Distributed LTL Model-Checking

Jifi Barnat, Lubo$ Brim, Ivana Cerna

.}5 ParaDiSe
Parallel & Distributed
:'D Systems Laboratory

Faculty of Informatics
Masaryk University Brno

SENVA workshop, November 16, 2005, Grenoble

Enumerative LTL Model-Checking

@ The LTL model-checking problem “A |= ¢ ?” is reduced to
is the language recognized by A x B_4 empty ?

@ BA C can be represented as a graph G¢

@ L(C) is non-empty iff G¢ has a reachable accepting cycle

Graph problem:

Given: Digraph with a source vertex and subset of vertices marked
as accepting.

Question: Does there exist a cycle which contains at least one
accepting vertex and is reachable from the source ?

In positive case generate generate the cycle and a path to it from
source.

V.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Distributed LTL Model-Checking

Platform

@ Network of workstations (NOWS).
@ No shared memory (combined memory).
@ Communication by message passing.

Graph distribution

@ Graph given implicitly by (Finit, Fsuccessor)

@ Distributed data — partition function assigns vertices to
workstations

Graph problem: Detection of a reachable accepting cycle in a
distributed graph.

Jifi Barnat, Lubo § Brim, lvana Cerna Distributed LTL Model-Checking

Distributed Algorithms

@ new algorithms needed

e sequential solution: postorder — difficult to parallelize (PTIME)
o parallel solution: reachability — efficient parallelization (NC)

@ travel & propagate (repeated reachability)

Four groups — Six algorithms
@ BFS instead of DFS

[Maximal Predecessors, Back-Level Edges]

@ SCC-based approaches
[Elimination of SCCs — forth and back]

@ Reduction to another problem
[Negative Cycles]

@ Additional data
[Dependency Structure]

@S ParaDiSe
0o &2

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

Each accepting vertex on an
accepting cycle is its own

/ @5 predecessor.

@S ParaDiS:
0o &2

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

Each accepting vertex on an
accepting cycle is its own
predecessor.

Algorithm

forall s €A do
Acc(s) = set of accepting
predecessors of s od
forall s € A do
if s € Acc(s) then return CYCLE
od

return NO CYCLE

Jifi Barnat, Lubo & Brim, Ivana Cerna

Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

Each accepting vertex on an
accepting cycle is its own

/ predecessor.
@ Storing all predecessors is

@ expensive.

@ Order accepting vertices and
store the maximal one only.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

Improved idea

If an accepting vertex is the
maximal accepting predecessor of

itself, then it belongs to an
accepting cycle.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

-

Improved idea

If an accepting vertex is the
maximal accepting predecessor of
itself, then it belongs to an
accepting cycle.

Algorithm

while A #0do
compute map; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo & Brim, Ivana Cerna

Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?

4>2> 1

/ @3 Algorithm
©

while A #0do
compute map; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?

4>2> 1

/ @3 Algorithm
©

while A # 0 do
compute map; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

/ @3 Algorithm
©

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

/ @3 Algorithm
©

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

1
/ Algorithm
(3)2 2

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

1
/ Algorithm
(3)2 2

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi

@ 2 2 od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

1
/ Algorithm
(3)2 2

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi

@ 2 2 od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

1
/ Algorithm
(3)2 2

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi

(@) 4 2 od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

4>2> 1

1
/ Algorithm
(3)2 2

while A #0do
compute map; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }

fi
@ 4 2 od
v return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?

2>4> 1

/ @3 Algorithm
©

while A #0do
compute map; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

2>4> 1

/ @3 Algorithm
©

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L

2>4> 1

/ @3 Algorithm
©

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L
(@ L

2>4> 1

Algorithm

@2 e 2 while A+ 0 do

compute Mmap; { max. accepting predecessors }

if (3ueA:map(u)=u)

then return CYCLE

else G = delacc (G), { unmark acc. predecessors }
fi

@ (6) od

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?L
(@ L

2>4> 1

Algorithm

@2 e 2 while A+ 0 do

compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
@2 ®2

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?
\@

2>4> 1

Algorithm

@ 6 while A+ 0 do

compute map; { max. accepting predecessors }

if (3ueA:map(u)=u)

then return CYCLE

else G = delaCC(G); { unmark acc. predecessors }
fi

@ (6) od

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?
@)

