
Rewriting of Imperative Programs into

Logical Equations

Olivier Ponsini, Carine Fédèle and Emmanuel Kounalis

Laboratoire I3S - UNSA - CNRS (UMR 6070)
Les Algorithmes - 2000, route des Lucioles - B.P. 121

06903 Sophia Antipolis Cedex - France

Abstract

This paper describes SOSSubC: a system for automatically translating programs
written in SubC, a simple imperative language, into a set of first-order equations.
This set of equations represents a SubC program and has a precise mathematical
meaning; moreover, the standard techniques for mechanizing equational reasoning
can be used for verifying properties of programs. Part of the system itself is for-
mulated abstractly as a set of first-order rewrite rules. Then, the rewrite rules are
proven to be terminating and confluent. This means that our system produces, for
a given SubC program, a unique set of equations. In our work, simple imperative
programs are equational theories of a logical system within which proofs can be
derived.

Key words: Imperative program transformation, Operational semantics,
Equational semantics, Compiling, Rewriting, Rewrite system, Program verification

1 Introduction

In most cases in which a program specification is done correctly, software
deficiencies that come from the gap between the specification and its actual
coding are by far more numerous than errors due, for instance, to hardware
failure or to the compiler. To increase confidence in code production, effort
should be focused on verifying that programs meet their requirements, that
is, that they are sound with respect to their specifications.

Email addresses: ponsini@i3s.unice.fr, Carine.Fedele@unice.fr,
kounalis@i3s.unice.fr (Olivier Ponsini, Carine Fédèle and Emmanuel
Kounalis).

Preprint submitted to Elsevier Science 16 November 2004

Equations
Property

code

Program

Manual process

Can the properties

Axiomatization

Proof system

Partially automated process

Equational
Theory

Program

Program

SOSSubC

be deduced from
the program?

Fully automated process

Fig. 1. Proof process overview.

When dealing with program soundness, developers usually use empirical meth-
ods like test sets. But this is not sufficient for applications that need a high
degree of reliability. For validation, applications would strongly benefit from
formal methods, i.e. mathematical tools and techniques aimed at specifying
and verifying software or hardware systems. By verification, we mean the anal-
ysis that demonstrates a program has the desired properties.

1.1 Outline of our approach and related work

In [1,2], we promote the idea of generating equations from imperative pro-
grams. The principle is to translate source code into a set of first-order equa-
tions expressing the program semantics. This translation is part of a framework
for automatically proving properties of programs. Equational logic, a subset of
first-order logic, affords a simple and clear semantics (substitution of equals),
as well as existing efficient algorithms and tools developed for it.

The general outline of our framework is shown in Fig. 1. Developers write
down the SubC code of a program; they also write program specifications as a
set of required properties expressed in equational logic: the program property

equations. Then the axiomatization (SOSSubC system) automatically trans-
forms the source code into a set of equations: the program equational theory.
These equations constitute a theory within equational logic. They also can
be seen as an algebraic specification. The properties to be proved are conjec-
tured theorems. Therefore, proving these theorems from the equational theory
is equivalent to proving the program meets its specifications. The program
equational theory concerns the proof side of the process and is derived from

2

the program code. The program specification concerns the development side of
the process and is derived from the developer’s requirements. Since both the
equational theory and the program specification are expressed in equational
logic, the proof may be done within proof systems, automatically, using the-

orem provers able to do mathematical induction like RRL [3] or Spike [4], or
interactively, using proof checkers 1 like PVS [5] or Coq [6].

In this paper, we address the following problem :

Axiomatization

Input : A SubC program P .

Output : A program equational theory <
∑

p, Ep >.

Where
∑

p and Ep are, respectively, the signature and
the semantics of P in equational logic.

Example 1 (list reverse) We illustrate here the proof process using a pro-
gram to reverse the elements of a list. Fig. 2 is the SubC program code. A
property of this program could be that the reverse of the reverse of a list is
the list itself: reverse(reverse(L)) = L. This equation is a conjecture we must
prove from the equations generated by our system (Fig. 3). Appendix C.1
discusses the proof of this conjecture in the theorem prover RRL.

list reverse (list L) {
list W = NULL;
while (L != NULL) {
W = cons(car(L), W);
L = cdr(L);

}
return w;

}

Fig. 2. Reverse of a list in SubC.

L = NULL ⇒ LOOP1
W (L, W) = W

L 6= NULL ⇒ LOOP1
W (L, W) = LOOP1

W (cdr(L), cons(car(L), W))

reverse(L) = LOOP1
W (L, NULL)

Fig. 3. reverse equational theory as produced by SOSSubC .

�

1 This distinction between theorem provers and proof checkers can appear rather
artificial since theorem provers often provide some kind of interactivity and proof
checkers some kind of automation.

3

Imperative languages are widely used in the industrial world which requires
simple and user-friendly tools for specification and verification. Several ap-
proaches address this challenge. Two large classes exist: approaches that gen-
erate code from specifications and approaches that work with source code as
raw material.

• Program synthesis derives programs from specifications. The specification
language is a formal and high-level language defined well enough to produce
source code in various programming languages. Systems based on this ap-
proach differ mainly in the specification language, which is often tuned for
a particular type of application. Examples of such systems are Cogito [7]
and Specware [8]. However, this approach suffers from several drawbacks.
The specification language can help in saying what a program must do, but
often the language is not sufficient to express how it should be done. The
generated code is not as efficient as one written by a programmer. In ad-
dition, these systems cannot be used for verifying or maintaining existing
programs.

• Verification systems are the second category. They deal with source code in
order to verify program properties. We find two sub-categories:
· Program annotation requires that user inserts program specifications in

the form of annotations directly into source code. These annotations will
help the system to carry out the proof (see [9] and [10] for instance). In
these frameworks, even simple properties can be difficult to prove. More-
over, these frameworks mix specifications with code. Therefore, either the
programmer must have a good understanding of the specification language
or the specifier must have sufficient knowledge of the coding language. In
both cases, the same person must master two disparate languages and
adopt two different points of view.

· Specification generation attempts to extract program specifications from
source code and to verify them against user specifications. This kind of
system needs no user interaction except, possibly, for the proof step. The
common part of these methods relies on giving a meaning to programs.
This can be done by formally defining the “standard” semantics of the
programming language, which is the approach taken here. Another ap-
proach is to express the meaning of programs in a semantics different
from the “standard” semantics. This is of particular interest in proofs of
compiler correctness (see [11] for instance). The program is then trans-
formed by applying a set of proven semantics-preserving transformations
in order to do, for instance, partial evaluation or correctness proofs (this
latter application is discussed in [12] or [13] for example). Another active
research area introduces the notion of categorical semantics and monads

to prove equivalence of programs (Moggi [14]). Monads seem well suited
to express imperative properties of languages in declarative formalisms
(see for instance [15], [9] or [16]).

4

In our approach, we work on source code written by programmers. In this way
the code can be manually optimized. We do not use annotations and, thus,
we distinguish the coding and specification activities. Also, a strong require-
ment is to automate the whole process. PESCA [17] is close to our approach.
This system uses algebraic semantics for the specification part and a basic
imperative language for the programming part. The proofs are conducted in
the Larch Prover [18] theorem prover. The main differences with our work
come from the restrictions the previous approaches impose on the program-
ming language (e.g. no recursion or no conditional loops allowed), the method
to give a semantics to programs, and the specification language.

Equational logic is an adequate formalism to achieve our goal of giving a
meaning to a program by unifying two views of language semantics. Because
we express programs as terms in the setting of equational logic:

(1) the model theory of this logic, algebra, gives a denotational semantics

to the program directly without resorting to additional formalisms as
traditionally done in Scott-Strachey semantics [19], LCF [20] or Hoare
[21] logics;

(2) rewriting theory gives an operational semantics by defining how to com-
pute values from the program.

In this respect, our approach shares foundational ideas with work done on
algebraic denotational semantics in [22] or PIM’s core algebraic component
[23] (for a discussion of equational logic and program semantics see also [24]).
However, we defined equationally the semantics of our programming language
so that programs were themselves equational definitions. In this regard, we
do not propose another intermediate representation of programs for further
translation. As it is, equational logic is well-suited to theorem proving. Thus,
we hope to alleviate substantial parts of correctness proofs.

1.2 Highlights of our approach

This paper is a full version of [1]. We focus on the program axiomatization,
the operation that derives equations from source code.

(1) We give an abstract framework for the program towards equation process.
In particular:
• We formulate the axiomatization mainly as a rewrite system.
• We prove the rewrite system’s convergence using RRL. Roughly speak-

ing, this means that a SubC program is translated into a unique set of
equations.

• We give a formal description of how equations are generated from en-
vironments.

5

(2) We developed a computer program, SOSSubC, which fully automatizes
the axiomatization process. The main features of SOSSubC are:
• a parser and a scanner for SubC generated by JavaCC 2 — it was used

for the term generation step;
• a Java version of a generic rewriting algorithm — the rewrite rules are

loaded separately from a file;
• an algorithm to generate equations from environments;
• a set of SubC programs.

1.3 Structure of this paper

In Section 2, we first introduce the SubC language, and some basic definitions
and notations for conditional equational logic and rewriting. Then, Section 3
gives a general outline of the SOSSubC system. Section 4 describes in detail
the steps involved in the axiomatization process. It also extensively discusses
the rewrite system and its rules. It involves three steps:

(1) programs are written as terms (Section 4.1);
(2) terms rewrite into environments (Section 4.2);
(3) environments generate equations (Section 4.3).

In Section 5, we illustrate these steps through concrete examples. Some other
examples are briefly presented in Appendix A. Rewrite system rules are given
in Appendix B and proofs done with the generated equations in proof systems
can be found in Appendix C.

2 Background

2.1 The SubC language

For our experiments, we use a very simple imperative language. The SubC

syntax is similar to that of C. Fig. 4 shows the SubC grammar given in EBNF.

