Distributed LTL Model-Checking

Jiří Barnat, Luboš Brim, Ivana Černá

Faculty of Informatics Masaryk University Brno

SENVA workshop, November 16, 2005, Grenoble

Enumerative LTL Model-Checking

Automata Approach - Basic Principle

- The LTL model-checking problem " $A \models \varphi$?" is reduced to is the language recognized by $A \times B_{\neg \varphi}$ empty?
- BA C can be represented as a graph G_C
- L(C) is non-empty iff G_C has a reachable accepting cycle

Graph problem:

Given: Digraph with a source vertex and subset of vertices marked as accepting.

Question: Does there exist a cycle which contains at least one accepting vertex and is reachable from the source?

In positive case generate generate the cycle and a path to it from source.

Distributed LTL Model-Checking

Platform

- Network of workstations (NOWs).
- No shared memory (combined memory).
- Communication by message passing.

Graph distribution

- Graph given implicitly by (F_{init}, F_{successor})
- Distributed data partition function assigns vertices to workstations

Graph problem: Detection of a reachable accepting cycle in a distributed graph.

Distributed Algorithms

- new algorithms needed
 - sequential solution: postorder difficult to parallelize (PTIME)
 - parallel solution: reachability efficient parallelization (NC)
- travel & propagate (repeated reachability)

Four groups - Six algorithms

BFS instead of DFS

[Maximal Predecessors, Back-Level Edges]

SCC-based approaches

[Elimination of SCCs – forth and back]

Reduction to another problem

[Negative Cycles]

Additional data

[Dependency Structure]

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Idea

Each accepting vertex on an accepting cycle is its own predecessor.

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Idea

Each accepting vertex on an accepting cycle is its own predecessor.

Algorithm

forall $s \in A$ do

Acc(s) = set of accepting predecessors of s od

forall $s \in A$ do

if $s \in Acc(s)$ then return CYCLE od

return NO CYCLE

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Idea

Each accepting vertex on an accepting cycle is its own predecessor.

- Storing all predecessors is expensive.
- Order accepting vertices and store the maximal one only.

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Improved idea

If an accepting vertex is the maximal accepting predecessor of itself, then it belongs to an accepting cycle.

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Improved idea

If an accepting vertex is the maximal accepting predecessor of itself, then it belongs to an accepting cycle.

```
 \begin{tabular}{ll} \be
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
\begin{tabular}{ll} \beg
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
 \begin{tabular}{ll} \be
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
 \begin{tabular}{ll} \be
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $4 > 2 > \bot$

```
 \begin{tabular}{ll} \be
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
\begin{tabular}{ll} \beg
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do 

compute map; { max. accepting predecessors } 

if (\exists u \in A : map(u) = u) 

then return CYCLE 

else G = delacc(G); { unmark acc. predecessors } 

fi 

od 

return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do 

compute map; { max. accepting predecessors } 

if (\exists u \in A : map(u) = u) 

then return CYCLE 

else G = delacc(G); { unmark acc. predecessors } 

fi 

od 

return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2>4>\perp$

```
while A \neq \emptyset do 

compute map; { max. accepting predecessors } 

if (\exists u \in A : map(u) = u) 

then return CYCLE 

else G = delacc(G); { unmark acc. predecessors } 

fi 

od 

return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do 

compute map; { max. accepting predecessors } 

if (\exists u \in A : map(u) = u) 

then return CYCLE 

else G = delacc(G); { unmark acc. predecessors } 

fi 

od 

return NO CYCLE
```


[Brim, Černá, Moravec, Šimša - FMCAD 2004, PDMC 2005]

Ordering

 $2 > 4 > \bot$

```
while A \neq \emptyset do compute map; { max. accepting predecessors } if (\exists u \in A : map(u) = u) then return CYCLE else G = delacc(G); { unmark acc. predecessors } fi od return NO CYCLE
```


Comments

- An accepting cycle in G can be formed from vertices with the same maximal accepting predecessor only.
- A graph induced by the set of vertices having the same maximal accepting predecessor is called predecessor subgraph.
- Every cycle in the graph is completely included in one of the predecessor subgraphs.
- Re-computing the MAP function can be done in parallel for every predecessor subgraph.
- DFS gives optimal ordering heuristics for "good" ordering.

[Barnat, Brim, Chaloupka - ASE 2003]

Back-Level Edge

Destination state has no greater distance from source vertex than its source state.

[Barnat, Brim, Chaloupka - ASE 2003]

Back-Level Edge

Destination state has no greater distance from source vertex than its source state.

[Barnat, Brim, Chaloupka - ASE 2003]

Back-Level Edge

Destination state has no greater distance from source vertex than its source state.

[Barnat, Brim, Chaloupka - ASE 2003]

Idea

Each cycle must contain a back-level edge.

[Barnat, Brim, Chaloupka - ASE 2003]

Idea

Each cycle must contain a back-level edge.