2>4> 1

Algorithm

@ e while A+ 0 do

compute Mmap; { max. accepting predecessors }

if (3ueA:map(u)=u)

then return CYCLE

else G = delacc (G), { unmark acc. predecessors }
fi

@ (6) od

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?
@)

2>4> 1

Algorithm

@L (5) L while A+ 0do

compute Mmap; { max. accepting predecessors }

if (3ueA:map(u)=u)

then return CYCLE

else G = delacc (G), { unmark acc. predecessors }
fi

@ (6) od

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

2>4> 1

(2) L

Algorithm

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

2>4> 1

(2) L

Algorithm

while A #0do
compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
od
return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?
@)

2>4> 1

Algorithm

@4 (5) L while A+ 0do

compute Mmap; { max. accepting predecessors }
if (3ueA:map(u)=u)
then return CYCLE
else G = delacc (G), { unmark acc. predecessors }
fi
@ 1 w

return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

[Brim, Cerna, Moravec, Sim$a — FMCAD 2004, PDMC 2005]

?
@)

2>4> 1

Algorithm

@4 (5) L while A+ 0do

compute map; { max. accepting predecessors }

if (3ueA:map(u)=u)

then return CYCLE

else G = delacc (G), { unmark acc. predecessors }

fi
@, & o
v return NO CYCLE

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Maximal Accepting Predecessors

Comments

@ An accepting cycle in G can be formed from vertices with the same maximal
accepting predecessor only.

@ A graph induced by the set of vertices having the same maximal accepting
predecessor is called predecessor subgraph.

@ Every cycle in the graph is completely included in one of the predecessor
subgraphs.

@ Re-computing the MAP function can be done in parallel for every predecessor
subgraph.

@ DFS gives optimal ordering — heuristics for “good” ordering.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

Back-Level Edge

Destination state has no greater
distance from source vertex than
its source state.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

ol 0) Back-Level Edge
Destination state has no greater

distance from source vertex than
distance 1 its source state.

(level 1)

distance 2 @

(level 2)

distance 3 @ @

(level 3)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

ol 0) Back-Level Edge
Destination state has no greater

distance from source vertex than
dist: 1 R
(ovel 1) 9 its source state.
distance 2 e
(level 2)
distance 3 @ @

(level 3)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)

Each cycle must contain a
dist: 1
s (2
distance 2 e
(level 2)
distance 3 @ e

back-level edge.
(level 3)

i
;

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

(level 0)
Each cycle must contain a
back-level edge.

dist: 1
s (2)
Algorithm
@ Discover all back-level edges — level
e synchronized BFS.
distance 2
(level 2) @ Check if there is an edge that is part
of a cycle (nested procedure).

distance 3 @ G

(level 3)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

(level 0)
Each cycle must contain a
back-level edge.

dist: 1
gos (2)
Algorithm
for level=0to ...do
L = all current BL edges
d'(lséigfg)z e forall (s,t) € L do in parallel
test_cycle(s,t,| L |)
od
od
proc test_cycle(s,t,| L [)
! propagate s
gstance 3 @ e if s propagated to itself then v

(level 3)
else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)
distance 1
(level 1)
Algorithm
for level=0to ...do
L = all current BL edges
d'(lséigfg)z @ forall (s,t) € L doin parallel
test_cycle(s,t,| L |)
od
od
proc test_cycle(s,t,| L [)
distance 3 @ propagate =
(evel 3) if s propagated to itself then v’

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)

Algorithm

for level=0to ...do
L = all current BL edges
@ forall (s,t) € L do in parallel
test_cycle(s,t,| L |)

od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)

Algorithm

for level=0to ...do
L = all current BL edges
@ forall (s,t) €L doin parallel
test_cycle(s,t,| L |)

od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)

distance 1
(level 1)

Algorithm

for level=0to ...do
L = all current BL edges
@ forall (s,t) € L do in parallel
test_cycle(s,t,| L |)

od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0)

distance 1
(level 1)

Algorithm

for level=0to ...do
L = all current BL edges
@ forall (s,t) €L doin parallel
test_cycle(s,t,| L |)

od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0) L={(5,2),(5,3)}
distance 1
(level 1)
Algorithm
for level=0to ...do
L = all current BL edges
distance 2 forall (s,t) € L do in parallel
(level 2)
test_cycle(s,t,| L |)
od
od

proc test_cycle(s,t,| L [)
propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

