Experiences with Cluster-Based Model Checking of Stochastic Systems Boudewijn R. Haverkort Department of Computer Science University of Twente, Enschede, the Netherlands Alexander Bell Department of Mathematics, University of Twente, Enschede, the Netherlands http://dacs.cs.utwente.nl/ #### **Overview** - Background - Cases and machinery - Generation - Solution - Concluding remarks #### **Background: High-level specifications** - man-made discrete systems can be described well using high-level specification languages: - communication protocols, distributed systems (process algebras) - computer systems, manufacturing systems (Petri nets) - not all system properties can be verified directly from the high-level specification - many properties can only be verified using the large underlying STS - derivation of STS is a time-consuming task - important aspect of "model checking" #### Background: Adding (stochastic) time - model specification is enhanced with stochastic timing information - underlying STS can be interpreted as a *continuous-time Markov chain* · · · · which can be solved numerically - various model specification techniques can be imagined: e.g., stochastic process algebras, or *stochastic Petri nets* - variety of logic-based property specifications possible #### Hence, we combine... - aspects of CTL-type model checking - with aspects of numerical analysis of Markov chains - ⇒ CSL and CSRL model checking of Markovian models - try to combine best techniques of both worlds! - in any case: computational and storage requirements are enormous! ## Modelling & evaluation cycle #### **Overview** - $\sqrt{}$ Background - Cases and machinery - Generation - Solution - Concluding remarks ## Cases and Machinery: the FMS case (I) ## Cases and Machinery: the FMS case (II) | pallets k | states n | arcs a | a/n | a/n^2 | |-------------|-------------|---------------|-------|----------| | 1 | 54 | 155 | 2.87 | 5.31e-02 | | 3 | 6 520 | 37 394 | 5.73 | 8.80e-04 | | 5 | 152 712 | 1 111 482 | 7.28 | 4.77e-05 | | 7 | 1 639 440 | 13 552 968 | 8.27 | 5.04e-06 | | 9 | 11 058 190 | 99 075 405 | 8.96 | 8.10e-07 | | 11 | 54 682 992 | 518 030 370 | 9.47 | 1.73e-07 | | 13 | 216 427 680 | 2 611 411 257 | 12.07 | 5.57e-08 | | 15 | 724 284 864 | 9 134 355 680 | 12.61 | 1.74e-08 | ## Cases and Machinery: Cluster at RWTH ## Cases and Machinery: From DAS-2 to DAS-3 #### **Overview** - $\sqrt{}$ Background - $\sqrt{\text{Cases and machinery}}$ - Generation - Solution - Concluding remarks ## STS generation: Three possibilities - explicitly, serially - explicitly, distributed - implicitly #### Serial, explicit STS generation - standard tree-based search algorithm - key issues: - 1: data structure for state space - 2: data structure for intermediate states - 3: next state computation (enabled(s)?) - 4: does state s exist? - choices: - 1: hash table: open addressing with double hashing - 2: stack with top in main memory, all of body on disk - 3, 4: depends strongly on high-level model (SPNs: good!) - transition relation directly stored on disk ## Serial STS generation speed for FMS(k) #### Distributed, explicit STS generation - use an extra hash function to map states onto processors (nodes) - find good: - state balance: equal number of states per node - while avoiding cross-arcs = minimizing communication - good, balanced solutions do exist - divides state space and transition relation over all available nodes - shows very good speed-ups ## 26-node distributed explicit STS generation for FMS(k) #### Implicit generation - use of BDDs, MTBDDs or MxDs (matrix diagrams) - extremely fast even on single nodes, for many millions of states - the next step, i.e., model checking or Markov chain solution, is much more computationally intensive - ⇒ no work on parallellisation required here, unless state space reduction is performed on-the-fly - better concentrate on the true memory, communication and computation bottlenecks! #### **Overview** - $\sqrt{\ }$ Background - $\sqrt{\text{Cases and machinery}}$ - $\sqrt{}$ Generation - Solution - Concluding remarks #### What does "solution" mean? - CTL model checking of Markov chain interpreted as STS - CSL and CSRL model checking, meaning, the solution of large equation systems #### Distributed