- Discover all back-level edges level synchronized BFS.
- Check if there is an edge that is part of a cycle (nested procedure).

[Barnat, Brim, Chaloupka - ASE 2003]

Idea

Each cycle must contain a back-level edge.

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel test_cycle(s,t,|L|)
od
od

proc test_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed >|L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]


```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
\text{propagate } s
if s propagated to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]


```
for level = 0 to ...do

L = all current BL edges
forall (s,t) \in L do in parallel
test_cycle(s,t,|L|)
od
od

proc test_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed >|L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]


```
for level = 0 to ...do
  L = all current BL edges
  forall (s, t) ∈ L do in parallel
    test_cycle(s,t,|L|)
  od

od

proc test_cycle(s,t,|L|)
  propagate s
  if s propagated to itself then √
  else if current BL passed > |L| then √
```


[Barnat, Brim, Chaloupka - ASE 2003]


```
for level = 0 to ...do

L = all current BL edges
forall (s,t) \in L do in parallel
test_cycle(s,t,|L|)
od
od

proc test_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed >|L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]


```
for level = 0 to ... do

L = all current BL edges
forall (s, t) \in L do in parallel
test_cycle(s,t,|L|)
od

od

proc test_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(5,2), (5,3)\}$$

```
for level = 0 to ...do

L = all current BL edges
forall (s,t) \in L do in parallel
test_cycle(s,t,|L|)
od

od

proc test_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed >|L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(5,2), (5,3)\}$$

```
for level = 0 to ... do
  L = all current BL edges
  forall (s, t) ∈ L do in parallel
    test_cycle(s,t,|L|)
  od

od

proc test_cycle(s,t,|L|)
  propagate s
  if s propagated to itself then √
  else if current BL passed > |L| then √
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(5,2), (5,3)\}$$

```
for level = 0 to ...do
  L = all current BL edges
  forall (s,t) ∈ L do in parallel
    test_cycle(s,t,|L|)
  od

od

proc test_cycle(s,t,|L|)
  propagate s
  if s propagated to itself then √
  else if current BL passed > |L| then √
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(5,2), (5,3)\}$$

```
for level = 0 to ...do
  L = all current BL edges
  forall (s,t) ∈ L do in parallel
    test_cycle(s,t,|L|)
  od

od

proc test_cycle(s,t,|L|)
  propagate s
  if s propagated to itself then √
  else if current BL passed > |L| then √
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(5,2), (5,3)\}$$

```
for level = 0 to ...do
  L = all current BL edges
  forall (s,t) ∈ L do in parallel
    test_cycle(s,t,|L|)
  od

od

proc test_cycle(s,t,|L|)
  propagate s
  if s propagated to itself then ✓
  else if current BL passed > |L| then ✓
```


[Barnat, Brim, Chaloupka - ASE 2003]

[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(4,3), (6,5)\}$$

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
propagate s
if s propagate to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(4,3), (6,5)\}$$

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
propagate s
if s propagate to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(4,3), (6,5)\}$$

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
propagate s
if s propagate to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(4,3), (6,5)\}$$

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
propagate s
if s propagate to itself then \checkmark
else if current BL passed > |L| then \checkmark
```


[Barnat, Brim, Chaloupka - ASE 2003]

$$L = \{(4,3), (6,5)\}$$

```
for level = 0 to ...do
L = \text{all current BL edges}
forall (s,t) \in L do in parallel
\text{test\_cycle}(s,t,|L|)
od
od