The main features of the language are:

• assignments;
• functions: argument-passing by value, local variables;
• control flow statements: if . . .else, while and return;
• two predefined types: integers (int), and lists (list);

2 Java Compiler Compiler, Metamata.

6

program ::= function∗

function ::= type ident ’(’ [’void’ | argumentList] ’)’ (’;’ | functionBody)

argumentList ::= argumentDeclaration (’,’ argumentDeclaration)∗

argumentDeclaration ::= type ident

functionBody ::= ’{’ variableDeclaration∗ [statementList] returnStatement ’;’ ’}’

variableDeclaration ::= type variableInitialisation (’,’ variableInitialisation)∗ ’;’

variableInitialisation ::= ident [’=’ expression]

statementList ::= statement+

statement ::= assignStatement ’;’

| whileStatement ’;’

| branchStatement ’;’

| ’{’ statementList ’}’

| ’{’ ’}’

assignStatement ::= ident ’=’ expression

returnStatement ::= ’return’ expression

whileStatement ::= ’while’ ’(’ condition ’)’ statement

branchStatement ::= ’if’ ’(’ condition ’)’ statement [’else’ statement]

type ::= ’int’ | ’list’

condition ::= a conditional expression

expression ::= an expression

ident ::= an identifier

Fig. 4. SubC EBNF grammar.

• the usual arithmetic operators;
• operators on lists:
· car(L) returns the first element of the list L;
· cdr(L) returns a copy of the list L without its first element;
· NULL represents an empty list;
· cons(e, L) returns a new list by adding the element e to the head of a

copy of L.

There is no restriction on the nesting level of control flow statements, but
only one return statement per function is allowed (at the end of the func-
tion body). Moreover, several common features in imperative languages are
unavailable in SubC :

• no user-defined types;
• no global variables;
• no goto’s;
• no pointers directly accessible — of course some are used in the predefined

abstract type list, but they are hidden.

Fig. 5 defines the EBNF grammar of expressions in SubC . Expressions are

7

condition ::= andExpression (’||’ andExpression)∗

andExpression ::= equalExpression (’&&’ equalExpression)∗

equalExpression ::= relExpression ((’==’ | ’!=’) relExpression)∗

relExpression ::= expression (relOperator expression)∗

expression ::= mulExpression ((’+’ | ’−’) mulExpression)∗

mulExpression ::= unExpression ((’∗’ | ’/’) unExpression)∗

unExpression ::= [unOperator] factor

factor ::= ’(’ expression ’)’ | definedName | integer | ’NULL’

definedName ::= ident [’(’ [effectiveArgumentList] ’)’]
| ’cons’ ’(’ expression ’,’ expression ’)’

| ’car’ ’(’ expression ’)’

| ’cdr’ ’(’ expression ’)’

effectiveArgumentList ::= expression (’,’ expression)∗

unOperator ::= ’!’ | ’−’ | ’+’

relOperator ::= ’<’ | ’<=’ | ’>’ | ’>=’

integer ::= an integer

ident ::= an identifier

Fig. 5. SubC expressions EBNF grammar.

fully parsed but we are not interested in their semantics at the translation
stage. Indeed, their meaning is usually largely predefined in proof systems (cf.
Appendix C), consequently we only need to match the syntax of a specific
proof system and we rely on it for the symbol’s definitions.

Example 2 The conditional expression !a&&b==c will be disambiguated and
translated, according to RRL syntax for instance, into not(a) and b =
.

�

2.2 Equational logic

Let F be a set of symbols called a signature. Each symbol f in F is called
a function symbol and has an arity. Elements of arity zero are also called
constants.

Let X be a denumerable set of variable symbols. The set of (first-order) terms
T (F, X) is the smallest set containing X and such that the string f(t1, . . . , tn)
is in T (F, X) whenever the arity of f is n and ti ∈ T (F, X) for i ∈ [1..n].

We call a pair of two terms l and r denoted by l = r an equation and a pair
denoted by ¬(l = r), also l 6= r, a negative equation.

8

Let Pred be the set of predicate symbols. Each symbol pred in Pred has an
arity. Atoms are constants from Pred, equations and formulas pred(t1, . . . , tn)
where t1, . . . , tn (n ≥ 1) are terms and pred is an n-ary predicate symbol.

An equational program, also Horn clause, is written c ⇒ e where e is an
equation and c ≡ ∧

i
(∨

j
cij), with atoms cij.

2.3 Rewrite systems

Rewrite systems are sets of oriented equations. For an introduction to rewrite
system theory see [25] for instance.

Let T (F, X) denote the set of terms built from the signature F and a set X

of variables. If t is a term and θ is a substitution of terms for variables in t,
then tθ is an instance of t.

A rewrite system R is a set of oriented equations l → r, called rewrite rules. A
rule is applied to a term t by finding a subterm s of t that is an instance of the
left side l (i.e. s = lθ) and replacing s with the corresponding instance (rθ)
of the rule’s right side. One computes with R by repeatedly applying rules to
rewrite (or reduce) an input term until a normal form (irreducible term) is
obtained.

Let A be a set of equations, in the case where A can be compiled into a
convergent (i.e. terminating and confluent) rewrite system R, we can decide
t =A s by testing for syntactic identity the R-normal forms of t and s (i.e.

nf(t)
?
≡ nf(s), where nf(t) (resp. nf(s)) denotes the normal form of t (resp. s)).

3 System overview

Axiomatization is the operation that takes as input a SubC program and gives
as output a set of equations semantically equivalent to the program: the result
of the execution of the SubC program with input I is identical, up to transla-
tion of symbols, to the result (i.e. normal form) of the equational deduction
started with the same input. This section gives an informal description of the
main stages underlying our method. The axiomatization is done in three steps,
without any user interaction. These steps are shown in Fig. 6.

The central part of SOSSubC is the rewrite system SSR (SubC Semantics
Rewrite system) . SSR gives a semantics to SubC programs (cf. Section 4.2).
SSR is defined over the first-order language SSL (SubC Semantics Language). In

9

Term
code

Equations

Rewriting

EnvironmentEquation
generation

ParsingSubC

SSR

Fig. 6. Axiomatization process (SOSSubC) overview.

particular, SSL is built from a set of function symbols which are the translation
of SubC constructs (cf. Section 4.1.1 for a description of SSL).

Example 3 For instance, the assignment statement, written x = y in SubC ,
is translated into C_Assign(x,y), where C_Assign belongs to the signature of
SSL. Next, the semantics of an assignment is to update the current environ-
ment: this is the role of Rules (3) and (4) (cf. Appendix B). If the current
environment were empty, Rule (3) would produce an environment with a sin-
gle pair associating a variable to its value: {C_Pair(x, y)}.

�

The goal of the first step is to provide, from the source code, a correct input
to the rewrite system, that is a term over SSL. This term is then normal-
ized using SSR into a unique normal form, which is an environment. Roughly
speaking, environments contain information about the state of the computa-
tion (e.g. the value of each variable and intermediate loop functions introduced
by iterations) at the end of a “partial execution” of the program. We mean
by “partial execution” an execution not done on a real input but carried out
with the SubC function arguments as missing inputs. Finally, the equations

are extracted from the environment.

Example 4 (identity) As an introductory example, let us see the different
stages involved in the axiomatization of the very simple identity function
as given by the following program:

int identity (int x) {
return x;

}

10

At the first step, the identity function is transformed into a term over SSL. In
the function identity, the only statement is a return statement. Therefore,
we build a statement list containing only one element which associates the
expression of the return statement with the name of the function in a C_Return
term: {C_Return(identity, x)}.
The initial environment of a function is a list of pairs associating SubC func-
tion arguments and their value when the function is called (i.e. the effective
argument). Here, we find argument x associated with a C_EA term, which
represents the missing value of x : {C_Pair(x, C_EA(x))}.
The statement list, which represents the sequence of statements of the source
function, and the initial environment are gathered in a GE term:GE({C_Return(identity, x)}, {C_Pair(x, C_EA(x))}).
At the second step, the GE term is rewritten by Rules (1) and (2) (Appendix
B) in: Comp(C_Return(identity, x), {C_Pair(x, C_EA(x))}).
And Rules (5), (16) and (17) generate the following environment:{C_Pair(x, C_EA(x)) ·C_Pair(identity, C_Subst(x, C_EA(x), C_EA(x)))}.C_EA terms have a special behavior regarding substitution: they prevent their
argument from being substituted. This is consistent with these terms repre-
senting a value. The final environment is then:{C_Pair(x, C_EA(x)) ·C_Pair(identity, C_EA(x))}.
We find in this environment two terms of type C_Pair. They express the value
of argument x and the return value of the identity function at the end of the
function. It shows that both values are equal to the value of x at the moment
of the call.

Finally, from the SubC function prototype and the final environment, we ex-
tract the return value of the function and generate one equation:

identity(x) = x.

This equation expresses the semantics in equational logic of the identity

function.

�

11

4 Axiomatization description

In this section, we go over the three steps of the axiomatization in more detail.
We also present formally SSL and SSR.

4.1 Programs are terms

4.1.1 SSL

SSL is the language over which the terms of SSR are built. Its signature con-
tains three types of function symbols:

• Function symbols which are used to build terms from SubC language con-
structs (cf. Fig. 7). They allow a term representation of SubC programs. As
explained in Section 2.1, SubC expressions are not part of our rewrite theory
and we give no definitions of the respective operators. We deal with open

SubC programs in the sense that there can be missing inputs. In fact, SubC

programs are seen as a collection of SubC functions and, at the level of a
SubC function, every function argument is a missing input. The term C_EA
characterizes a missing input and denotes the associated effective argument.
More explanations and examples can be found in Section 4.1.stmt = statementsstmt_list = statement listsvar = variablesexp = expressions (exp ⊃ var)
ond =
onditionsf
t_id = fun
tion identi�ersnat = natural numbersstatement lists
onstru
torsC_L_Stmt : stmt_list × stmt → stmt_listC_Empty_L_Stmt : → stmt_liststatements
onstru
torsC_Return : f
t_id × exp → stmtC_If :
ond × stmt_list × stmt_list → stmtC_Assign : var × exp → stmtC_While : nat ×
ond × stmt_list → stmtexpressions
onstru
torC_EA : var → exp
onditions
onstru
torsC_Or :
ond ×
ond →
ondC_And :
ond ×
ond →
ondC_Not :
ond →
ond

Fig. 7. Function symbols for SubC language constructs.

