paths of the function, along with their associated condi-tions and the �nal expression of the variables and function. By execution pathswe mean the ways in which statements can be executed in a function accordinglyto control
ow statements. The paths are enclosed in Choice terms. A Branchterm associates a condition to a variables state. The state of the variables isrepresented by a list of terms Pair(variable ; value). The complete de�nition ofan environment is given by the grammar in Fig. 3.For instance, the function of listing 2 de�nes two execution paths, one forthe if part and one for the else part. Therefore, the environment will contain theterm Choice(Branch(cond ; if part);Branch(Not(cond); else part)) :< env > ::= < choice > j < env elt list >;< env elt list > ::= Cons env (< env elt >;< env elt list >) j Empty list ;< env elt > ::= < while closure > j < pair >;< choice > ::= (< branch >;< branch >);< branch > ::= Branch(< cond >;< env >);< while closure > ::= WC (< int >;< cond >;< env >;< var list >);< pair > ::= Pair(< var >;< value >);< value > ::= < exp > j < loop >;< var list > ::= Cons var(< var >;< var list >) j End var ;< loop > ::= Loop(< int >;< var >;< exp list >);< exp list > ::= Cons exp(< exp >;< exp list >) j End exp;< exp > ::= an expression;< cond > ::= a condition;< var > ::= a variable;< int > ::= an integer;Fig. 3. Environment grammar.3 The term is rewritten until no more rule can be applied.

Listing 2. An alternative.int alternative () fif (cond)if partelseelse part: : :gWhile Statements. The semantics of While statements is quite speci�c. In-deed, each loop is considered as a separate recursive function with its own pa-rameters and body. But a function can only return a single value, and yet severalvariables can be modi�ed by a loop. So, for each variable which is modi�ed inthe loop body, a new loop function is de�ned and its return value is the modi�edvariable one. In addition, since any variable of the function is likely to be usedin the loop body, the loop function takes all the variables as parameters. Con-sequently, when a loop is encountered, the environment is modi�ed as follows:{ A newWC 4 term containing all the information needed to generate the loopfunctions is created. The information is the number of the loop, the exitcondition, the statements of the loop body and the list of all the variables.{ Each variable which is modi�ed in the loop body is assigned a call to thecorresponding loop function with the current state of the variables passedas parameter.The following example shows how while statements are handled. Let us sup-pose a C-- function declares three variables | x; y; z | two of which are modi�edin a loop body, like in listing 3. During rewriting of the term corresponding tofunction f , the termWC(1; y > 0;GE(the instruction list ; the loop initial environment); (x; y; z))is created. The instruction list is composed of the two assignments modifyingx and y. The loop initial environment is the list of pairs (x;EP(x)), (y;EP(y))and (z;EP(z)). The term GE means that a new environment will be evaluatedfor the loop body. This will lead to the de�nition of two functions: LOOP1x andLOOP1y. � If y > 0 then LOOP1x(x; y; z) = LOOP1x(x+ z; y � 1; z);If not(y > 0) then LOOP1x(x; y; z) = x :� If y > 0 then LOOP1y(x; y; z) = LOOP1y(x+ z; y � 1; z);If not(y > 0) then LOOP1y(x; y; z) = y :4 While Closure.

Listing 3. A loop.int f () fint x,y,z;x=1;y=2;z=3;while(y>0) fx=x+z;y=y�1;g: : :gIn addition, the pairs(x;Loop(1; x; current state of variables))and (y;Loop(1; y; current state of variables));one for each variable modi�ed in the loop, are inserted in the environment offunction f to re
ect the new state of these variables. The current state of vari-ables refers to the state of the variables just before the while statement. This isjust like replacing the loop in function f by the function calls: x = LOOP1x(1; 2; 3)and y = LOOP1y(1; 2; 3).Rules. A rewriting system is a set of rewriting rules. A rewriting rule is com-posed of a left and a right part and indicates that the right part can be sub-stituted to the left part in any term where the left part | possibly with asubstitution of its variables | appears. The rules are divided into rules rep-resenting the C-- language semantics and syntax manipulating rules | mainlylists manipulation. The complete set of rules can be seen in Appendix B, butsome rules are brie
y commented here.Among the rules describing the language operational semantics, we �nd:{ GE rules to translate the behavior of the sequence instruction;{ Comp rules to evaluate a new statement in the current environment;� An assignment or a return statement adds a new pair whose value isupdated to re
ect the current variables state | Update env rules.� An if statement divides the environment into two parts through a Choiceterm. Each part is included in a Branch term and contains an if alter-native depending on whether the condition is valid or no.

