Experiences with Cluster-Based Model
Checking of Stochastic Systems

Boudewijn R. Haverkort
Department of Computer Science
University of Twente, Enschede, the Netherlands

Alexander Bell
Department of Mathematics,
University of Twente, Enschede, the Netherlands

http://dacs.cs.utwente.nl/

uTt

Background

Cases and machinery
Generation

Solution

Concluding remarks

Overview

uTt

Background: High-level specifications

man-made discrete systems can be described well using high-level
specification languages:

— communication protocols, distributed systems (process algebras)

— computer systems, manufacturing systems (Petri nets)

not all system properties can be verified directly from the high-level
specification

many properties can only be verified using the large underlying STS
derivation of STS is a time-consuming task

important aspect of “model checking”

uTt

Background: Adding (stochastic) time

model specification is enhanced with stochastic timing information

underlying STS can be interpreted as a continuous-time Markov chain
.-+ which can be solved numerically

various model specification techniques can be imagined:
e.g., stochastic process algebras, or stochastic Petri nets

variety of logic-based property specifications possible

uTt

Hence, we combine...

e aspects of CTL-type model checking
e with aspects of numerical analysis of Markov chains

= CSL and CSRL model checking of Markovian models
e try to combine best techniques of both worlds!

e in any case: computational and storage requirements are enormous!

uTt

Modelling & evaluation cycle

system

““modelling”’ ‘e PR
evaluation

performability requirements

CSRL properties — high—level solution

(Al

™ ““enphancement’’

uTt

Background

Cases and machinery
Generation

Solution

Concluding remarks

Overview

uTt

Cases and Machinery: the FMS case (l)

fPlsL
#(Pls) U #(P1s)
Pl PlwM1 PIM1 Pld
: OO Qrt-Or
Ple
! e PlwP2
wW.
#(P12s) Ml tpij .
P12s P12M3 P12wM3 P12
tP125) le—#(P12s) . I ‘ t
Ip12M3 M3 Ip12
#(P12s) M3 1poj . .
P2wM?2 P2M2 P2
: =) O—=1—O (Dras
2 ’ e s
#(P2s) ’P2s M2 A #(P2s)
P3 P3M2 P3s
(® o O—nray
Ip3 IP3pM2 tp3s

uTt

Cases and Machinery: the FMS case (Il)

pallets k states n arcsa a/n a/n’
1 54 155 2.87 5.31e-02

3 6 520 37 394 573 8.80e-04

5 152 712 1 111 482 7.28 4.77e-05

7 1 639 440 13552968 8.27 5.04e-06

9 11 058 190 99 075 405 8.96 8.10e-07

11 54 682 992 518 030 370 9.47 1.73e-07

13 216 427 680 2 611 411 257 12.07 5.57e-08
15 724284 864 9134 355680 12.61 1.74e-08

uTt

Cases and Machinery: Cluster at RWTH

uTt

Cases and Machinery: From DAS-2 to DAS-3

10

uTt

v/ Background

v/ Cases and machinery
e Generation

e Solution

e Concluding remarks

Overview

11

uTt

STS generation: Three possibilities

o explicitly, serially
o explicitly, distributed

e implicitly

12

uTt

Serial, explicit STS generation

standard tree-based search algorithm

key issues:

— 1: data structure for state space

— 2: data structure for intermediate states
— 3: next state computation (enabled(s)?)
— 4: does state s exist?

choices:

— 1: hash table: open addressing with double hashing

— 2: stack with top in main memory, all of body on disk

— 3, 4: depends strongly on high-level model (SPNs: good!)

transition relation directly stored on disk

13

uTt

100000

10000

1000

100

states generated per second

10

Serial STS generation speed for FMS(k)

- T T E
. k=4 =6 . k=8 k=10 1]
: 11 k=13
: | | kI:;:L | 1 Ii 1 | Ii 1 | Ii | 1 Ii 1 | Ii | | Ii | | I:
10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

number of states

14

uTt

Distributed, explicit STS generation

use an extra hash function to map states onto processors (nodes)
find good:

— state balance: equal number of states per node

— while avoiding cross-arcs = minimizing communication

good, balanced solutions do exist

divides state space and transition relation over all available nodes

shows very good speed-ups

15

uTt

26-node distributed explicit STS generation for FMS(k)

100000
10000
1000 |

100 |

wall-clock time [seconds]
H
o

1 L 11 i
le+Q7
number of states

1 1 1 1 T T |
100000 1e+06

16

uTt

Implicit generation

use of BDDs, MTBDDs or MxDs (matrix diagrams)
extremely fast even on single nodes, for many millions of states

the next step, i.e., model checking or Markov chain solution, is much
more computationally intensive

no work on parallellisation required here, unless state space reduction is
performed on-the-fly

better concentrate on the true memory, communication and computation
bottlenecks!