12

env = environmentsenv_elt = environment elementsvar_list = variable listsid = identi�ers (id ⊃ var, id ⊃ f
t_id)environment
onstru
torsC_Env : env_elt × env → envC_Empty_Env : → envC_Choi
e : env × env → envC_Bran
h :
ond × env → envenvironment elements
onstru
torsC_Pair : id × exp → env_eltC_While_Closure : nat ×
ond × env × var_list → env_eltvariable lists
onstru
torsC_L_Var : var × var_list → var_listC_Empty_L_Var : → var_listLoop
onstru
torC_Loop : nat × var × env → expEnvironment Generation from a list of statementsGE : stmt_list × env → envComposition of a statement with an environmentComp : stmt × env → envGeneration of
alls to Loop fun
tionsGL : nat × var_list × env → env
Fig. 8. Function symbols for SubC language semantics.

• Function symbols which are used to give a semantics to SubC language con-
structs (cf. Fig. 8). They interpret SubC language constructs as functions
from environments to environments. Environments capture the state of a
computation. Iteration, through while statements, will be defined by re-
cursion, through LOOP functions. More explanations and examples can be
found in Section 4.2.

• Function symbols which are used to modify environments (cf. Fig. 9). In
practice the differentiation between C_Substc et C_Subste is not necessary
since the definitions of these operators are the same, and moreover we use an
unsorted rewrite system. Therefore, in the sequel we will write in both casesC_Subst. Substitution appears as a constructor because it is not defined
within the rewrite system. More explanations and examples can be found
in Section 4.2.

SSR is the definition of these function symbols (cf. Appendix B).

Note 1 The function symbols for lists are composed of a constant denot-
ing the empty list and a constructor to add an element to an existing list.
We find lists of variables (C_L_Var and C_Empty_L_Var), lists of state-
ments (C_L_Stmt and C_Empty_L_Stmt) and environments (C_Env andC_Empty_Env). However, for convenience, lists will be represented enclosed
in braces and elements in lists separated by dots, as in {e1 · e2 · e3}.

13

substitution operatorsC_Substc : var ×
ond × exp →
ondC_Subste : var × exp × exp → expInsertion and updating of a pair in an environmentUpdate_Env : env_elt × env → envUpdating of a
ondition a

ording to an environmentUpdate_Cond :
ond × env →
ondGeneration of the Initial Environment of a loop fun
tionGIE : env → envGeneration of a List Of VariablesGLOV : env → var_listGeneration of a List Of Modi�ed VariablesGLOMV : env → var_listMerge of two environmentsMerge_Env : env × env → envInsertion without updating of a pair in an environmentInsert_Pair : env_elt × env → envMerge of two lists of variablesMerge_L_Var : var_list × var_list → var_listInsertion of a variable in a listInsert_Var : var × var_list → var_list
Fig. 9. Function symbols on environments.

4.1.2 Term generation

The first step consists in parsing the SubC source program P . The result of
this syntactical analysis of P is a list of terms T

fi

P over SSL; one term for each
function fi of P . Intuitively, a term T

fi

P is equivalent to a source function fi

of P and suitable for rewriting at the second step. In terms of input/output,
this step is described by:

Term generation

Input : A SubC program P made up of functions fi.

Output : Terms T
fi

P over the rewrite system language SSL.

In order to build these terms, each SubC syntactical construct is mapped to
a function symbol of SSL. Constructions and mapping are shown in Fig. 10
where “ 7−→” means “maps to”.

• Rule (Fct): a SubC function is seen as a list of statements and an initial
environment gathered in a GE term. The initial environment is a list ofC_Pair terms. Each C_Pair term is made up of a SubC function formal
arguments combined with its C_EA term. This denotes missing values: the

14

⊢ stmts 7−→ stmt_list typet ∈ {int, list}
(Fct)

⊢ type fct name (type1 p1, . . ., typen pn) { stmts } 7−→GE(stmt_list, {C_Pair(p1, C_EA(p1)) · . . . ·C_Pair(pn, C_EA(pn))})
⊢ stmt 7−→ stmt′ ⊢ stmts 7−→ stmt_list

(Seq)
⊢ stmt; stmts 7−→ {stmt′ · stmt_list}f
t_name = function name

(Ret)
⊢ return exp 7−→ C_Return(f
t_name, exp)

(Assg)
⊢ x = y 7−→ C_Assign(x, y)

⊢ stmts1 7−→ stmt_list1 ⊢ stmts2 7−→ stmt_list2
(Cond)

⊢ if (c) stmts1 else stmts2 7−→ C_If(
, stmt_list1, stmt_list2)
⊢ stmts 7−→ stmt_list loop_number = unused loop number

(Iter)
⊢ while (c) stmts 7−→ C_While(loop_number,
, stmt_list)

type ∈ {int, list}
(VarDecl1)

⊢ type var = val 7−→ C_Assign(var, val)
(VarDecl2)

⊢ int var 7−→ C_Assign(var, 0)
(VarDecl3)

⊢ list var 7−→ C_Assign(var, NULL)
Fig. 10. Syntactic mapping rules.

effective arguments. Thus, the initial environment contains the value of the
function variables as they would be after a call to this function, but before
any statement of the function is evaluated.

• Rule (Seq): a sequence of statements is mapped to a list of statements.
• Rule (Ret): return statements produce a term C_Return. It links the name

of the function containing the return statement and its return expression.
• Rule (Iter): while statements are mapped to C_While terms. Moreover, a

unique number identifies each loop of the SubC program.
• Rules (VarDecl1), (VarDecl2) and (VarDecl3): variable declarations

are part of the function statements. They are treated as assignments. If a
variable is not initialized, a default value is assigned to it depending on its
type.

Example 5 In the case of the identity function, the following rules apply
to build the program term:

15

int identity (int x) {
(Fct)
7−→ GE(�, {C_Pair(x, C_EA(x))})

return x;
(Ret)
7−→ t = C_Return(identity, x)

}
(Seq)
7−→ � = {t}

The symbol � denotes a hole in a term which is filled while the remaining
of the SubC function is parsed. Finally, the GE term consists of a statement
list whose single term is C_Return(identity, x), and an initial environment{C_Pair(x, C_EA(x))}.

�

4.2 Terms rewrite into environments

At the second step, each term T
fi

P is rewritten, according to SSR rules (cf. Ap-
pendix B), into an environment Env

T
fi
P

. Intuitively, this environment contains

information about the variables of function fi and their values: the evaluation
of this environment yields the value of fi in an execution of P . We have:

Term normalization

Input : A term T
fi

P over < SSL, SSR >.

Output : An SSR-normalized term, Env
T

fi
P

, called environment of fi.

4.2.1 Environments

We give in Fig. 11, in the form of a grammar, an overview of environment
composition. The next sections explain how environments are used to express
the SubC semantics.

Control flow statements define different possible execution paths in a SubC

function. The environment produced by rewriting represents these distinct
execution paths of a function, along with their associated conditions and the
final variable state. An alternative between two execution paths appears in
environments under a C_Choi
e term. When an execution path is associated
to a condition it is enclosed in a C_Bran
h term. An iterated sequence of state-
ments will be captured by a C_While_Closure term. A state of the variables
is represented by a list of terms C_Pair(var, exp), which corresponds to the
value of each variable of a function at a step of the computation.

SSR defines several functions to handle environments:

16

env ::= choice | env elt list

env elt list ::= ’C Env’ ’(’ env elt ’,’ env elt list ’)’ | ’C Empty Env’

env elt ::= while closure | pair

choice ::= ’C Choice’ ’(’ branch ’,’ branch ’)’

branch ::= choice | ’C Branch’ ’(’ cond ’,’ env ’)’

while closure ::= ’C While Closure’ ’(’ int ’,’ cond ’,’ env ’,’ var list ’)’

pair ::= ’C Pair’ ’(’ var ’,’ exp ’)’

var list ::= ’C L Var’ ’(’ var ’,’ var list ’)’ | ’C Empty L Var’

loop ::= ’C Loop’ ’(’ int ’,’ var ’,’ env ’)’

exp ::= a SubC expression where loop is added as an alternative factor
cond ::= a condition

var ::= a variable

int ::= an integer

Fig. 11. Environments EBNF grammar.

• Update_Env inserts a new pair in an environment (Rules (15) to (18)). The
value of the new pair is also updated according to the value of the other
variables in the environment.

• Merge_Env and Merge_L_Var merge, respectively, two environments and
two lists of variables (Rules (36)–(37) and (42)–(43));

• GLOV and GLOMV run through an environment and build a list by extract-
ing, respectively, variables and modified variables (Rules (27) to (29) and
(30) to (35)).

4.2.2 SubC semantics

This second step is a semantic evaluation of the program P . The rules of SSR

express the equational semantics of the SubC language as operations from
environments to environments. The term T

fi

P produced by the parsing of the
program is normalized according to SSR rules, that is, the term is rewritten
until no more rules can be applied. The resulting term is a SubC function
environment.

For the most part, the SubC semantics does not require much explanation
since it behaves as one could expect from a “standard” imperative language.
Arguments of a function behave like function local variables to which are
assigned effective arguments (because we only deal with arguments passed by
value). The actual value of an effective argument is not known of course, but
we denote it by a C_EA term. The function return value is handled through
a local variable whose name is the function name. The return statement is an
assignment to this particular variable. Local variable declarations are treated
as assignments.

17

Example 6 Let us consider the following SubC function:

int g (int y, int z) {
int x = 3;
y = f(x, 5);
z = y + z;

}

According to rules of Fig. 10, the corresponding program term is:GE({C_Assign(x, 3) · C_Assign(y, f(x, 5)) · C_Assign(z, y+z)},{C_Pair(y, C_EA(y)) · C_Pair(z, C_EA(z))}).GE (Generate Environment) translates the behavior of a sequence of state-
ments. By application of Rules (1) and (2), we obtain:Comp(C_Assign(z, y+z),Comp(C_Assign(y, f(x, 5)),Comp(C_Assign(x, 3),{C_Pair(y, C_EA(y)) · C_Pair(z, C_EA(z))}))).Comp (Compose) is used to evaluate a new statement in the current environ-
ment. By Rule (4), we have:Comp(C_Assign(z, y+z),Comp(C_Assign(y, f(x, 5)),Update_Env(C_Pair(x, 3),{C_Pair(y, C_EA(y)) · C_Pair(z, C_EA(z))}))).
Then, Rules (16) and (17) defining Update_Env apply. They insert the new
pair in the current environment. After substitutions, we obtain:Comp(C_Assign(z, y+z),Comp(C_Assign(y, f(x, 5)),{C_Pair(y, C_EA(y)) · C_Pair(z, C_EA(z)) · C_Pair(x, 3)})).
The same pattern repeats for the other two assignments, with the addition of
Rule (3), and leads to the final environment:{C_Pair(x, 3) · C_Pair(y, f(3, 5)) · C_Pair(z, f(3, 5)+C_EA(z))}.
This means that at the end of g, the value of x is 3, the value of y is the result
of a call to f (with effective arguments 3 and 5), and the value of z is the sum
of the result of a call to f and the value of the effective argument associated
to z when g is called.