� A while statement creates a WC term and adds new pairs to the envi-ronment for the variables modi�ed in the loop body as explained in theprevious section (Sec. 2.2).{ two more Comp rules to tell that the statements following an if statementmust be executed whatever alternative is chosen;{ Branch rules to group together two successive if statements by merging theconditions.Among the syntax manipulating rules, we �nd:{ Merge env and Merge L var to merge two lists;{ Insert pair and Insert var to add a pair or a variable to a list;{ GLOV , GLOMV and GLOE to run through a list and build a new list byextracting, respectively, variables, modi�ed variables or expressions from theinitial list.In order to be sure that every C-- program always rewrites in a unique normalform, we must prove that the rewriting system is convergent, that is terminating| the rewriting process eventually ends | and con
uent | whenever two rulescan be applied to the same term, the result is identical after some rewritingswhichever rule was applied. This last property can be shown with the help ofthe Knuth{Bendix completion algorithm [5]. An implementation of this algo-rithm exists in RRL the Rewrite Rule Laboratory [4]. We used RRL to exhibita lexicographic path order relation over the symbols of the rewriting system |which guarantees it is terminating | and to apply successfully the completionalgorithm.2.3 Equation GenerationInput : An environment.Output : A set of equations.Only a few elements in environments will generate equations: they are theequation generators. The third and �nal step of the axiomatization process re-�nes environments, extracts equation generators from environments and gener-ates corresponding equations.First, environment are made clearer through evaluation of the followingterms:{ Subst terms. Subst(x; exp1; exp2) denotes the substitution of variable x byexpression exp2 in expression exp1. The substitution is simply applied.{ EP terms. They are not necessary anymore since the distinction betweene�ective and formal parameter is only needed for substitutions. EP(x) isreplaced by x.{ Loop terms. They undergo a purely syntactic transformation.Loop(num; variable ; fexp1; : : : ; expng) is replaced byLOOPnumvariable(exp1; : : : ; expn) :

Then equation generators are transformed into equations. The equation gen-erators are:{ lists of pairs. They represent the state of the variables at the end of thecomputation. But, only the function return value is of interest, therefore,only the pair containing the function name will generate an equation.Generator : Pair(: : :) � : : : � Pair(: : :) � Pair(function name; expression) :Equation : function name = expression :{ Branch terms. They appear because of an if statement and represent analternative. They link a condition and a list of pairs. Again, only the pair withthe function name is of interest. Each Branch term generates one conditionalequations.Generator :Branch�condition ;Pair(: : :) � : : : � Pair(: : :) � Pair(function name; expression)� .Equation : condition = True) function name = expression :{ WC terms. They generate a family of conditional equations that de�nesrecursively the loop functions | one loop function for each modi�ed variablein the loop body. Two equations are needed, one for the recursive call | withthe variables state modi�ed according to the loop body | and one for theexit case which gives the result of the loop function, that is the current valueof the considered modi�ed variable.Generator :WC (num; cond ;Pair(v1; exp1) � : : : � Pair(vn; expn); fv1; : : : ; vng) :Equation :S1�i�m8>><>>:cond = True)LOOPnumvmodi (v1; : : : ; vn) = LOOPnumvmodi (exp1; : : : ; expn) ;cond = False)LOOPnumvmodi (v1; : : : ; vn) = vmodi 9>>=>>; :Here, vmod1 ; : : : ; vmodm are the variables modi�ed in the loop body andv1; : : : ; vn are all the variables appearing in the C-- function. A variable v isknown to have been modi�ed when its value di�ers from EP(v) which is thevalue assigned to it before getting in the loop.3 Extended ExampleThis section goes over the axiomatization process again, showing how the threesteps of the process apply to a case study. The C-- version of the list inversionwill serve as support (see Appendix A for some other examples).