17

uTt

v/ Background

v/ Cases and machinery
v/ Generation

e Solution

e Concluding remarks

Overview

18

uTt

What does “solution” mean?

e CTL model checking of Markov chain interpreted as STS

e CSL and CSRL model checking, meaning, the solution of large equation
systems

19

uTt

Distributed explicit CTL model checking of Petri nets

e generalised the algorithms for STS generation
e for all the operators of CTL (E[X.], E[.U.], A[.U.])
e do need the state space in some form readily available

e but recompute the transition relation on the fly
(both backward and forward, depending on the CTL query)

e found very good speed-ups and efficiencies

20

uTt

Kanban model with 11261 376 states; S-EU and O-EU

absolute speedup

48

44

T T T T
‘gen.speedup’” —+—*
'simple-EU.speedup’ ---x---

'opt-EU.speedup’ -:<---
linear’. =&

4 8 12 16 20 24 28 32 36 40 44 48 52
number of processes

21

uTt

The other type of STS “solution”

the underlying STS is a Markov chain now, from which we want to
compute probabilistic information

the CSL semantics contains two important operators:
— steady-state operator: requires steady-state probabilities
— probability operator: requires transient-state probabilities

both operators require series of matrix-vector multiplications to be
performed

hence, doing MV Ms quickly, serially or distributed, is the key issue!

22

uTt

Steady-state solution (I)

solution of 7 - Q =1, with) . m; =1

only iterative methods can be used: z(tt1) = z(®) . Q*

— Jacobi: simple, slow method, 2 iteration vectors

— Gauss-Seidel: faster, 1 iteration vector

— Conjugate Gradient Squared; requires more iteration vectors
vector 7 is very big but must be in-core, otherwise too slow

storage of 7 is a key problem

out-of-core or implicit matrix Q™*; it does not fit in main memory!
p y

23

uTt

Serial steady-state solution FMS(k)

Jacobi CGS

k e=10"" e=10"" e =10"" e =10""°
steps time steps time | steps time steps time
1 260 0:00:00 536 0:00:00 32 0:00:00 230 0:00:00
2 212 0:00:00 473 0:00:00 85 0:00:00 517 0:00:00
3 312 0:00:00 682 0:00:01 137 0:00:01 849 0:00:05
4 402 0:00:09 889 0:00:20 181 0:00:09 1465 0:01:13
5 491 0:01:02 1105 0:02:19 236 0:01:06 2424 0:11:40
6 584 0:05:561 1344 0:13:27 255 0:04:50 2202 0:52:12
7 686 0:18:33 1589 0:43:00 309 0:17:39 3981 3:43:53
8 784 1:03:24 1829 2:27:58 338 0:56:00 2905 8:03:47
9 881 3:15:45 2073 7:40:50 392 3:08:03 — —
10 980 10:30:59 2366 25:23:24 373 8:27:45 — —
11 | 1080 48:29:32 2734 122:45:26 363 34:10:40 — —

24

uTt

Serial steady-state solution FMS; CGS(4-11), J(12-13);
e =109

1e+07
1e+06
100000 F
10000 |
1000 F
100

10

wall-clock time [seconds]

1 1
10000 100000 1e+06 1le+07 1e+08 1e+09
number of states

25

uTt

Distributed steady-state solution: basics

solution of - Q =1, with) . m; =1

only iterative methods can be used: z(*t1) .= z(®) . Q*

— Jacobi: simple, slow method, 2 iteration vectors, easy to parallellise
— Gauss-Seidel: faster, 1 iteration vector, very difficult to parallellise
— CGS: requires more iteration vectors, but good to parallellise

out-of-core: the matrix Q* does not fit in main memory, but can be
partitioned over many nodes

solution vector m can be distributed over many nodes

26

uTt

Distributed steady-state solution: splitting the work

each processor stores part of Q* (disk) and computes part of = (memory)

non-local probabilities are explicitly requested (non-blocking send and
receive) from other nodes (for 2 nodes):

(12,m)"" = () Qi)

*

o= 2 Qe+ B89 - @y

local memory local disk remote memory |ocal disk

[
DN ¥

two threads interleave communication and computation

barrier synchronisation after each iteration

27

uTt

Distributed steady-state solution: 1/O overhead

FMS(k =

15): 724284 864 states, 9134 355 680 arcs

solution method is really 1/0O-bound

typical 1/O-overhead per iteration:

— 1200 MB read from local disk

— 800 MB sent to other nodes

— 800 MB received from other nodes

1 iteration ~ 7 minutes; around 2000 required!

for FMS(k =

10): 25397 658 states: 7 seconds/iteration

28

uTt

FMS distributed steady-state solution, ¢ = 1078, N = 26

Jacobi CGS

k e =10"° e = 10" e =10""° e = 10"

steps time steps time | steps time steps time

886 0:06:24 1507 0:10:53 371 0:05:22 893 0:12:55
1034 0:21:06 1783 0:36:23 150 0:07:09 1253 0:51:28
1181 0:43:56 1977 1:13:34 503 0:40:19 1469 1:57:44
1336 2:31:54 2208 4:11:03 863 2:52:59 1623 5:25:20
10 | 1492 7:36:36 2466 12:34:41 903 0:25:31 3559 37:08:53
11 | 1652 18:21:37 2722 30:15:08 665 15:04:44 3124 70:50:13
12 | 1818 47:59:51 2979 78:38:59 | 1219 65:00:17 2184 116:27:52
13 | 1990 68:53:55 3257 112:45:56 857 90:58:09 1987 210:55:02
14 | 2169 141:08:33 4448 289:26:34 325 72:36:53 — —
15 | 2335 292:16:37 — — — — — —

O 0 ~N O

29

uTt

absolute speedup

Distributed steady-state solution: speed-up

'CGS-FMS9 —+—
JFMS10" ---x---

I————— . !

number of processes

30

uTt

Kanban(7) distributed steady-state solution at ¢ = 10~"

50

T T T T
‘seriel-GS' ——

45

40

35

30 o

25

Laufzeit [h]

N
o

15

10

5

0
0 5 100 15 20 25 30 35 40 45 50

Anzahl Prozesse

[serial Gauss-Seidel: 624 iterations; distributed Jacobi: 1244 iterations |

31

uTt

Distributed steady-state solution: cross-arc impact

e Kanban model (k = 7): 41644 800 states, 450455040 arcs
e with cross-arc percentage X = 50%:

processors N | 52 26 12 8
time/iteration | 20 22 34 45

e with V = 52 processors:

cross-arcs [%] | 98 94 70 51 30
time/iteration | 34 28 23 20 14

32

uTt

Distributed steady-state solution: processor impact

e solution time and cross-arc percentage as function of the number of
employed processors:

processors N | 52 26 16 38 4 3 2
cross-arcs [%] | 30 28.4 285 269 219 19 146
time/iteration | 14 16 225 39.7 786 111 139.1

e serial solution with Gauss-Seidel: 171.5 seconds per iteration

e Jacobi requires more than 512 MB RAM; no serial solution available

33

uTt

v/ Background

v/ Cases and machinery
v/ Generation

v/ Solution

e Concluding remarks

Overview

34

uTt

Summary

completed first project on distributed evaluation of CTMCs from SPNs
excellent performance for serial and distributed generation
also excellent performance for distributed CTL model checking

good performance for the distributed numerical solution, however, this
remains the bottleneck

main memory storage of solution vector(s) is the key issue

further study of work-division strategy in solution speed

35

uTt

GRID-Based Challenges

extension toward GRID-based model checking for CSRL:
more complex algorithms and data structures (not just MVMs)

three “levels” of access time: in node, in cluster, in grid

complicated trade-off between communication (cross-arcs)
convergence speed

and

combination with other techniques, e.g., for on-th-fly state-space

reduction, bisimulations, etc.

36

uTt

Literature

B.R. Haverkort, A. Bell, H.C. Bohnenkamp, “On the Efficient Sequential and Distributed
Generation of Very Large Markov Chains from Stochastic Petri Nets”, Proc. IEEE PNPM
1999, pp.12-21, Zaragosa, Spain.

A. Bell, B.R. Haverkort, “Serial and parallel out-of-core solution of linear systems
arising from generalised stochastic Petri net models”, in: Proc. HPC 2001, pp.242-247,
Seattle, USA.

A. Bell, B.R. Haverkort, “Distributed CTL model checking of Petri net specifications”,
Electronic Notes in Theoretical Computer Science 68(4), 2002.

A. Bell, B.R. Haverkort, “Distributed disk-based algorithms for model checking very
large Markov chains”, submitted for publication, 2005.

A. Bell, Ph.D. thesis, Distributed Evaluation of Stochastic Petri Nets, RWTH Aachen,
2003.

37