�

18

Still, some constructs have a specific meaning as we are going to see par-
ticularly in the two paragraphs dedicated to the conditional and iterative

statements.

Conditional statements. An if statement splits an execution path into
two parts: function statements are divided into those executed when the con-
dition is true and those executed when the condition is false. This defines two
paths which are enclosed in a C_Choi
e term. Each if alternative is included
in a C_Bran
h term with the associated condition (Rules (7) and (8)). Other
statements following an if are executed in both paths (Rules (11) and (12)).

Example 7 For example, the following function defines two execution paths,
one for the then part and one for the else part :

int alternative () {
if (cond)

then part
else

else part
...

}

When the if statement is composed with the initially empty environment
(Rule (7)) it will produce:C_Choi
e(C_Bran
h(
ond, GE(then_part, C_Empty_Env)),C_Bran
h(C_Not(
ond), GE(else_part, C_Empty_Env))).

�

Iterative statements. We now turn our attention to the iterative construct
while. The semantics of while statements is more complicated. Indeed, each
while statement is considered as a family of separate recursive functions,
each function having the same arguments and body. The idea is to replace
iteration by recursion. A loop is a loop function that calls itself recursively
with the value of the variables modified accordingly to the loop body. But
a function can only return a single value, and yet several variables can be
modified by a loop. To address this, a new loop function is defined for each
variable modified by the loop body; its return value is the value of the modified
variable. As a consequence we get a family of loop functions. In addition, since
any variable of the SubC function may be used inside the loop body, the loop
function takes all the variables as arguments.

Now, we have to establish a connection between the loop functions and the
SubC function where the loop occurs. To this end, we replace, in the environ-

19

ment of the SubC function, the value of a variable x modified by the loop body,
by a call to the loop function defined for x.

Consequently, when a loop is encountered, the environment is modified as
follows:

• A new C_While_Closure term containing all the information needed to gen-
erate the loop functions is created and added to the current environment
without altering it. The information is the loop number, the loop condition,
the environment generated by the statements of the loop body and the list
of all the SubC function local variables. This term will be used at the third
step to generate a family of equations (see Section 4.3).

• A call to the corresponding loop function, with as argument the current
value of the variables in the SubC function, is assigned to each variable
modified by the while statement. This modifies the environment just as if
equivalent assignments had been added to the SubC function.

Example 8 (iteration) This example shows how iterative statements are
handled. Let us suppose a SubC function declares three variables (x, y, z)
and that only two of them (x, y) are modified in the loop body:

int f () {
int x, y, z;
x = 1; y = 2; z = 3;
while (y > 0) {
x = x + z;
y = y − 1;

}
...

}

During rewriting of the term corresponding to function f, when the while

statement is encountered, the following loop term is created (Rule (10)):C_While_Closure(1, y > 0, GE(loop_body, initial_env), {x · y · z}).
We find in C_While_Closure a loop number, the loop condition, a GE term,
which means that a new environment will be evaluated for the loop body, and
the list of local variables of function f. loop_body is composed of the state-
ments of the while body: these are the two assignments modifying x and y.initial_env is the initial environment for the loop functions in which the state-
ments of the while body will be evaluated: it is the list of pairs (x,C_EA(x)),(y,C_EA(y)) and (z, C_EA(z)), one for each variable or arguments of f. Once
the GE term is rewritten, we have:C_While_Closure(1, y > 0,{C_Pair(z, C_EA(z)) · C_Pair(x, C_EA(x)+C_EA(z)) ·C_Pair(y, C_EA(y)−1)},{x · y · z}).

20

At the third step of the process (cf. Example 9, Page 24), this term will lead
to the definition of two functions, LOOP1

x and LOOP1
y, one for each variable

modified inside the loop.

In addition, the pairsC_Pair(x, C_Loop(1, x, {C_Pair(z, 3) · C_Pair(y, 2) · C_Pair(x, 1)}))
andC_Pair(y, C_Loop(1, y, {C_Pair(z, 3) · C_Pair(y, 2) · C_Pair(x, 1)}))
update the environment of function f to reflect the new state of variables x

and y which are modified by the loop body. This is just like replacing the loop
in function f by the assignments:

x = LOOP1
x(1, 2, 3) and y = LOOP1

y(1, 2, 3).

�

4.2.3 SSR convergence

In order to be sure that every SubC program always rewrites into a unique

normal form, we must prove that SSR is convergent. Convergence is equivalent
to termination and confluence. Convergence means that our system is able to
provide a unique equational formulation for SubC programs.

A rewrite system terminates if the rewriting process eventually ends for any
input term. It means that every term of SSL has at least one SSR-normal
form. We show that the rewrite system terminates by exhibiting a mapping φ,
from elements of the rewrite system (SSL, →) to elements of a system (E , >),
where > is a well-founded order, and such that if x → x′ then φ(x) > φ(x′).
Since > is well-founded there cannot be an infinite chain φ(x0) > φ(x1) > · · ·
and therefore no infinite chain x0 → x1 → · · · . Consequently the rewrite
process terminates. For the proof, we define a well-founded order relation >

on function symbols of SSL and we extend it to terms through a lexicographic

path order >lex. We then verify that s → t ⇒ s >lex t.

A rewrite system is confluent if whenever two rules can be applied to the
same term, the result, after some rewritings, is identical whichever rule was
applied initially. It means that if there exists a normal form, then it is unique.
Suppose two rules l1 → r1 and l2 → r2. If the subterm of l1 at position p

can be unified with l2 by a substitution θ, then both rules can be applied

21

C_And is asso
iative and
ommutative.GE and Comp are equivalent.GE lexi
ographi
 path is left to right.Update_Env lexi
ographi
 path is right to left.Update_Cond lexi
ographi
 path is right to left.C_Bran
h lexi
ographi
 path is right to left.Comp > C_Env Comp > C_Pair Comp > Update_EnvComp > C_Choi
e Comp > C_Bran
h Comp > C_NotComp > Update_Cond Comp > C_While_ClosureComp > GLOV Comp > Merge_Env Comp > GL Comp > GLOMVComp > GIEUpdate_Cond > C_SubstUpdate_Env > C_Pair Update_Env > C_SubstUpdate_Env > C_EnvC_Bran
h > C_Choi
e C_Bran
h > C_AndGIE > C_Env GIE > C_Pair GIE > C_EAGLOV > C_L_VarGLOMV > C_L_Var GLOMV > Merge_L_VarMerge_L_Var > Insert_VarInsert_Var > C_L_VarGL > C_Env GL > C_Pair GL > C_LoopMerge_Env > Insert_PairInsert_Pair > C_Env Insert_Pair > C_While_ClosureInsert_Pair > C_Pair
Fig. 12. Partial ordering on function symbols of SSL.

to an instance of term l1θ. In this case, r1θ and (l1θ)[r2θ]p
3 constitute a

critical pair. A terminating rewrite system is confluent if all its critical pairs
are joinable, that is, if the two terms of a critical pair rewrite to a same term.
This property can be shown with the help of the Knuth–Bendix completion
algorithm [26]. This algorithm computes all critical pairs of the system and
verifies they are joinable. If the completion algorithm terminates successfully,
then a terminating rewrite system is convergent.

We used RRL to prove the convergence of SSR. Indeed, RRL implements a
completion algorithm and allows the user to define order relations. So, we
defined a lexicographic path order on the terms of SSL to prove the termina-
tion. Then we successfully applied the completion algorithm on SSR (no new
rules were generated), thus proving the confluence. Fig. 12 shows the partial
ordering used in the proof.

3 This is l1θ where subterm at position p is replaced by r2θ.

22

4.3 Environments generate equations

This is the third and last step of the axiomatization process. A set of equations
is generated from each environment Env

T
fi
P

. These sets of equations define the

equational theory of program P . The problem definition for this step is:

Equations generation

Input : An environment Env .

Output : A representation of Env within equational logic.

Only a few elements in environments will generate equations: the equation

generators. This final step refines environments, extracts equation generators
from environments and generates the corresponding equations.

First, environments are made clearer through evaluation of the following terms:

• C_Subst terms. C_Subst(x, exp1, exp2) denotes the substitution of expres-
sion exp2 for variable x in expression exp1. The substitution is simply ap-
plied. Note that no substitution is done if x occurs in a term C_EA(x) – since
this special term is precisely introduced to distinguish a formal argumentx, which can be modified, and its effective value, which cannot.

• C_EA terms. They are not necessary anymore since the distinction between
effective and formal arguments is only required for substitutions. C_EA(x)
is replaced by x.

• C_Loop terms. They undergo a syntactical transformation.C_Loop(num, variable, {exp1·. . .·expn})
is replaced by

LOOPnum
variable(exp1, . . . , expn).

Then equation generators are transformed into equations. The equation gen-
erators are:

• lists of pairs. They represent the variable state at the end of an abstract
computation. But, only the function return value is interesting, therefore,
only the pair containing the function name will generate an equation.

Generator : {C_Pair(. . .) ·. . .·C_Pair(f
t_name, exp)}
Equation : fct name = exp

• C_Bran
h terms. They appear because of an if statement and represent an
alternative. They link a condition and a list of pairs. Again, only the pair
with the function name is of interest. Each C_Bran
h term generates one

23

conditional equation.

Generator : C_Bran
h(
ond, {C_Pair(. . .) ·. . .·C_Pair(f
t_name, exp)})
Equation : cond ⇒ fct name = exp

• C_While_Closure terms. They generate a family of conditional equations
that defines recursively the loop functions – one loop function for each
variable modified by the while statement. Two equations are needed:

(1) One equation for the recursive call. The variable state is modified accord-
ing to the statements of the loop body. If ei is the value of variable vi after
an abstract computation of the while statements, then, if the condition
is true, the loop function is called again with the value ei for the argument
vi.