explicit CTL model checking of Petri nets - generalised the algorithms for STS generation - for all the operators of CTL (E[X.], E[.U.], A[.U.]) - do need the state space in some form readily available - but recompute the transition relation on the fly (both backward and forward, depending on the CTL query) - found very good speed-ups and efficiencies #### Kanban model with $11\,261\,376$ states; S-EU and O-EU #### The other type of STS "solution" - the underlying STS is a Markov chain now, from which we want to compute probabilistic information - the CSL semantics contains two important operators: - steady-state operator: requires steady-state probabilities - probability operator: requires transient-state probabilities - both operators require series of matrix-vector multiplications to be performed - hence, doing MVMs quickly, serially or distributed, is the key issue! ### Steady-state solution (I) - solution of $\underline{\pi} \cdot \mathbf{Q} = \underline{1}$, with $\sum_i \pi_i = 1$ - ullet only iterative methods can be used: $\underline{x}^{(i+1)} := \underline{x}^{(i)} \cdot \mathbf{Q}^*$ - Jacobi: simple, slow method, 2 iteration vectors - Gauss-Seidel: faster, 1 iteration vector - Conjugate Gradient Squared; requires more iteration vectors - vector $\underline{\pi}$ is **very big** but must be **in-core**, otherwise too slow - storage of $\underline{\pi}$ is a key problem - out-of-core or implicit matrix Q*; it does not fit in main memory! ## Serial steady-state solution FMS(k) | | | Ja | cobi | | CGS | | | | |----|----------------------|----------|----------------------|-----------|----------------------|----------|-----------------------|---------| | k | $\epsilon = 10^{-6}$ | | $\epsilon = 10^{-9}$ | | $\epsilon = 10^{-6}$ | | $\epsilon = 10^{-15}$ | | | | steps | time | steps | time | steps | time | steps | time | | 1 | 260 | 0:00:00 | 536 | 0:00:00 | 32 | 0:00:00 | 230 | 0:00:00 | | 2 | 212 | 0:00:00 | 473 | 0:00:00 | 85 | 0:00:00 | 517 | 0:00:00 | | 3 | 312 | 0:00:00 | 682 | 0:00:01 | 137 | 0:00:01 | 849 | 0:00:05 | | 4 | 402 | 0:00:09 | 889 | 0:00:20 | 181 | 0:00:09 | 1465 | 0:01:13 | | 5 | 491 | 0:01:02 | 1105 | 0:02:19 | 236 | 0:01:06 | 2424 | 0:11:40 | | 6 | 584 | 0:05:51 | 1344 | 0:13:27 | 255 | 0:04:50 | 2202 | 0:52:12 | | 7 | 686 | 0:18:33 | 1589 | 0:43:00 | 309 | 0:17:39 | 3981 | 3:43:53 | | 8 | 784 | 1:03:24 | 1829 | 2:27:58 | 338 | 0:56:00 | 2905 | 8:03:47 | | 9 | 881 | 3:15:45 | 2073 | 7:40:50 | 392 | 3:08:03 | | | | 10 | 980 | 10:30:59 | 2366 | 25:23:24 | 373 | 8:27:45 | | | | 11 | 1080 | 48:29:32 | 2734 | 122:45:26 | 363 | 34:10:40 | | | ## Serial steady-state solution FMS; CGS(4–11), J(12–13); $\epsilon=10^{-6}$ #### Distributed steady-state solution: basics - solution of $\underline{\pi} \cdot \mathbf{Q} = \underline{1}$, with $\sum_i \pi_i = 1$ - ullet only iterative methods can be used: $\underline{x}^{(i+1)} := \underline{x}^{(i)} \cdot \mathbf{Q}^*$ - Jacobi: simple, slow method, 2 iteration vectors, easy to parallellise - Gauss-Seidel: faster, 1 iteration vector, very difficult to parallellise - CGS: requires more iteration vectors, but good to parallellise - ullet out-of-core: the matrix ${f Q}^*$ does not fit in main memory, but can be partitioned over many nodes - solution vector $\underline{\pi}$ can be distributed over many nodes #### Distributed steady-state solution: splitting the work - ullet each processor stores part of ${f Q}^*$ (disk) and computes part of ${f \underline{\pi}}$ (memory) - non-local probabilities are explicitly requested (non-blocking send and receive) from other nodes (for 2 nodes): $$(\underline{\pi}_1,\underline{\pi}_2)^{\mathsf{new}} := (\underline{\pi}_1,\underline{\pi}_2)^{\mathsf{old}} \cdot \left(egin{array}{cc} \mathbf{Q}_{11}^* & \mathbf{Q}_{12}^* \ \mathbf{Q}_{21}^* & \mathbf{Q}_{22}^* \end{array} ight)$$ $$\Rightarrow \underline{\pi}_1^{\mathsf{new}} := \underline{\underline{\pi}_1^{\mathsf{old}}} \cdot \underline{\mathbf{Q}_{11}^*} + \underline{\underline{\pi}_2^{\mathsf{old}}} \cdot \underline{\mathbf{Q}_{21}^*}$$ local memory local disk remote memory local disk - two threads interleave communication and computation - barrier synchronisation after each iteration #### Distributed steady-state solution: I/O overhead - FMS(k = 15): 724284864 states, 9134355680 arcs - solution method is really I/O-bound - typical I/O-overhead per iteration: - 1200 MB read from local disk - 800 MB sent to other nodes - 800 MB received from other nodes - 1 iteration \approx 7 minutes; around 2000 required! - for FMS(k = 10): $25\,397\,658$ states: 7 seconds/iteration ## FMS distributed steady-state solution, $\epsilon=10^{-8}$, N=26 | | Jacobi | | | | CGS | | | | |----|--------------|-----------|----------------------|-----------|----------------------|----------|-----------------------|-----------| | k | $k = 10^{-}$ | | $\epsilon = 10^{-9}$ | | $\epsilon = 10^{-6}$ | | $\epsilon = 10^{-15}$ | | | | steps | time | steps | time | steps | time | steps | time | | 6 | 886 | 0:06:24 | 1507 | 0:10:53 | 371 | 0:05:22 | 893 | 0:12:55 | | 7 | 1034 | 0:21:06 | 1783 | 0:36:23 | 150 | 0:07:09 | 1253 | 0:51:28 | | 8 | 1181 | 0:43:56 | 1977 | 1:13:34 | 503 | 0:40:19 | 1469 | 1:57:44 | | 9 | 1336 | 2:31:54 | 2208 | 4:11:03 | 863 | 2:52:59 | 1623 | 5:25:20 | | 10 | 1492 | 7:36:36 | 2466 | 12:34:41 | 903 | 9:25:31 | 3559 | 37:08:53 | | 11 | 1652 | 18:21:37 | 2722 | 30:15:08 | 665 | 15:04:44 | 3124 | 70:50:13 | | 12 | 1818 | 47:59:51 | 2979 | 78:38:59 | 1219 | 65:00:17 | 2184 | 116:27:52 | | 13 | 1990 | 68:53:55 | 3257 | 112:45:56 | 857 | 90:58:09 | 1987 | 210:55:02 | | 14 | 2169 | 141:08:33 | 4448 | 289:26:34 | 325 | 72:36:53 | _ | | | 15 | 2335 | 292:16:37 | | | | _ | | _ | ## Distributed steady-state solution: speed-up ## Kanban(7) distributed steady-state solution at $\epsilon = 10^{-7}$ [serial Gauss-Seidel: 624 iterations; distributed Jacobi: 1244 iterations] #### Distributed steady-state solution: cross-arc impact - Kanban model (k = 7): $41\,644\,800$ states, $450\,455\,040$ arcs - with cross-arc percentage X=50%: • with N=52 processors: | cross-arcs [%] | 98 | 94 | 70 | 51 | 30 | |----------------|----|----|----|----|----| | time/iteration | 34 | 28 | 23 | 20 | 14 | #### Distributed steady-state solution: processor impact solution time and cross-arc percentage as function of the number of employed processors: | processors N | 52 | 26 | 16 | 8 | 4 | 3 | 2 | |----------------|----|------|------|------|------|-----|-------| | cross-arcs [%] | 30 | 28.4 | 28.5 | 26.9 | 21.9 | 19 | 14.6 | | time/iteration | 14 | 16 | 22.5 | 39.7 | 78.6 | 111 | 139.1 | - serial solution with Gauss-Seidel: 171.5 seconds per iteration - Jacobi requires more than 512 MB RAM; no serial solution available #### **Overview** - $\sqrt{\ }$ Background - $\sqrt{\text{Cases and machinery}}$ - $\sqrt{}$ Generation - $\sqrt{\text{Solution}}$ - Concluding remarks #### Summary - completed first project on distributed evaluation of CTMCs from SPNs - excellent performance for serial and distributed generation - also excellent performance for distributed CTL model checking - good performance for the distributed numerical solution, however, this remains the bottleneck - main memory storage of solution vector(s) is the key issue - further study of work-division strategy in solution speed #### **GRID-Based Challenges** - extension toward GRID-based model checking for CSRL: more complex algorithms and data structures (not just MVMs) - three "levels" of access time: in node, in cluster, in grid - complicated trade-off between communication (cross-arcs) and convergence speed - combination with other techniques, e.g., for on-th-fly state-space reduction, bisimulations, etc. #### Literature - B.R. Haverkort, A. Bell, H.C. Bohnenkamp, "On the Efficient Sequential and Distributed Generation of Very Large Markov Chains from Stochastic Petri Nets", *Proc. IEEE PNPM* 1999, pp.12–21, Zaragosa, Spain. - A. Bell, B.R. Haverkort, "Serial and parallel out-of-core solution of linear systems arising from generalised stochastic Petri net models", in: *Proc. HPC 2001*, pp.242–247, Seattle, USA. - A. Bell, B.R. Haverkort, "Distributed CTL model checking of Petri net specifications", Electronic Notes in Theoretical Computer Science **68**(4), 2002. - A. Bell, B.R. Haverkort, "Distributed disk-based algorithms for model checking very large Markov chains", submitted for publication, 2005. - A. Bell, Ph.D. thesis, *Distributed Evaluation of Stochastic Petri Nets*, RWTH Aachen, 2003.