Listing 4. Reverse function.list reverse(list L) flist W=NULL;while(L != NULL) fW=cons(getHead(L), W);L=getQueue(L);greturn w;g3.1 Term GenerationThe term in Fig. 4 is constructed by the term generation step from the C-- codeof listing 4.GE(Cons inst(Cons inst(Cons inst(End inst,Assign(W, NULL)),While(1, (L<>NULL), Cons inst(Cons inst(End inst,Assign(W, cons(getHead(L), W))),Assign(L, getQueue(L))))),Return(reverse(L), W)),Cons env(Pair(L, EP(L)),Empty env))Fig. 4. Reverse function initial term.The GE term can be identi�ed with its list of instructions and initial envi-ronment. The list of instructions is made up of:{ an assignment which comes from the initialization of the variable W at thetime of its declaration;{ a while instruction which includes its own instruction list | two assignmentscorresponding to the body loop;{ a return instruction where the function name appears.The environment is initially composed of one pair, Pair(L;EP(L)), associatingvariable L and the value L will take at the function call | its e�ective valuedenoted EP(L).

3.2 Environment GenerationAt the environment generation step, the initial term of the reverse function isrewritten using the rewriting system in a �nal environment. Fig. 5 presents theenvironment obtained from the term of Fig. 4 once re�ned | as explained inSec. 2.3 | for readability purpose.Cons env(WC(1, (L<>NULL), Cons env(Pair(W, cons(getHead(L), W)),Cons env(Pair(L, getQueue(L)),Empty env)),Cons var(L,Cons var(W,End var))),Cons env(Pair(L, Loop(1, L, Cons exp(L,Cons exp(NULL,End exp)))),Cons env(Pair(W, Loop(1, W, Cons exp(L,Cons exp(NULL,End exp)))),Cons env(Pair(reverse(L), Loop(1, W, Cons exp(L,Cons exp(NULL,End exp)))),Empty env))))Fig. 5. Reverse function re�ned environment.The environment is made up of:{ a WC term. The number 1 is attributed to the loop. The environment rep-resents the state of all the reverse function variables, initialized to their ef-fective value, after one execution of the loop body. The last WC parameteris the list of all the function variables.{ a list of pairs. These pairs represent the state of the function variables oncethe function has been executed. L and W are assigned the result to a call toa Loop function which will be de�ned during the equation generation stepthanks to the information enclosed in the WC term. The last pair is thefunction result.3.3 Equation GenerationThe environment is made up of the following equation generators :{ the WC term which generates the Loop equations. Since L and W are modi-�ed in the loop body, two Loop functions are created. They are LOOP1L andLOOP1W .

{ the pair containing the function name which equals a call to reverse to acall to LOOP1W .Finally, equation generation step gives the equations of Fig. 6.(L <> NULL) = True => LOOP1W (L;W) =LOOP1W (getQueue(L); cons(getHead(L);W));(L <> NULL) = False => LOOP1W (L;W) = W;(L <> NULL) = True => LOOP1L(L;W) =LOOP1L(getQueue(L); cons(getHead(L);W));(L <> NULL) = False => LOOP1L(L;W) = L;reverse(L) = LOOP1W (L;NULL) :Fig. 6. Reverse function equations.4 Related WorkImperative languages are widely used in the industrial world which expressesa strong need for simple and user-friendly speci�cation and veri�cation tools.Several approaches address this challenge. We can distinguish those which gen-erate code from speci�cations, from those which work with source code as rawmaterial.{ Program synthesis uses a formal and high-level language to describe programspeci�cations. The speci�cation language semantics is well-de�ned enoughto produce source code in various programming languages. Systems basedon this approach mainly di�er on the speci�cation language which is oftentuned for a particular type of application. Examples of such systems areCogito [12], Specware [10]. This approach su�ers from several drawbacks.The speci�cation language can help in saying what a program must do, butthe language is often not su�cient to express how it should be done. Thegenerated code is not as e�cient as the one a programmer would produce.In addition, these systems can not be used to verify existing programs or formaintenance purpose.{ The second category of veri�cation systems can also be divided into twosub-categories.� Program annotation requires that the user inserts program speci�cationsin the form of annotations directly into source code. These annotationswill help the system to conduct the proof (see [8] and [1] for instance).� Speci�cation generation attempts to extract speci�cations from sourcecode and verify them against user speci�cations. This kind of systemneeds no user interaction but, possibly, for the proof step. The method