(2) One equation for the exit case, when the while condition is false. This
equation gives the result of the loop function, that is the current value of
the considered modified variable. This current value was passed as argu-
ment to the loop function.

Generator :C_While_Closure(n,
ond, {C_Pair(v1, e1) · . . . · C_Pair(vn, en)},{v1 · . . . · vn})
Equation :

⋃

j∈M











cond ⇒ LOOPn
vj

(v1, . . . , vn) = LOOPn
vj

(e1, . . . , en)

¬(cond) ⇒ LOOPn
vj

(v1, . . . , vn) = vj

Here, M denotes the set of modified variables in the loop body, vj denotes
one of these variables and v1, . . . , vn are the local variables appearing in the
SubC function. A variable v is known to have been modified when its value
differs from C_EA(v), which is the value assigned to it before getting into
the loop.

Example 9 (iteration continued) With the C_While_Closure term of Ex-
ample 8, the following function definitions will be generated:











y > 0 ⇒ LOOP1
x(x, y, z) = LOOP1

x(x + z, y − 1, z)

¬(y > 0) ⇒ LOOP1
x(x, y, z) = x











y > 0 ⇒ LOOP1
y(x, y, z) = LOOP1

y(x + z, y − 1, z)

¬(y > 0) ⇒ LOOP1
y(x, y, z) = y

�

24

5 Extended examples

This section goes over the axiomatization process again, illustrating how its
three steps apply to two case studies, namely sum of the first n integers and
insertion sort. Appendix A contains more examples.

5.1 Sum of the first n integers

Let us suppose that someone wants to compute the sum of the first n integers
and writes the erroneous program showed in Fig. 13.

int sum (int n) {
int ret = 0;
while (n != 0) {
n = n − 1;
ret = ret + n;

}
return ret;

}

Fig. 13. (Erroneous) “sum of the first n integers” in SubC.

This program consists of a main while loop where variable n decreases up
to 0 and variable ret is used as an accumulator of the successive values of n.
We show here how the program term is built from the SubC code according to
rules in Fig. 10:

int sum (int n) {
(Fct)
7−→ GE(�0, {C_Pair(n, C_EA(n))})

int ret = 0;
(V arDecl1)

7−→ t1 = C_Assign(ret, 0)
while (n != 0) {

(Iter)
7−→ t2 = C_While_Closure(1, n 6=0, �1)

n = n − 1;
(Assg)
7−→ t3 = C_Assign(n, n − 1)

ret = ret + n;
(Assg)
7−→ t4 = C_Assign(ret, ret + n)

}
(Seq)
7−→ �1 = {t3 · t4}

return ret;
(Ret)
7−→ t5 = C_Return(sum, ret)

}
(Seq)
7−→ �0 = {t1 · t2 · t5}

Thus, at the end of the first step, the program is translated into the following
SSL term:GE({C_Assign(ret, 0) ·C_While(1, n 6= 0, {C_Assign(n, (n − 1)) · C_Assign(ret, (ret + n))}) ·C_Return(sum(n), ret)},{C_Pair(n, C_EA(n))}).

25

This term contains a C_While term. Since it is the first while of the program,
we give to it number 1. Then, follow the condition and the statements of the
loop body.

The environment obtained after rewriting of the previous term with the rules
of SSR is:{C_While_Closure(1, n 6= 0, {C_Pair(n, (n−1)) · C_Pair(ret, (ret+(n−1)))},{n · ret}) ·C_Pair(n, C_Loop(1, n, {C_Pair(n, C_EA(n)) · C_Pair(ret, 0)})) ·C_Pair(ret, C_Loop(1, ret, {C_Pair(n, C_EA(n)) · C_Pair(ret, 0)})) ·C_Pair(sum(n), C_Loop(1, ret, {C_Pair(n, C_EA(n)) · C_Pair(ret, 0)}))}.
The C_While term was rewritten into a C_While_Closure term. It contains the
result of the evaluation of the loop body statements in a new environment. This
will lead to the definition of a new function LOOP. A C_Loop term denotes
a call to such a LOOP function. For instance, LOOP1

ret
(n, 0) is denoted byC_Loop(1, ret, {C_Pair(n, C_EA(n)) ·C_Pair(ret, 0)}).

Finally, the third step gives the equations of Fig. 14.

n 6= 0 ⇒ LOOP1
ret

(n, ret) = LOOP1
ret

((n − 1), (ret + (n − 1)))

n = 0 ⇒ LOOP1
ret

(n, ret) = ret

sum(n) = LOOP1
ret

(n, 0)

Fig. 14. “Sum of the first n integers” equations.

Thanks to these equations, one can now show that the source program com-
putes the sum of the first n−1 integers and not the sum of the first n integers.

5.2 Insertion sort

A SubC version of insertion sort (see listing Fig. 15) will serve for this second
case study. This program contains two functions. Function ins takes an integer
e and a sorted list L and returns a new sorted list containing e. ISort takes a
list L as argument and returns a sorted version of L by inserting at the proper
position (call to function ins) the first element of L in the already sorted
queue of L.

5.2.1 Programs are terms

In the first step, each function of the insertion sort program gives a term over
SSL. The two functions, ISort and ins, are treated separately.

26

list ISort (list L) {
list ret = NULL;
if (L == NULL)
ret = NULL;

else
ret = ins(car(L), ISort(cdr(L)));

return ret;
}

list ins (int e, list L) {
list ret = NULL;
if (L == NULL)
ret = cons(e, NULL);

else if (e <= car(L))
ret = cons(e, L); /∗ cons duplicates L ∗/

else {
ret = ins(e, cdr(L));
ret = cons(car(L), ret);

}
return ret;

}

Fig. 15. Insertion sort program in SubC.

The term obtained at the end of this first step for function ISort is:GE({C_Assign(ret, NULL) ·C_If(L = NULL,{C_Assign(ret, NULL)},{C_Assign(ret, ins(
ar(L), ISort(
dr(L))))}) ·C_Return(ISort(L), ret)},{C_Pair(L, C_EA(L))}).
The GE term can be identified, with its list of statements and its initial
environment. The statement list is made up of the statements of the source
function:

• an assignment coming from the initialization of the variable ret during its
declaration;

• a C_If term including the condition and two statements lists:
· one for the then part, made up of the assignment of NULL to ret;
· one for the else part, made up of the assignment of the result of function
ins to variable ret;

• a C_Return term where the function name and arguments appear.

The initial environment is one pair, C_Pair(L, C_EA(L)), associating L, the
only argument of the function, and the value L will take at the function call:
its effective value denoted by C_EA(L).
Likewise, the term that corresponds to the ins function is:GE({C_Assign(ret, NULL) ·C_If(L = NULL,

27

{C_Assign(ret,
ons(e, NULL))},{C_If(e ≤
ar(L),{C_Assign(ret,
ons(e, L))},{C_Assign(ret, ins(e,
dr(L))) · C_Assign(ret,
ons(
ar(L), ret))})}) ·C_Return(ins(e, L), ret)},{C_Pair(L, C_EA(L)) · C_Pair(e, C_EA(e))}).
5.2.2 Terms rewrite into environments

At the second step, each term previously produced is rewritten, using SSR,
into a final environment. Here is the environment of ISort:C_Choi
e(C_Bran
h(L=NULL,{C_Pair(L, L) · C_Pair(ret, NULL) · C_Pair(ISort(L), NULL)}),C_Bran
h(L 6= NULL,{C_Pair(L, L) · C_Pair(ret, ins(
ar(L), ISort(
dr(L)))) ·C_Pair(ISort(L), ins(
ar(L), ISort(
dr(L))))})).
Function ISort includes one if statement, so we find in the environment aC_Choi
e term composed of the two alternatives: the two C_Bran
h terms.
These latter terms partition the statements of the function between those
executed when L is equal to NULL and those executed when L is different fromNULL. In each C_Bran
h term there is a list of pairs, which represents the state
of the variables at the end of an abstract computation of function ISort. For
instance, when L = NULL, C_Pair(L, L) means that L is not modified by the
function; C_Pair(ret, NULL) means that the value of ret is NULL; the C_Pair
term containing the function name, C_Pair(ISort(L), NULL) means that the
function return value is NULL.

Likewise, here is the environment of the ins function. In this function, one
if statement is embedded in the else part of another if statement, conse-
quently we find two C_Choi
e terms. Conditions of the nested alternatives
were gathered in a conjunction.C_Choi
e(C_Bran
h(L = NULL,{C_Pair(L, L) · C_Pair(e, e) · C_Pair(ret,
ons(e, NULL)) ·C_Pair(ins(e, L),
ons(e, NULL))}),C_Choi
e(C_Bran
h(C_And(L 6= NULL, e ≤
ar(L)),{C_Pair(L, L) · C_Pair(e, e) · C_Pair(ret,
ons(e, L)) ·C_Pair(ins(e, L),
ons(e, L))}),C_Bran
h(C_And(L 6= NULL, e >
ar(L)),{C_Pair(L, L) · C_Pair(e, e) · C_Pair(ret,
ons(
ar(L), ins(e,
dr(L)))) ·C_Pair(ins(e,L),
ons(
ar(L), ins(e,
dr(L))))}))).

28

5.2.3 Environments generate equations

At the equation generation step, environments are parsed for equation genera-

tors. The ISort environment is made up of the following equation generators:

• C_Bran
h term with condition L = NULL;
• C_Bran
h term with condition L 6=NULL.

Finally, these two equation generators give the equations of Fig. 16 that define
the semantics of the function ISort.

L = NULL ⇒ ISort(L) = NULL

L 6= NULL ⇒ ISort(L) = ins(car(L), ISort(cdr(L)))

Fig. 16. ISort equations.

Similarly, the equation generators for the ins function are the three C_Bran
h
terms and give the conditional equations of Fig. 17.

L = NULL ⇒ ins(e, L) = cons(e, NULL)

L 6= NULL ∧ e ≤ car(L) ⇒ ins(e, L) = cons(e, L)

L 6= NULL ∧ e > car(L) ⇒ ins(e, L) = cons(car(L), ins(e, cdr(L)))

Fig. 17. ins equations.

Union of the two sets of equation constitutes the equational theory of the
entire SubC sorting program.