@

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0) L={(5,2),(5,3)}
distance 1
(level 1)
Algorithm
for level=0to ...do
L = all current BL edges
d'(lséigfg)z forall (s,t) €L do in parallel
test_cycle(s,t,| L |)
od
od

proc test_cycle(s,t,| L [)
propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

@

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0) L= {(57 2)3 (5,3)}
distance 1
(level 1)
5 Algorithm
B for level=0to ...do
L = all current BL edges
d'fta”lcgz @ forall (s,t) € L do in parallel
(fevel 2) test_cycle(s,t,| L |)
od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0) L= {(57 2)3 (5,3)}
distance 1
(level 1)
g 5 Algorithm
B 3 for level=0to ...do
L = all current BL edges
d'fta”lcgz @ forall (s,t) € L do in parallel
(fevel 2) test_cycle(s,t,| L |)
od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0
(level 0) L= {(57 2)3 (5,3)}
distance 1
(level 1)
g 5 Algorithm
B 3 for level=0to ...do
L = all current BL edges
d'fta”lcgz @ forall (s,t) € L do in parallel
(fevel 2) test_cycle(s,t,| L |)
od
od
proc test_cycle(s,t,| L [)
@ @ propagate s
if s propagated to itself then v

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

a

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]

distance 0

(level 0) EA I—: {(473)3(6?5)}

distance 1
(level 1)

g Algorithm

// for level=0to ...do
L = all current BL edges
distance 2 forall (s,t) € L doin parallel
(level 2)
test_cycle(s,t,| L |)
od
-, od
s proc test_cycle(s,t,| L |)
! propagate s
d('zj;csef if s propagated to itself then v’

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]
distance 0

(level 0) g I— = {(473)3 (6?5)}

- A

distance 1
(level 1)
’
g Algorithm
4 _
6 , for level=0to ...do
7(s)
4

L = all current BL edges

d'(lséigfg)z forall (s,t) € L doin parallel
7 test_cycle(s,t,| L |)
s od
6
-, od

7 @ proc test_cycle(s,t,| L |)

_ propagate s
d('zj;csef if s propagated to itself then v’

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]
distance 0

(level 0) g I— = {(473)3 (6?5)}

- A

distance 1
(level 1)
’
g Algorithm
4 _
6 , for level=0to ...do
7(s)
4

L = all current BL edges

d'(lséigfg)z forall (s,t) € L doin parallel
7 test_cycle(s,t,| L |)
s od
6 6
-, od

7 @ proc test_cycle(s,t,| L |)

_ propagate s
d('zj;csef if s propagated to itself then v’

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]
distance 0

(level 0) g I— = {(473)3 (6?5)}

- A

distance 1
(level 1)
’
g Algorithm
4 _
6 , for level=0to ...do
7(s)
4

L = all current BL edges

d'(lséigfg)z forall (s,t) € L doin parallel
7 test_cycle(s,t,| L |)
s od
6 6
-, od

7 6 proc test_cycle(s,t,| L |)

_ propagate s
d('zj;csef if s propagated to itself then v’

else if current BL passed >|L | then v/

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

[Barnat, Brim, Chaloupka — ASE 2003]
distance 0

(level 0) g I— = {(473)3 (6?5)}

- A

distance 1
(level 1)
’
g Algorithm
4 _
6 , for level=0to ...do
7(s)
4

L = all current BL edges

d'fta”lcgz forall (s,t) € L doin parallel
(fevel 2) 7 test_cycle(s,t,| L |)
s od
6
’ 6 od
7 6 proc test_cycle(s,t,| L |)

distance 3 propagate S
(evel 3) if s propagated to itself then v

stops after #bl else if current BL passed >|L | then v/

edges

E

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

Comments

@ Accepting cycle detection (additional bit required)
@ Partial Order Reduction

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Back-Level Edges Algorithm

Comments

@ Accepting cycle detection (additional bit required)
@ Partial Order Reduction

Partial Order Reduction

@ Exploring subsets of successors of states (ample sets)

@ Conditions ensuring correctness: CO — C3

@ C3-DFS: at least one fully explored state on each cycle

@ C3-BFS: Full expansion of source states of back-level edges

o
=g
s

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Each reachable accepting cycle is contained in

9 a nontrivial strongly connected component
which is reachable from the source vertex and
contains an accepting vertex.