exposed in [13] uses a set of well-known semantics-preserving transfor-mations to extract speci�cations. Speci�cations are then written in alanguage mixing high-level and low-level content. Pesca [11] is close toour approach. This system uses algebraic semantics for the speci�cationpart and a basic imperative language for the programming part. Theproofs are conducted in the Larch Prover [9] theorem prover. Themain di�erences with our work come from the restrictions applied tothe programming language (no loops allowed) and the method used togenerate the speci�cations.5 ConclusionIn this paper we have discussed a method to automatically obtain an equiv-alent equational formulation of a C-- program from source code. The processleading to the equations requires three steps. The central point of the discussedmethod is the generation of an environment by means of a rewriting systemwhich implements the operational semantics of the C-- language. The �rst stageconsists in building a term suitable for rewriting through the syntactic analysisof the program code. The last stage consists in translating the environment intoequations.An implementation of this method has been carried out in Java. JavaCC 5,a parser and scanner generator, has been used for the term generation step. Wedeveloped a Java version of a generic rewriting algorithm. The rewriting rulesare loaded separately from a �le so as to elaborate the rules with ease.A lot of work has still to be done. Future work includes:{ adding functionalities to the C-- language in order to come closer to realimperative languages;{ implementing interfaces towards proof systems, that is, providing the equa-tions in the speci�c system syntax;{ experimenting on a larger scale proving properties from the equations inproof systems. This in order to identify a class of properties and programsthat can be proven sound using our method.References1. S. Antoy and J. Gannon. Using Term Rewriting to Verify Software. IEEE Trans-actions on Software Engineering, 20(4):259{274, 1994.2. B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliâtre, E. Gim�enez, H. Herbelin,G. Huet, C. Mu noz, C. Murthy, C. Parent, C. Paulin, A. Sa��bi, and B. Werner.The Coq Proof Assistant Reference Manual { Version V6.1. Technical Report 0203,INRIA, August 1997. http://pauillac.inria.fr/coq/coq-fra.html.3. F�ed�ele C. and Kounalis E. Automatic proofs of properties of simple C�� mod-ules. In 14th IEEE International Conference on Automated Software Engineering,October 1999.5 Java Compiler Compiler, Metamata.