Appendix C.2 discusses the proof of two properties of ISort with the proof
system PVS.

6 Conclusion

In this paper, we discussed a method to obtain an equivalent equational formu-
lation of a program from source code. Thereby programs can be understood as
formalized logical systems. This allows to reason about programs from equa-
tions rather than from source code, which is more natural and more efficient.
Indeed, there exist powerful tools dealing with equations.

The program to be translated is written in a language with imperative fea-
tures and there is no need for program annotations. The axiomatization, that
is, the process leading to the equations, is automatic and requires no user

29

interactions. It is done in three steps: a syntactic analysis, then a seman-
tic analysis and finally a translation into an equational language. The main
point of the discussed method is the generation of an environment using a
rewrite system. The rewrite system implements the equational semantics of
the source language. The first stage consists in building a term suitable for
rewriting through the syntactic analysis of the program code. The last stage
consists in translating environments information into equations. We showed in
this paper that our method can translate SubC programs into equations. An
implementation of the axiomatization has been carried out in Java, thus prov-
ing that the process is fully automatic. A parser and scanner generator, was
used for the term generation step. We developed a Java version of a generic
rewriting algorithm. The rewrite rules are loaded separately from a file so as
to elaborate the rules with ease.

Our method focuses on functions as base elements for verification. This level of
granularity should allow the system to perform as well with small programs as
with larger ones, provided that they are sufficiently functionally decomposed.
Proof systems offer user-friendly environments and help the user in keeping
the proof modular. Still proofs can be hard and long to conduct not because of
the size of the program, but because of its algorithm where lies the complexity.
Before being proved, a property can require several intermediate lemmas which
may not be found automatically by the proof system.

We present in Appendix A some interesting experiments with our system
(algorithms about trees and graphs), which encourage us to continue our work
in the following directions:

• adding functionalities to SubC in order to come closer to real imperative
languages (e.g. side effects, call by reference);

• our approach for program analysis strongly relies on equational tools, which
are still actively developed, so we need to investigate how our equations are
handled by proof systems. This implies:
· implementing interfaces towards proof systems, that is, providing the

equations in the specific system syntax;
· experimenting on a larger scale proving properties from the equations in

proof systems – this in order to identify a class of properties and programs
that can be proven sound using our method;

· enhancing existing proof systems, especially ours, to increase the class of
provable properties.

30

A Examples

This Appendix presents two more examples of SubC programs and the equa-
tions produced by our SOSSubC system. These examples are well known al-
gorithms on data types more complicated than the previous ones: trees and
graphs. Lists are used to model these data types. For the sake of readability,
conditions are partially evaluated in the equations.

A.1 Binary search tree

Fig. A.1 shows the code of a SubC program that searches an element e in a
binary search tree. Function bs returns 1 if element e is found in tree and
0 otherwise. A tree node is a triplet made up of the value of the node (an
integer), and two other tree nodes for the left and right children (i.e. {root ·
left child ·right child}). We represent a triplet by a list of three heterogeneous
components. The first element of the list is the node value (an integer), the
second and third ones are triplets (again lists of three elements).

int root (list tree) { return car(tree); }
list lc (list tree) { return car(cdr(tree)); }
list rc (list tree) {
return car(cdr(cdr(tree)));

}
int bs (int e, list tree) {
int ret;
if (tree == NULL)
ret = 0;

else if (e == root(tree))
ret = 1;

else if (e < root(tree))
ret = bs(e, lc(tree));

else
ret = bs(e, rc(tree));

return ret;
}

Fig. A.1. Binary search in a tree in SubC.

The produced equations are in Fig. A.2.

bs(e, ∅) = 0

bs(e, {e · L}) = 1

e < r ⇒ bs(e, {r · L}) = bs(e, lc({r · L}))

e > r ⇒ bs(e, {r · L}) = bs(e, rc({r · L}))

Fig. A.2. Binary search equations.

31

A.2 Depth-first search

Figs. A.3 and A.4 show the code of a SubC program that goes through all the
vertices of a graph using a depth-first search. Graph vertices are integers. We
use a list of adjacency lists to represent the graph. Element at position p in
this list is the list of all the vertices connected to vertex p. Function member

returns 1 if element e is in list L and 0 otherwise. Function adj returns the
list of vertices adjacent to vertex v in the list of adjacency lists adjlist. The
produced equations are shown in Figs. A.5 and A.6.

list adj (int v, list adjlist) {
list ret;
if (v == 1) ret = car(adjlist);
else ret = adj(v−1, cdr(adjlist));

return ret;
}

int dfs (list vertices, list marked, list adjlist) {
int ret, v;
if (vertices == NULL) ret = 1;
else {
v = car(vertices);
ret = depth(vertices, adj(v, adjlist),

cons(v, marked), adjlist);
}
return ret;

}

Fig. A.3. Depth-first search in SubC (part 1).

int member (int e, list L) {
int ret;
if (L == NULL) ret = 0;
else if (e == car(L)) ret = 1;
else ret = member(e, cdr(L));

return ret;
}

int depth (list vertices, list adjacents, list marked,
list adjlist) {

int ret, v;
if (adjacents == NULL)
ret = dfs(cdr(vertices), marked, adjlist);

else {
v = car(adjacents);
if (member(v, marked) == 1)
ret = depth(vertices, cdr(adjacents),

marked, adjlist);
else
ret = dfs(cons(v, vertices), marked, adjlist);

}
return ret;

}

Fig. A.4. Depth-first search in SubC (part 2).

32

adj(1, {L1 · L}) = L1

adj(n + 1, {L1 · L}) = adj(n, L)

dfs(∅, M, A) = 1

dfs({v · L}, M, A) = depth({v · L}, adj(v, A), {v · M}, A)

Fig. A.5. Depth-first search (part 1): adj and dfs equations.

member(e, ∅) = 0

member(e, {e · L}) = 1

e 6= c ⇒ member(e, {c · L}) = member(e, L)

depth({v · L}, ∅, M, A) = dfs(L, M, A)

member(v, M) = 1 ⇒ depth(L, {v · L1}, M, A) = depth(L, L1, M, A)

member(v, M) = 0 ⇒ depth(L, {v · L1}, M, A) = dfs({v · L1}, M, A)

Fig. A.6. Depth-first search (part 2): member and depth equations.

B SSR

Note 2 Most of the operators of SubC expressions (e.g. cons, +) do not ap-
pear in these rules because they do not affect the translation process. Their
definition is left to the proof system.

Note 3 The syntax is that of RRL. In order to fulfill it and have an ho-
mogeneous notation, we prefix names of rule variables with v and names of
constructors with C . All other names are function names if they begin with
a capital letter, or sorts otherwise. Moreover sorts are given for information
because they are not taken into account during the rewriting process. Indeed,
SSR is unsorted.;;;; sorts;; stmt: statements ;; stmt list: statement lists;; var: variables ;; var list: variable lists;; f
t id: fun
tion identi�ers;; id: identi�ers;; exp: expressions;;
ond:
onditions;; subst exp: substitutable expressions;; nat: natural numbers;; env: environments

33

;; env elt: environment elements;; statement lists
onstru
tors[C L Stmt : stmt list, stmt →stmt list ℄[C Empty L Stmt : stmt list ℄;; statements
onstru
tors[C Return : f
t id, exp →stmt ℄[C If :
ond, stmt list, stmt list →stmt ℄[C Assign : var, exp →stmt ℄[C While : nat,
ond, stmt list →stmt ℄;; environment
onstru
tors[C Env : env elt, env →env ℄[C Empty Env : env ℄[C Choi
e : env, env →env ℄[C Bran
h :
ond, env →env ℄;; environment elements
onstru
tors[C Pair : id, exp →env elt ℄[C While Closure : nat,
ond, env, var list →env elt ℄;; variable lists
onstru
tors[C L Var : var, var list →var list ℄[C Empty L Var : var list ℄;;
onditions
onstru
tors[C Or :
ond,
ond →
ond ℄[C And :
ond,
ond →
ond ℄[C Not :
ond →
ond ℄;; expressions
onstru
tors[C EA : var →exp ℄[C Loop : nat, var, env →exp ℄[C Subst : var, subst exp, exp →subst exp ℄;; var is a subsort of expressions[var < exp ℄;; a variable is an identi�er[var < id ℄;; a fun
tion identi�er is an identi�er[f
t id < id ℄
34

;; Environment Generation from a list of statements[GE : stmt list, env →env ℄(1) GE(C L Stmt(v l stmt, v stmt), v env) →Comp(v stmt, GE(v l stmt, v env))(2) GE(C Empty L Stmt, v env) →v env;; Composition of a statement with an environment[Comp : stmt, env →env ℄(3) Comp(C Assign(v var, v exp), C Empty Env) →C Env(C Pair(v var, v exp), C Empty Env)(4) Comp(C Assign(v var, v exp), C Env(v pair, v env)) →Update Env(C Pair(v var, v exp), C Env(v pair, v env))(5) Comp(C Return(f
t, v exp), C Env(v pair, v env)) →Update Env(C Pair(f
t, v exp), C Env(v pair, v env))(6) Comp(C Return(f
t, v exp), C Empty Env) →C Env(C Pair(f
t, v exp), C Empty Env)(7) Comp(C If(v
ond, v l stmt1, v l stmt2), C Empty Env) →C Choi
e(C Bran
h(v
ond, GE(v l stmt1, C Empty Env)),C Bran
h(C Not(v
ond), GE(v l stmt2, C Empty Env)))(8) Comp(C If(v
ond, v l stmt1, v l stmt2), C Env(v pair, v env)) →C Choi
e(C Bran
h(Update Cond(v
ond, C Env(v pair, v env)),GE(v l stmt1, C Env(v pair, v env))),C Bran
h(C Not(Update Cond(v
ond, C Env(v pair, v env))),GE(v l stmt2, C Env(v pair, v env))))(9) Comp(C While(v num, v
ond, v l stmt), C Empty Env) →C Env(C While Closure(v num, v
ond, GE(v l stmt, C Empty Env),C Empty L Var),GL(v num, GLOMV(GE(v l stmt, C Empty Env)), C Empty Env))(10)Comp(C While(v num, v
ond, v l stmt), C Env(v pair, v l pair)) →C Env(C While Closure(v num, v
ond,GE(v l stmt, GIE(C Env(v pair, v l pair))),GLOV(C Env(v pair, v l pair))),Merge Env(GL(v num,GLOMV(GE(v l stmt, GIE(C Env(v pair, v l stmt)))),C Env(v pair, v l pair)), C Env(v pair, v l pair)))
35

