Validation of Qualitative Models of Genetic Regulatory Networks by Model Checking: Nutritional Stress Response in *E. coli*

Grégory Batt,¹ Delphine Ropers,¹ Hidde de Jong,¹ Johannes Geiselmann,² Radu Mateescu,¹ Michel Page,¹ Dominique Schneider²

¹ INRIA Rhône-Alpes, Grenoble

² Laboratoire Adaptation et Pathogénie des Microorganismes, Université Joseph Fourier, Grenoble

Email: Gregory.Batt@inrialpes.fr

- 1. Introduction
- 2. Qualitative modeling and simulation method
- 3. Validation with model-checking techniques
- 4. Application to nutritional stress response in *E. coli*
- 5. Conclusions

Genetic regulatory networks

Genetic regulatory networks underlie functioning and development of living organisms

Genes, proteins, small molecules, and their regulatory interactions

Genetic regulatory networks are large and complex

Validation of genetic network models

- Mathematical methods and computational tools exist for analysis of genetic networks through modeling and simulation
- Problem of model validation: check consistency between experimental data and predictions
- Major constraints for model validation:
 - predictions suitable for comparison with available experimental data
 - automatic and efficient comparison between experimental data and predictions
- Approach:
 - use of qualitative modeling and simulation method
 - combination with **model-checking** techniques

PL differential equation models

Genetic networks modeled by class of differential equations using step functions to describe regulatory interactions

$$\dot{x}_{a} = \kappa_{a} s^{-}(x_{a}, \theta_{a2}) s^{-}(x_{b}, \theta_{b}) - \gamma_{a} x_{a}$$
$$\dot{x}_{b} = \kappa_{b} s^{-}(x_{a}, \theta_{a1}) - \gamma_{b} x_{b}$$

- x : protein concentration
- θ : threshold concentration
- κ , γ : rate constants

 Differential equation models of regulatory networks are piecewise-linear (PL)
 Glass and Kauffman, J. Theor. Biol., 73

Qualitative analysis of network dynamics

- Method for qualitative analysis of dynamics of genetic regulatory networks:
 - discrete transition system obtained by qualitative abstraction of the dynamics, based on hyperrectangular partition of phase space
 - **inequality constraints** define regions in parameter space yielding the same discrete transition system
 - **symbolic computation** of transition system using inequality constraints and **tailored algorithms** (upscalability)
 - implementation in the computer tool Genetic Network Analyzer (GNA)
 - **application** to several bacterial systems

Gouzé and Sari, *Dyn. Syst.*, 03 de Jong *et al.*, *Bioinformatics*, 03 de Jong *et al.*, *Bull. Math. Biol.*, 04

Qualitative analysis of network dynamics

- Analysis of the dynamics in phase space
- Phase space partition: unique derivative sign pattern in domains
- Qualitative abstraction yields discrete transition system

Abstraction preserves unicity of derivative sign pattern

Validation of qualitative models

Predictions well adapted to comparison with available experimental data: changes of derivative sign patterns

- Model validation: comparison of derivative sign patterns in observed and predicted behaviors
- Need for automatic and efficient comparison

Model-checking approach

- Model checking is automated technique for verifying that discrete transition system satisfies certain temporal properties
- CTL model-checking framework:
 - set of atomic propositions AP
 - discrete transition system $KS = \langle S, R, L \rangle$,

where S set of states, R transition relation, L labeling function over AP

temporal properties expressed in Computation Tree Logic (CTL)

 $p, \neg f_1, f_1 \land f_2, f_1 \lor f_2, f_1 \rightarrow f_2, EXf_1, AXf_1, EFf_1, AFf_1, EGf_1, AGf_1, Ef_1Uf_2, Af_1Uf_2,$ where $p \in AP$ and f_1, f_2 CTL formulas

Computer tools are available to perform efficient and reliable model checking (*e.g.*, NuSMV, SPIN, CADP)

Validation using model checking

Atomic propositions

$$AP = \{x_a = 0, x_a < \theta_a^{\ l}, \dots, x_b < max_b, \dot{x}_a < 0, \dot{x}_a = 0, \dots, \dot{x}_b > 0\}$$

Observed property expressed in CTL

There *E*xists a *F*uture state where $\dot{x}_a > 0$ and $\dot{x}_b > 0$ and starting from that state, there *E*xists a *F*uture state where $\dot{x}_a < 0$ and $\dot{x}_b > 0$

$$\boldsymbol{EF}(\dot{\boldsymbol{x}}_a > 0 \land \dot{\boldsymbol{x}}_b > 0 \land \boldsymbol{EF}(\dot{\boldsymbol{x}}_a < 0 \land \dot{\boldsymbol{x}}_b > 0))$$

Validation using model checking

Compute discrete transition system using qualitative simulation

Use of model checkers to check consistency between experimental data and predictions

Genetic Network Analyzer

Model validation approach implemented in new version of GNA

- Tailored algorithms
 for symbolic computation
 of transition system
- Export functionalities
 to model checkers
 (NuSMV, CADP)

Nutritional stress response in E. coli

In case of nutritional stress, *E. coli* population abandons growth and enters stationary phase

Decision to abandon or continue growth is controlled by complex genetic regulatory network

Model: 7 PLDEs, 40 parameters and 54 inequality constraints

Validation of stress response model

Qualitative simulation of carbon starvation:

- 66 reachable domains (< 1s.)
- single attractor domain (asymptotically stable equilibrium point)
- Experimental data on Fis:

"Fis concentration decreases and becomes steady in stationary phase"

Ali Azam et al., J. Bacteriol., 99

CTL formulation: $EF(\dot{x}_{fis} < 0 \land EF(\dot{x}_{fis} = 0 \land x_{rrn} < \theta_{rrn}))$ Model checking with NuSMV: property true (< 1s.)

Validation of stress response model

Other properties:

• *"cya* transcription is negatively regulated by the complex cAMP-CRP"

Kawamukai et al., J. Bacteriol., 85

$$AG(x_{crp} > \theta_{crp} \land x_{cya} > \theta_{cya} \land x_s > \theta_s \rightarrow EF \dot{x}_{cya} < 0)$$
 True

"DNA supercoiling decreases during transition to stationary phase"

Balke and Gralla, J. Bacteriol., 87

$$EF((\dot{x}_{gyrAB} < 0 \lor \dot{x}_{topA} > 0) \land x_{rrn} < \theta_{rrn})$$
 False

Model-driven experiments for more extensive tests of validity

Time-series measurements of molecular concentrations in parallel and at high sampling rate

Conclusions

- Use of qualitative modeling and simulation method yielding predictions suitable for comparison with experimental data
- Combination with model-checking techniques to achieve automatic and efficient comparison
- Approach implemented and applied to nutritional stress response in *E. coli*
- Model-checking used in combination with different formalisms
 - generalized logical models Bernot et al., J. Theor. Biol., 04
 - concurrent systems Chabrier et al., Theor. Comput. Sci., 04; Eker et al., PSB, 02
 - hybrid automata Ghosh et al., HSCC, 03

Further work: integration of tailored model checker into GNA

Thanks for your attention!