4. Kapur D. and Zhang H. RRL : Rewrite Rule Laboratory, May 1989.5. Knuth D.E. and Bendix P.B. Simple word problems in universal algebras. Com-putational Problems in Abstract Algebra, 1970. Pergamon Press.6. Kounalis E. and Urso P. Generalization discovery for proofs by induction in condi-tional theories. In Proceedings of 12th International FLAIRS. AAAI Press, 1999.7. Baader F. and Nipkow T. Term Rewriting and All That. Cambridge UniversityPress, 1998.8. Jean-Christophe Filliâtre. Proof of imperative programs in type theory. In T. Al-tenkirch, W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs,volume 1657 of Lecture Notes in Computer Science, page 78. Springer-Verlag,March 1998.9. Stephen J. Gar and John V. Guttag. A guide to LP, the larch prover. TechnicalReport 82, Digital Equipment Corporation, Systems Research Centre, 31 December1991.10. R. Juellig, Y. Srinivas, and J. Liu. SPECWARE: An advanced environment forthe formal development of complex software systems. Lecture Notes in ComputerScience, 1101:551, 1996.11. Daniel Schweizer and Christoph Denzler. Verifying the speci�cation-to-code corre-spondence for abstract data types. In M. Dal Cin, C. Meadows, and W. Sanders,editors, Dependable Computing for Critical Applications 6, volume 11 of Depend-able Computing and Fault-Tolerant Systems. IEEE Computer Society Press, 1997.12. O. Traynor, D. Hazel, P. Kearney, A. Martin, R. Nickson, and L. Wildman. TheCogito development system. In Michael Johnson, editor, Algebraic Methodologyand Software Technology (AMAST), Berlin, volume 1349 of LNCS, pages 586{591. Springer-Verlag, December 1997.13. Martin Ward. Abstracting a speci�cation from code. Journal of Software Mainte-nance: Research and Practice, 5(2):101{122, June 1993.A ExamplesThis appendix presents some examples of C-- programs and the equations pro-duced by the axiomatization process.A.1 Insertion Sortlist ins(int e , list L) flist ret ;if (L==NULL)ret=cons(e, NULL);else if (e<=getHead(L))ret=cons(e, L);else f ret=getQueue(L);ret=ins(e, ret);ret=cons(getHead(L), ret);g

return ret;glist ISort(list L) flist ret ;if (L==NULL)ret=NULL;else ret=ins(getHead(L), IS(getQueue(L)));return ret;g L = NULL) ins(e; L) = cons(e;NULL);L 6= NULL and e � getHead(L)) ins(e; L) = cons(e; L);L 6= NULL and e > getHead(L)) ins(e; L) =cons(getHead(L); ins(e; getQueue(L)));L = NULL) ISort(L) = NULL;L 6= NULL) ISort(L) =ins(getHead(L); ISort(getQueue(L))) :A.2 Greatest Common Divisorint gcd(int x, int y)f while(x!=y)f if (x>y)x=x�y;elsey=y�x;greturn x;g x 6= y and x > y) LOOP1y(y; x) = LOOP1y(y; (x� y));x 6= y and x � y) LOOP1y(y; x) = LOOP1y((y � x); x);x = y) LOOP1y(y; x) = y;x 6= y and x > y) LOOP1x(y; x) = LOOP1x(y; (x� y));x 6= y and x � y) LOOP1x(y; x) = LOOP1x((y � x); x);x = y) LOOP1x(y; x) = x;pgcd(x; y) = LOOP1x(y; x) :

B Rewriting System1. GE(Cons inst(L inst, inst), env) �! Comp(inst, GE(L inst, env))2. GE(End inst, env) �! env3. Comp(Assign(var, exp), Empty env) �! Cons env(Pair(var, exp), Empty env)4. Comp(Assign(var, exp), Cons env(pair, env)) �!Update env(Pair(var, exp), Cons env(pair, env))5. Comp(Return(fct, exp), Cons env(pair, env)) �!Update env(Pair(fct, exp), Cons env(pair, env))6. Comp(Return(fct, exp), Empty env) �! Cons env(Pair(fct, exp), Empty env)7. Comp(If(cond, L inst1, L inst2), Cons env(pair, env)) �! Choice(Branch(Update cond(cond, Cons env(pair, env)),GE(L inst1, Cons env(pair, env))),Branch(not(Update cond(cond, Cons env(pair, env))),GE(L inst2, Cons env(pair, env))))8. Comp(While(num, cond, L inst), Cons env(pair, L pair)) �!Cons env(WC(num, cond, GE(L inst, GIE1(Cons env(pair, L pair))),GLOV2(Cons env(pair, L pair))), Merge env(GL3(num,GLOMV4(GE(L inst, GIE(Cons env(pair, L inst)))),GLOE5(Cons env(pair, L pair))), Cons env(pair, L pair)))9. Comp(inst, Choice(exp1, exp2)) �! Choice(Comp(inst, exp1), Comp(inst, exp2))10. Comp(inst, Branch(cond, env)) �! Branch(cond, Comp(inst, env))11. Update cond(cond, Cons env(Pair(var, exp), env)) �!Update cond(Subst(var, cond, exp), env)12. Update cond(cond, Empty env)�! cond13. Update cond(cond, Cons env(WC(...), env)) �! Update cond(cond, env)14. Update env(Pair(x, exp1), Cons env(Pair(x, exp2), env)) �!Update env(Pair(x, Subst(x, exp1, exp2)), env)15. Update env(Pair(x, exp1), Cons env(Pair(y, exp2), env)) �!Cons env(Pair(y, exp2), Update env(Pair(x, Subst(y, exp1, exp2)), env))if not equal(x, y)16. Update env(Pair(var, exp), Empty env) �! Cons env(Pair(var, exp), Empty env)17. Update env(Pair(var, exp1), Cons env(WC(...), env)) �!Cons env(WC(...), Update env(Pair(var, exp1), env))1 Generate Initial Environment.2 Generate List Of Variables.3 Generate Loops.4 Generate List Of Modi�ed Variables.5 Generate List Of Expressions.