(11)Comp(stmt, C Choi
e(v exp1, v exp2)) →C Choi
e(Comp(stmt, v exp1), Comp(stmt, v exp2))(12)Comp(stmt, C Bran
h(v
ond, v env)) →C Bran
h(v
ond, Comp(stmt, v env));; Generation of
alls to Loop fun
tions[GL : nat, var list, env →env ℄(13)GL(v num, C L Var(v var, v l var), v env) →C Env(C Pair(v var, C Loop(v num, v var, v env)),GL(v num, v l var, v env))(14)GL(v num, C Empty L Var, v env) →C Empty Env;; Insertion and updating of a pair in an environment[Update Env : env elt, env →env ℄(15)Update Env(C Pair(v var, v exp1), C Env(C Pair(v var, v exp2), v env)) →Update Env(C Pair(v var, C Subst(v var, v exp1, v exp2)), v env)(16)Update Env(C Pair(v var1, v exp1), C Env(C Pair(v var2, v exp2), v env)) →C Env(C Pair(v var2, v exp2),Update Env(C Pair(v var1, C Subst(v var2, v exp1, v exp2)), v env))if not equal(v var1, v var2)(17)Update Env(C Pair(v var, v exp), C Empty Env) →C Env(C Pair(v var, v exp), C Empty Env)(18)Update Env(C Pair(v var, v exp1),C Env(C While Closure(v num, v
ond, v env
, v l var), v env)) →C Env(C While Closure(v num, v
ond, v env
, v l var),Update Env(C Pair(v var, v exp1), v env));; Updating of a
ondition a

ording to an environment[Update Cond :
ond, env →
ond ℄(19)Update Cond(v
ond, C Env(C Pair(v var, v exp), v env)) →Update Cond(C Subst(v var, v
ond, v exp), v env)(20)Update Cond(v
ond, C Empty Env) →v
ond(21)Update Cond(v
ond,C Env(C While Closure(v num, v
ond
, v env
, v l var), v env)) →Update Cond(v
ond, v env)
36

(22)C Bran
h(v
ond, C Choi
e(v env1, v env2)) →C Choi
e(C Bran
h(v
ond, v env1), C Bran
h(v
ond, v env2))(23)C Bran
h(v
ond1, C Bran
h(v
ond2, v env)) →C Bran
h(C And(v
ond1, v
ond2), v env);; Generation of the Initial Environment of a loop fun
tion[GIE : env →env ℄(24)GIE(C Empty Env) →C Empty Env(25)GIE(C Env(C Pair(v var, v exp), v env)) →C Env(C Pair(v var, C EA(v var)), GIE(v env))(26)GIE(C Env(C While Closure(v num, v
ond, v env
, v l var), v env)) →GIE(v env);; Generation of a List Of Variables[GLOV : env →var list ℄(27)GLOV(C Empty Env) →C Empty L Var(28)GLOV(C Env(C Pair(v var, v exp), v env)) →C L Var(v var, GLOV(v env))(29)GLOV(C Env(C While Closure(v num, v
ond, v env
, v l var), v env)) →GLOV(v env);; Generation of a List Of Modi�ed Variables[GLOMV : env →var list ℄(30)GLOMV(C Empty Env) →C Empty L Var(31)GLOMV(C Env(C Pair(v var, C EA(v var)), v env)) →GLOMV(v env)(32)GLOMV(C Env(C Pair(v var, v exp), v env)) →C L Var(v var, GLOMV(v env))if not equal(C EA(v var), v exp)(33)GLOMV(C Env(C While Closure(v num, v
ond, v env
, v l var), v env)) →GLOMV(v env)(34)GLOMV(C Bran
h(v
ond, v env)) →GLOMV(v env)(35)GLOMV(C Choi
e(v env1, v env2)) →Merge L Var(GLOMV(v env1), GLOMV(v env2))
37

;; Merge of two environments[Merge Env : env, env →env ℄(36)Merge Env(C Env(v pair, v l pair), v env) →Insert Pair(v pair, Merge Env(v l pair, v env)(37)Merge Env(C Empty Env, v env) →v env;; Insertion without updating of a pair in an environment[Insert Pair : env elt, env →env ℄(38)Insert Pair(C Pair(v var, v exp),C Env(C While Closure(v num, v
ond, v env
, v l var), v env)) →C Env(C While Closure(v num, v
ond, v env
, v l var),Insert Pair(C Pair(v var, v exp), v env))(39)Insert Pair(C Pair(v var, v exp1), C Env(C Pair(v var, v exp2), v env)) →C Env(C Pair(v var, v exp1), v env)(40)Insert Pair(C Pair(v var1, v exp1), C Env(C Pair(v var2, v exp2), v env)) →C Env(C Pair(v var2, v exp2), Insert Pair(C Pair(v var1, v exp1), v env))if not equal(v var1, v var2)(41)Insert Pair(C Pair(v var, v exp), C Empty Env) →C Env(C Pair(v var, v exp), C Empty Env);; Merge of two lists of variables[Merge L Var : var list, var list →var list ℄(42)Merge L Var(C L Var(v var, v l var1), v l var2) →Insert Var(v var, Merge L Var(v l var1, v l var2))(43)Merge L Var(C Empty L Var, v l var) →v l var;; Insertion of a variable in a list[Insert Var : var, var list →var list ℄(44)Insert Var(v var, C L Var(v var, v l var)) →C L Var(v var, v l var)(45)Insert Var(v var1, C L Var(v var2, v l var)) →C L Var(v var2, Insert Var(v var1, v l var))if not equal(v var1, v var2)(46)Insert Var(v var, C Empty L Var) →C L Var(v var, C Empty L Var)
38

C Proofs

We illustrate in this appendix the proof of program properties from equations
produced by our SOSSubC system. We show three different proofs conducted in
two proof systems (RRL and PVS). We take the opportunity of these examples
to cover a part of the theory which is assumed and not expressed in our system
since it is specific to the proof system we use.

C.1 Reverse program and RRL

The Rewrite Rule Laboratory (RRL) is a theorem prover based on rewriting
techniques and automated reasoning algorithms. Its ability to automate proofs
by induction is of particular interest. We prove here the property presented in
Example 1 Page 3 with RRL.

The input to RRL is a first-order theory. In our case, we provide the program
equations of Fig. 3 Page 3. RRL is rather poor in predefined theories, so in
addition, we define constructors (C_Null and C_Cons) and functions (Cdr,Car and Append) on lists:

[C_Null : list]

[C_Cons : univ, list -> list]

[Cdr : list -> list]

Cdr(C_Cons(v_e, v_l)) := v_l

[Car : list -> univ]

Car(C_Cons(v_e, v_l)) := v_e

[Append : list, list -> list]

Append(C_Null, v_y) := v_y

Append(v_x, C_Null) := v_x

Append(C_Cons(v_x, v_y), v_z) := C_Cons(v_x, Append(v_y, v_z))

Append(Append(v_l1, v_l2), v_l3) ==

Append(v_l1, Append(v_l2, v_l3))

Next we try to generate from the equations a set of rules which will serve as
a decision procedure for the theory. We give an ordering and obtain:

[1] CDR(C_CONS(V_E, V_L)) ---> V_L [DEF, 1]

[2] CAR(C_CONS(V_E, V_L)) ---> V_E [DEF, 2]

[3] APPEND(C_NULL, V_Y) ---> V_Y [DEF, 3]

[4] APPEND(V_X, C_NULL) ---> V_X [DEF, 4]

39

[5] APPEND(C_CONS(V_X, V_Y), V_Z) --->

C_CONS(V_X, APPEND(V_Y, V_Z)) [DEF, 5]

[6] LOOP1W(C_NULL, V_W) ---> V_W [DEF, 6]

[7] LOOP1W(C_CONS(V_E, V_L), V_W) --->

LOOP1W(V_L, C_CONS(V_E, V_W)) [DEF, 7]

[8] REVERSE(V_L) ---> LOOP1W(V_L, C_NULL) [DEF, 8]

[9] APPEND(APPEND(V_L1, V_L2), V_L3) --->

APPEND(V_L1, APPEND(V_L2, V_L3)) [USER, 9]Car and Cdr are partially defined but we can safely assume their definition is
complete since the missing case corresponds to an error.

We indicate we want the proofs to be done by explicit induction (cover set

method), which does not require the set of rules to be convergent or the
definitions to be complete. First, we introduce two lemmas. Both of them
relate Loop1w to Append. The first one makes apparent the role of accumulator
of Loop1w second argument:

prove

Loop1w(v_l1, C_Cons(v_e, v_l2)) ==

Append(Loop1w(v_l1, C_Null), C_Cons(v_e, v_l2))

...

hypothesis

hypothesis

...

[USER, 10] is an inductive theorem in the current system.

Proofs with RRL are largely automated but for this particular lemma, we need
to explicitly tell the system to rewrite with the induction hypothesis on two
occasions. This may come from RRL which does not sufficiently generalize
induction hypotheses.

The second lemma expresses the distributivity of Loop1w over Append:
prove

Loop1w(Append(v_l1, v_l2), C_Null) ==

Append(Loop1w(v_l2, C_Null), Loop1w(v_l1, C_Null))

...

[USER, 11] is an inductive theorem in the current system.

Finally, we prove the property of Reverse:
prove

Reverse(Reverse(v_l)) == v_l)

...

[USER, 12] is an inductive theorem in the current system.

40

These two last proofs require no user intervention. We can now assert that the
SubC function reverse observes the property:

∀(l : list) reverse(reverse(l)) = l.

C.2 ISort program and PVS

We now want to prove that the program of Fig. 15 Page 27 actually sorts
a list of natural numbers. To this end, we need to prove that the initial list
is a permutation of the list returned by the program (that is, they contain
exactly the same elements) and that this latter list is ordered. The proof was
done within PVS (Prototype Verification System) which is designed to act
interactively under user guidance. Thus it is less automated than RRL but it
gives a full and easier control over the proof.