@S ParaDiSe
bo

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Each reachable accepting cycle is contained in

e a nontrivial strongly connected component
which is reachable from the source vertex and
contains an accepting vertex.

Algorithm
@ e Remove all SCCs without required properties.
@ remove trivial SCCs

@ remove SCCs which are not reachable
from the source

@ remove SCCs which do not contain
@ G accepting vertices

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Each reachable accepting cycle is contained in

e a nontrivial strongly connected component
which is reachable from the source vertex and
contains an accepting vertex.

Algorithm
@ e Remove all SCCs without required properties.

@ remove trivial SCCs

@ remove SCCs which do not contain
@ G accepting vertices

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Each reachable accepting cycle is contained in

9 a nontrivial strongly connected component
which is reachable from the source vertex and
contains an accepting vertex.

Algorithm on vertices

@ e while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices
(3) (5) while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices
(3) (5) while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices
(3) (5) while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices
(3) (5) while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

O, ®

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices

@ 5 while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices

while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm

[Cerna, Pelanek — SPIN 2003]

Algorithm on vertices

while not finished do

@ remove vertices which are not reachable
from accepting vertices

@ remove vertices which are not contained
in any cycle (have in-degree 0)

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Main idea is the same: Each accepting cycle is

contained in a nontrivial strongly connected

component which is reachable from the source
@ vertex and contains an accepting vertex.

Computing successors may be expensive.
Store edges and check symmetric conditions
using predecessors.

OO,

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Main idea is the same: Each accepting cycle is

contained in a nontrivial strongly connected

component which is reachable from the source
@ vertex and contains an accepting vertex.

Computing successors may be expensive.
Store edges and check symmetric conditions
using predecessors.

Algorithm on vertices
while not finished do

@ remove vertices from which no accepting
vertex is reachable

OO,

@ remove vertices with out-degree O

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Algorithm on vertices

while not finished do

@ remove vertices from which no accepting
@ vertex is reachable
@ remove vertices with out-degree O

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Algorithm on vertices

while not finished do

@ remove vertices from which no accepting
vertex is reachable

@ remove vertices with out-degree O

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Algorithm on vertices
while not finished do

@ remove vertices from which no accepting
vertex is reachable

@ remove vertices with out-degree 0

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithm — Reversed Version

[Barnat 2005]

Algorithm on vertices
while not finished do

@ remove vertices from which no accepting
vertex is reachable

@ remove vertices with out-degree O

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

SCC-Based Algorithms

Comments

@ Time complexity is O(h.(n+m))
@ n - number of vertices
@ m - number of edges
@ h - height of SCC quotient graph

@ Almost linear complexity
@ Only one external iteration for weak BA graphs
@ Algorithm does not work on-the-fly

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

@ Reduce BA emptiness problem to another one which can be
distributed more easily.

@ Detecting negative cycles in the SSSP problem.

Negative cycles coincide with accepting cycles. J

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

@ Reduce BA emptiness problem to another one which can be
distributed more easily.

@ Detecting negative cycles in the SSSP problem.

Negative cycles coincide with accepting cycles. J

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

SSSP

For each vertex compute the smallest distance
0 from source a build the parent graph (tree)

1+ —Q@

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

SSSP

For each vertex compute the smallest distance
0 from source a build the parent graph (tree)

. —@o
-1

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

SSSP

For each vertex compute the smallest distance
0 from source a build the parent graph (tree)

1+ —Q@

Negative length cycles

'
[

There is no shortest path to the source for
0 vertices on negative cycles.

@ The parent graph has a cycle.

Detect negative cycles via cycles in the
parent graph

Jifi Barnat, Lubo § Brim, lvana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

SSSP

For each vertex compute the smallest distance
0 from source a build the parent graph (tree)

1+ —Q@

Negative length cycles

'
[

There is no shortest path to the source for
0 vertices on negative cycles.

@ The parent graph has a cycle.