18. Branch(cond, Choice(env1, env2)) �!Choice(Branch(cond, env1), Branch(cond, env2))19. Branch(cond1, Branch(cond2, env)) �! Branch(and(cond1, cond2), env)20. GIE(Empty env) �! Empty env21. GIE(Cons env(Pair(var, exp), env)) �! Cons env(Pair(var, EA(var)), GIE(env))22. GIE(Cons env(WC(...), env)) �! GIE(env)23. GLOV(Empty env) �! End var24. GLOV(Cons env(Pair(var, exp), env)) �! Cons var(var, GLOV(env))25. GLOV(Cons env(WC(...), env)) �! GLOV(env)26. GLOMV(Empty env) �! End var27. GLOMV(Cons env(Pair(var, EA(var)), env)) �! GLOMV(env)28. GLOMV(Cons env(Pair(var, exp), env)) �!Cons var(var, GLOMV(env)) if not equal(EA(var), exp)29. GLOMV(Cons env(WC(...), env)) �! GLOMV(env)30. GLOMV(Branch(cond, env)) �! GLOMV(env)31. GLOMV(Choice(env1, env2)) �! Merge L var(GLOMV(env1), GLOMV(env2))32. Merge L var(Cons var(x, L var1), L var2) �!Insert var(x, Merge L var(L var1, L var2))33. Merge L var(End var, L var) �! L var34. Insert var(x, Cons var(x, L var)) �! Cons var(x, L var)35. Insert var(x, Cons var(y, L var)) �!Cons var(y, Insert var(x, L var)) if not equal(x, y)36. Insert var(x, End var) �! Cons var(x, End var)37. GLOE(Empty env) �! End exp38. GLOE(Cons env(Pair(var, exp), env)) �! Cons exp(exp, GLOE(env))39. GLOE(Cons env(WC(...), env)) �! GLOE(env)40. GL(num, Cons var(var, L var), Cons exp(exp, L exp)) �!Cons env(Pair(var, LOOP(num, var, Cons exp(exp, L exp))),GL(num, L var, Cons exp(exp, L exp)))41. GL(num, End var, Cons exp(exp, L exp)) �! Empty env42. Merge env(Cons env(pair, L pair), env) �!Insert pair(pair, Merge env(L pair, env))43. Merge env(Empty env, env) �! env44. Insert pair(Pair(x, exp), Cons env(WC(...), env)) �!Cons env(WC(...), Insert pair(Pair(x, exp), env))45. Insert pair(Pair(x, exp1), Cons env(Pair(x, exp2), env)) �!Cons env(Pair(x, exp1), env)46. Insert pair(Pair(x, exp1), Cons env(Pair(y, exp2), env)) �!Cons env(Pair(y, exp2), Insert pair(Pair(x, exp1), env)) if not equal(x, y)47. Insert pair(Pair(x, exp), Empty env) �! Cons env(Pair(x, exp), Empty env)

