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µCRL

µCRL = abstract datatypes + process algebra

• ADT: constructors + maps + equations

• Process algebra: ACP style

Most intriguing construct: Σ - potentially infinite choice.

Example from Security Protocols:

Alice || Intruder(K)
(

∑

m

recv(m) / protocol(m)
)

||
(

∑

m

send(m) / synthesize(m, K)
)

Techniques: Term rewriting + enumeration (= narrowing?)

(enumerate m such that protocol(m) ∧ synthesize(m, K))
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Verification in the µCRL toolset

Analysis

Optimization

System specification

Intermediate symbolic format

Finite state space
Analysis

Model Checking

Visualization

Equivalence

Confluence
Invariants
Unused variables

Compilation

Generation

(muCRL spec)

(linear process)

(labelled transition system)

(static analysis + theorem proving)

(graph algorithms)
Minimization

Fight State Space Explosion!
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Linear Process Equations

• First, a µCRL specification is linearized.

(this step eliminates || and · at the expense of adding data)

• A linear process has the form:

P (~x) =
∑

~y .a1(~x, ~y) · P (g1(~x, ~y)) / b1(~x, ~y)

+ · · ·

+
∑

~y .an(~x, ~y) · P (gn(~x, ~y)) / bn(~x, ~y)

• Here ~x is the state vector, containing state variables of all

components + program counters. ai are actions, bi Boolean

guards, gi next states, and ~y are local choice parameters.

• Advantage: simple structure + relatively succinct

• Symbolic state space reductions are LPE transformations.
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Symbolic Optimizations

• Constant propagation, Resetting dead variables

• Dead code elimination, tau-confluence reduction

I is an invariant for all summands:
∧

i

∀~x, ~y : I(~x) ∧ bi(~x, ~y) ⇒ I(gi(~x, ~y))

Summand i commutes with j (for confluence reduction):

∀~x : bi(~x) ∧ bj(~x) ⇒ bj(gi(~x)) ∧ bj(gi(~x)) ∧ gj(gi(~x)) = gi(gj(~x))

gj(x)gi(x)

bi bj

bj bi

x

gj(gi(x))=gi(gj(x))

• Invariant generation / checking

• Confluence detection by theorem proving

• Confluence reduction on the fly (avoid loops!)

• ⇒ Parallellization of theorem prover ??

Jaco van de Pol SENVA - November 2005 – Grenoble 6



On-the-fly τ -Confluence Reduction

• After detecting some confluent τ summands, we want on the fly:

– Give priority to confluent τ -steps

– Compress sequences of confluent τ -steps

• A concrete transition s →a t is transformed to s →a rep(t), where

rep(t) is found by Tarjan’s SCC algorithm.

• Below: blue are visible steps, while green (visited) and red (not

visited) are confluent tau-steps
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9
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a

reduced state space
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Explicit state space generation

• When symbolic reduction is exhausted, we start brute force

• Generating state space is time consuming (narrowing!)

• Hence: explicit generation + storage of full state space.

• Various analyses can be performed without regeneration

• Use distributed generation to scale in memory + time.

Compilation

System specification

Intermediate symbolic format

Finite state space

Generation

Graph minimization

Model Checking

Visualization

EquivalenceAnalysis

Running on a cluster of machines

Distributed algorithms

Later: on NL/European Grid
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Distributed State Space Generation

Extra Functionality:

• on-the-fly verification of simple safety properties

(deadlock, occurrences of bad actions)

• debug traces for diagnostics

• on-the-fly confluence reduction

• search in time slices to find shortest schedules

(i.e.: barrier synchronization on special “tick” actions)

Conclusion:

• Scales up in time + memory (> 108 transitions, 32 nodes)
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Distributed State Space Generation
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Distributed Generation with
On-the-fly τ -Confluence Reduction

• Strict breadth first exploration of the state space.

(only reason: shortest traces as counter example)

• As usual: states are allocated by a static hash function to nodes in

a network, who send each other batches of successor states.

• Actually, we send indices of states to avoid serialization overhead.

databases
term

workers

term lookup

indices
pairs of
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Single node Memory Footprint

• We use the ATerm Library (CWI, SEN 1) to represent the state

space as one maximally shared forest.

• Nice trick (JF Groote): arrange state vector as tree instead of list:

• List arrangement: avg. 1

2
n list nodes duplicated t4 7→ s4

t0 t1 t2

t0 t2t1 s4t3

t5

t3

t6

t4

• Tree arrangement: log n list nodes duplicated.

t0 t1 t2 t3 t4 t5s4 t6
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Distributing shared terms?

• The nodes send each other batches of new states to be explored.

• Problem: ATerms are pointers, which are only locally meaningful.

• Bad solution: serialization/deserialization for communication.

• Our solution:

– Assign indices to states, only communicate indices

– Store term indices in a shared global database

– Exploit another tree-folding trick to avoid bottlenecks

• Goal: a global unique bijection: States ↔ {0, . . . , n}

(but avoid a database of size n)

• Idea: Use the Cartesian structure of the state vector
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Shared global term databases

n43

t1 t2 t3 t4 t5 t6 t7 t8

n48n46n45n44n42n41

n31 n32 n33 n34

n47

n22n21

n11

Term Vector

Leaf Database
(global + local cache)

Intermediate Databases
(global + local cache)

Top level database
only local !!

• With perfect balancing: database nkj at level k has k

√

|S| states

• Balancing can be improved by pairing/projecting the state vector

• Several ad hoc tricks reduce communication overhead.

• Most communication overhead only at the beginning!
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State Space Minimization

• We have the following instances:

– Strong bisimulation reduction (Blom,Orzan)

– Branching bisimulation reduction (Blom, Orzan)

– τ -cycle elimination (Orzan, van de Pol)

• Algorithms:

– Partition refinement, based on “observable signatures”.

– The nodes synchronize in “rounds”

• Conclusion:

– it works in practice, memory usage is OK

– decent speedup for large enough examples

– result after minimization often fits in one machine
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Implications for GRID

• intensive inter-node communication

• synchronized levels for BFS (can be relaxed),

and for partition refinement (essential?)

• shared data base

• need for persistent data storage

Implications for Interfaces

• data enumeration is important (for open systems)

• extensions for confluence/partial-order reduction needed

• several symbolic optimizations are language specific.
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