Detect negative cycles via cycles in the
parent graph

Jifi Barnat, Lubo § Brim, lvana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

-1

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

-1
Algorithm for detecting NC
initialize

0 while not finished do

'
[

scan vertices
@ if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
0 O 0 then continue
-1 else CYCLE

@ ® o

od

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

-1

'
[

Algorithm for detecting NC
initialize
0 while not finished do

scan vertices
1 @ 1 if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
0 O 0 then continue
-1 else CYCLE
fi

od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

-1

'
[

Algorithm for detecting NC
initialize
0 while not finished do

scan vertices
1 @ 1 if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
0 O 0 then continue
-1 else CYCLE
fi

od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

-1

'
[

Algorithm for detecting NC
initialize
0 while not finished do

scan vertices
1 @ 1 if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
0 O 0 then continue
-1 else CYCLE
fi

od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm
[Brim, Cerna, Kr&al, Pelanek — FSTTCS 2001]

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

Algorithm for detecting NC
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source

0 0 0 then continue
-1 else CYCLE
fi
ROBEGIE
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
1 @ 1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 O 0 then continue
-1 else CYCLE
fi
L 1(6) f
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
-1 @ -1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 O 0 then continue
-1 else CYCLE
fi
L 1(s) f
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

Algorithm for detecting NC
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

Algorithm for detecting NC
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

Algorithm for detecting NC
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
-1 @ -1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 0 0 then continue
-1 else CYCLE
fi
-1 -1 @ fi
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
-2 @ -1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 0 0 then continue
-1 else CYCLE
fi
-1 -1 @ fi
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
-2 @ -1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 0 0 then continue
-1 else CYCLE
fi
2@
od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Reduction: Assign -1 to out-going
0 edges of accepting vertices,
otherwise assign 0.

[Brim, Cerna, Kréal, Pelanek — FSTTCS 2001]

0
-1 . .
-1 Algorithm for detecting NC
initialize
0 while not finished do
scan vertices
-2 @ -1 if successor vertex is accepting then

run walk to root (WTR)
if WTR reaches source

0 O 0 then continue
-1 else CYCLE
fi
2@
P od

@S ParaDiSe
Sk i

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Negative Cycles Algorithm

Comments

@ Strategies to detect presence of a negative cycle
@ time out
o walk to root (WTR)
@ subtree traversal
@ amortized search
— time complexity is O(n®/P)
P - number of processors, n number of vertices
-+ algorithm is comparable with nested-DFS algorithm on all graphs

-+ algorithm is significantly better on graphs without accepting
cycles

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Dependency Structure Algorithm

[Barnat, Brim, Stfibrna - SPIN 2001]

@ Replace the graph by another smaller one:

@ Border vertices and accepting accepting only
o Edges represent reachability (dependency) among these vertices.

@ There is an accepting cycle in dependency graph iff there is a
splitted accepting cycle in the original graph.
@ Dependency graph is on-the-fly and is distributed as well.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Dependency Structure Algorithm — Example

Jifi Barnat, Lubo § Brim, lvana Cerna Distributed LTL Model-Checking

Dependency Structure Algorithm — Example

2 arDise
0o Bam iy

Distributed LTL Model-Checking

Dependency Structure Algorithm — Example

A 22— 4
5

2 arDise
0o Bam iy

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

Dependency Structure Algorithm

Comments

@ Dependency structure:
o Each workstation maintains its own local dependency structure.
e Dynamic — vertices are added and removed.
@ Additional memory required:
(O(n.r) on average, where r is the maximal out-degree and n is
the number of states)

@ Any distributed cycle detection algorithm can be used.

Jifi Barnat, Lubo § Brim, lvana Cerna Distributed LTL Model-Checking

Conclusion

@ Core problem of automata based LTL model-checking is the
detection of reachable accepting cycles in the state space.

@ Alternative approaches to distributing LTL Model-Checking
presented.

@ All algortihms implemented in DiVinE.

@ Parallelization is used because parallel systems are complex and
their development is difficult — development of parallel algorithms
for their analyzis is mentally and technically challenging as well.

@ Work in progress:

@ Extension to GBA, RA, SA.
@ LTL MC of probabilistic and real-time systems.
o Cost analysis.

Jifi Barnat, Lubo § Brim, Ivana Cerna Distributed LTL Model-Checking