C.2.1 Predefined theory

A prelude file built in to PVS contains several predefined theories among which
we find:

• Predicate logic.
booleans: THEORY

BEGIN

boolean: NONEMPTY_TYPE

bool: NONEMPTY_TYPE = boolean

FALSE, TRUE: bool

NOT: [bool -> bool]

AND, OR, IMPLIES, WHEN, IFF: [bool, bool -> bool]

END booleans

• Natural numbers (nat), arithmetic and order relations on them.
• Parameterized lists.
list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr: list):cons?

END list

...

member(x, l): RECURSIVE bool =

CASES l OF

null: FALSE,

cons(hd, tl): x = hd OR member(x, tl)

ENDCASES

MEASURE length(l)

41

In addition to the equations obtained from our system (cf. Figs. 16 Page 29
and 17 Page 29) that we add as axioms of a new theory, and since we have at
our disposal the prelude theories, we only need to specify that we are interested
in lists of natural numbers:

insertion_sort: THEORY

BEGIN

lists : TYPE = list[nat]

e, x, y : VAR nat

l, l1, l2 : VAR lists

ins : [nat, lists -> lists]

ins_empty: AXIOM l=null IMPLIES ins(e, l) = cons(e, null)

ins_le: AXIOM l/=null and e <= car(l) IMPLIES

ins(e, l) = cons(e, l)

ins_gt: AXIOM l/=null and e > car(l) IMPLIES

ins(e, l) = cons(car(l), ins(e, cdr(l)))

ISort : [lists -> lists]

ISort_empty: AXIOM l=null IMPLIES isort(l) = null

ISort_rec: AXIOM l/=null IMPLIES

isort(l) = ins(car(l), isort(cdr(l)))

END insertion_sort

C.2.2 Permutation property

We prove here that ISort(l) is a permutation of l. We first define what a
permutation is through predicate perm. l′ is a permutation of l, if l′ is empty
once we removed from it (function del) each element of l. The following is
added to insertion_sort theory:

del : [nat, lists -> lists]

del_empty: AXIOM del(x, null) = null

del_eq: AXIOM x=y IMPLIES del(x, cons(y, l)) = l

del_diff: AXIOM x/=y IMPLIES

del(x, cons(y, l)) = cons(y, del(x, l))

perm : [lists, lists -> bool]

perm_empty1: AXIOM perm(null, cons(x, l)) = false

perm_empty2: AXIOM perm(null, null) = true

perm_not: AXIOM not(member(x, l2)) IMPLIES

perm(cons(x, l1), l2) = false

perm_rec: AXIOM member(x, l2) IMPLIES

perm(cons(x, l1), l2) = perm(l1, del(x, l2))

42

We introduce two lemmas:

ins_member: LEMMA ins(x, l) = l2 IMPLIES member(x, l2)

del_ins: LEMMA del(x, ins(x, l)) = l

The first lemma states that the result of inserting x in l contains x; the second
one says that removing the element just inserted in a list does not change
the list. The important steps in the proofs of these lemmas are a structural
induction on list l and a case reasoning on whether x ≤ car(l) so that we can
apply axiom ins_le or ins_gt.

Then the theorem can be proved by induction on l:

th_perm: THEOREM perm(l, ISort(l))

C.2.3 Sort property

We now prove that ISort(l) is ordered. We define a new predicate, ordered,
in insertion_sort theory:

ordered : [lists -> bool]

ordered_empty: AXIOM ordered(null) = true

ordered_one: AXIOM ordered(cons(x, null)) = true

ordered_le: AXIOM x <= y IMPLIES

ordered(cons(x, cons(y, l))) = ordered(cons(y, l))

ordered_gt: AXIOM not(x <= y) IMPLIES

ordered(cons(x, cons(y, l))) = false

The following lemmas are properties of ordered and could be part of its defi-
nition even though they can be derived from its axioms:

lemma_ordered1: LEMMA ordered(cons(x, l)) IMPLIES ordered(l)

lemma_ordered2: LEMMA ordered(cons(x, cons(y, l)))

IMPLIES ordered(cons(x, l))

lemma_ordered3: LEMMA ordered(cons(x, l)) and member(y, l)

IMPLIES x <= y

The last lemma says that the first element of an ordered list is also the least
one.

Here are three more lemmas about ins:

43

ins_not_empty: LEMMA exists (y: nat, l2: lists):

ins(x, l1) = cons(y, l2)

ins_member2: LEMMA x /= y and ins(x, l1) = cons(y, l2)

IMPLIES member(y, l1)

lemma_ins: LEMMA ordered(l) IMPLIES ordered(ins(x, l))

The first one states that inserting an element leads to a non empty list; the
second one is easily derived from the previous lemma ins_member. At last,
the third one is the most important part of the proof. It states that inserting
an element in an ordered list leads to an ordered list. Again the proof is done
by induction on l and case reasoning on the ordering of lists elements.

Finally, we prove the theorem by induction on l:

th_ordered: THEOREM ordered(isort(l))

Acknowledgements

The authors thank the anonymous referees for their valuable comments which
significantly improved the quality of the present paper.

References

[1] O. Ponsini, C. Fédèle, E. Kounalis, Sos C−−: A system for interpreting
operational semantics of C−− programs, in: M. H. Hamza (Ed.), Proc. IASTED
Internat. Conf. on Applied Informatics, Innsbruck, Austria, 2002, pp. 164–169.

[2] C. Fédèle, E. Kounalis, Automatic proofs of properties of simple C−− modules,
in: Proc. 14th IEEE Internat. Conf. on Automated Software Engineering, Cocoa
Beach, Floride, USA, 1999, pp. 283–286.

[3] D. Kapur, H. Zhang, RRL : A Rewrite Rule Laboratory, in: Proc. 9th Internat.
Conf. on Automated Deduction (CADE), Vol. 310 of Lecture Notes in Computer
Science, Springer, Argonne, Illinois, USA, 1988, pp. 768–769.

[4] A. Bouhoula, E. Kounalis, M. Rusinowitch, Spike: An automatic theorem
prover, in: A. Voronkov (Ed.), Proc. Internat. Conf. on Logic Programming
and Automated Reasoning, Vol. 624 of Lecture Notes in Artificial Intelligence,
Springer-Verlag, St. Petersburgh, Russia, 1992, pp. 460–462.

[5] S. Owre, J. M. Rushby, N. Shankar, PVS: A prototype verification system, in:
D. Kapur (Ed.), Proc. 11th Internat. Conf. on Automated Deduction (CADE),

44

Vol. 607 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Saratoga,
NY, 1992, pp. 748–752.

[6] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliâtre, E. Giménez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin, A. Säıbi,
B. Werner, The Coq Proof Assistant Reference Manual – Version V6.1, Tech.
Rep. 0203, INRIA (August 1997).

[7] O. Traynor, D. Hazel, P. Kearney, A. Martin, R. Nickson, L. Wildman, The
Cogito development system, in: M. Johnson (Ed.), Proc. Algebraic Methodology
and Software Technology (AMAST), Vol. 1349 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1997, pp. 586–591.

[8] R. Juellig, Y. Srinivas, J. Liu, SPECWARE: An advanced environment for the
formal development of complex software systems, Lecture Notes in Computer
Science 1101 (1996) 551.

[9] J. C. Filliâtre, Proof of imperative programs in type theory, in: T. Altenkirch,
W. Naraschewski, B. Reus (Eds.), Types for Proofs and Programs, Vol. 1657 of
Lecture Notes in Computer Science, Springer-Verlag, 1998, p. 78.

[10] S. Antoy, J. Gannon, Using Term Rewriting to Verify Software, IEEE
Transactions on Software Engineering 20 (4) (1994) 259–274.

[11] F. Q. da Silva, On observational equivalence and compiler correctness, in: Proc.
Internat. Conf. on Computing and Information (ICCI), 1994, pp. 17–34.

[12] M. Ward, Abstracting a specification from code, Journal of Software
Maintenance: Research and Practice 5 (2) (1993) 101–122.

[13] A. Butterfield, S. Flynn (Eds.), Declarative View of Imperative Programs,
Workshops in Computing, The British Computer Society, Cork, Ireland, 1998.

[14] E. Moggi, Notions of computation and monads, Information and Computation
93 (1) (1991) 55–92.

[15] P. Wadler, The marriage of effects and monads, in: Proc. 3rd ACM SIGPLAN
Internat. Conf. on Functional Programming, ACM Press, Baltimore, Maryland,
USA, 1998, pp. 63–74.

[16] B. Jacobs, E. Poll, Coalgebras and monads in the semantics of java, Theoretical
Computer Science 291 (3) (2003) 329–349.

[17] M. D. Cin, C. Meadows, W. Sanders (Eds.), Verifying the Specification-to-Code
Correspondence for Abstract Data Types, Vol. 11 of Dependable Computing
and Fault-Tolerant Systems, IEEE Computer Society Press, 1997.

[18] S. Garland, J. Guttag, A guide to LP, the larch prover, Tech. Rep. 82, Digital
Equipment Corporation, Systems Research Centre (Dec. 1991).

[19] D. Scott, C. Strachey, Towards a mathematical semantics for computer
languages, in: 21st Symp. on Computers and Automata, Polytechnic institute
of Brooklyn, 1971, pp. 19–46.

45

[20] R. Milner, LCF: A way of doing proofs with a machine, in: J. Becvár (Ed.), 8th
Symp. on Mathematical Foundations of Computer Science, Vol. 74 of Lecture
Notes in Computer Science, Springer, Olomouc, Czechoslovakia, 1979, pp. 146–
159.

[21] C. A. R. Hoare, An axiomatic basis for computer programming,
Communications of the ACM 12 (10) (1969) 576–580.

[22] J. A. Goguen, G. Malcolm, Algebraic Semantics of Imperative Programs,
Foundations of Computing, The MIT Press, 1996.

[23] J. A. Bergstra, T. B. Dinesh, J. Field, J. Heering, Toward a complete
transformational toolkit for compilers, ACM Transactions on Programming
Languages and Systems 19 (5) (1997) 639–684.

[24] J. Field, J. Heering, T. B. Dinesh, Equations as a uniform framework for partial
evaluation and abstract interpretation, ACM Computing Surveys 30 (3es)
(1998) 2.

[25] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1998.

[26] D. E. Knuth, P. B. Bendix, Simple word problems in universal algebras,
Computational Problems in Abstract Algebra (1970) 263–297.

46