proc test\_cycle(s,t,|L|)
propagate s
if s propagated to itself then \checkmark
else if current BL passed >|L| then \checkmark
```


Comments

- Accepting cycle detection (additional bit required)
- Partial Order Reduction

Partial Order Reduction

- Exploring subsets of successors of states (ample sets)
- Conditions ensuring correctness: C0 C3
- C3-DFS: at least one fully explored state on each cycle
- C3-BFS: Full expansion of source states of back-level edges

Comments

- Accepting cycle detection (additional bit required)
- Partial Order Reduction

Partial Order Reduction

- Exploring subsets of successors of states (ample sets)
- Conditions ensuring correctness: C0 C3
- C3-DFS: at least one fully explored state on each cycle
- C3-BFS: Full expansion of source states of back-level edges

[Černá, Pelánek - SPIN 2003]

[Černá, Pelánek - SPIN 2003]

[Černá, Pelánek - SPIN 2003]

Idea

Each reachable accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

[Černá, Pelánek - SPIN 2003]

Idea

Each reachable accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

Algorithm

Remove all SCCs without required properties.

- remove trivial SCCs
- remove SCCs which are not reachable from the source
- remove SCCs which do not contain accepting vertices

[Černá, Pelánek - SPIN 2003]

Idea

Each reachable accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

Algorithm

Remove all SCCs without required properties.

- remove trivial SCCs
- remove SCCs which are not reachable from the source
- remove SCCs which do not contain accepting vertices

[Černá, Pelánek - SPIN 2003]

Idea

Each reachable accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Černá, Pelánek - SPIN 2003]

Algorithm on vertices

- remove vertices which are not reachable from accepting vertices
- remove vertices which are not contained in any cycle (have in-degree 0)

[Barnat 2005]

Idea

Main idea is the same: Each accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

Computing successors may be expensive. Store edges and check symmetric conditions using predecessors.

[Barnat 2005]

Idea

Main idea is the same: Each accepting cycle is contained in a nontrivial strongly connected component which is reachable from the source vertex and contains an accepting vertex.

Computing successors may be expensive. Store edges and check symmetric conditions using predecessors.

Algorithm on vertices

- remove vertices from which no accepting vertex is reachable
- remove vertices with out-degree 0

[Barnat 2005]

Algorithm on vertices

- remove vertices from which no accepting vertex is reachable
- remove vertices with out-degree 0

[Barnat 2005]

Algorithm on vertices

- remove vertices from which no accepting vertex is reachable
- remove vertices with out-degree 0

SCC-Based Algorithm – Reversed Version

[Barnat 2005]

Algorithm on vertices

while not finished do

- remove vertices from which no accepting vertex is reachable
- remove vertices with out-degree 0

SCC-Based Algorithm – Reversed Version

[Barnat 2005]

Algorithm on vertices

while not finished do

- remove vertices from which no accepting vertex is reachable
- remove vertices with out-degree 0

SCC-Based Algorithms

Comments

- Time complexity is O(h.(n+m))
 - *n* number of vertices
 - m number of edges
 - *h* height of SCC quotient graph
- Almost linear complexity
- Only one external iteration for weak BA graphs
- Algorithm does not work on-the-fly

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

- Reduce BA emptiness problem to another one which can be distributed more easily.
- Detecting negative cycles in the SSSP problem.

Negative cycles coincide with accepting cycles.

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

- Reduce BA emptiness problem to another one which can be distributed more easily.
- Detecting negative cycles in the SSSP problem.

Negative cycles coincide with accepting cycles.

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

SSSP

For each vertex compute the smallest distance from source a build the parent graph (tree)

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

SSSP

For each vertex compute the smallest distance from source a build the parent graph (tree)

[Brim, Černá, Krčál, Pelánek – FSTTCS 2001]

SSSP

For each vertex compute the smallest distance from source a build the parent graph (tree)

Negative length cycles

There is no shortest path to the source for vertices on negative cycles.

The parent graph has a cycle.

Detect negative cycles via cycles in the parent graph

[Brim, Černá, Krčál, Pelánek – FSTTCS 2001]

SSSP

For each vertex compute the smallest distance from source a build the parent graph (tree)

Negative length cycles

There is no shortest path to the source for vertices on negative cycles.

The parent graph has a cycle.

Detect negative cycles via cycles in the parent graph

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

Algorithm for detecting NC

initialize

```
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
od
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

initialize

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

initialize

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


[Brim, Černá, Krčál, Pelánek - FSTTCS 2001]

Idea

Reduction: Assign -1 to out-going edges of accepting vertices, otherwise assign 0.

```
initialize
while not finished do
scan vertices
if successor vertex is accepting then
run walk to root (WTR)
if WTR reaches source
then continue
else CYCLE
fi
fi
```


Comments

- Strategies to detect presence of a negative cycle
 - time out
 - walk to root (WTR)
 - subtree traversal
 - amortized search
- time complexity is $O(n^3/P)$ P - number of processors, n number of vertices
- + algorithm is comparable with nested-DFS algorithm on all graphs
- algorithm is significantly better on graphs without accepting cycles

Dependency Structure Algorithm

[Barnat, Brim, Stříbrná - SPIN 2001]

Idea

- Replace the graph by another smaller one:
 - Border vertices and accepting accepting only
 - Edges represent reachability (dependency) among these vertices.
- There is an accepting cycle in dependency graph iff there is a splitted accepting cycle in the original graph.
- Dependency graph is on-the-fly and is distributed as well.

Dependency Structure Algorithm – Example

Dependency Structure Algorithm – Example

Dependency Structure Algorithm – Example

Dependency Structure Algorithm

Comments

- Dependency structure:
 - Each workstation maintains its own local dependency structure.
 - Dynamic vertices are added and removed.
- Additional memory required:
 (O(n.r) on average, where r is the maximal out-degree and n is the number of states)
- Any distributed cycle detection algorithm can be used.

Conclusion

- Core problem of automata based LTL model-checking is the detection of reachable accepting cycles in the state space.
- Alternative approaches to distributing LTL Model-Checking presented.
- All algortihms implemented in DiVinE.
- Parallelization is used because parallel systems are complex and their development is difficult – development of parallel algorithms for their analyzis is mentally and technically challenging as well.
- Work in progress:
 - Extension to GBA, RA, SA.
 - LTL MC of probabilistic and real-time systems.
 - Cost analysis.

