
Distributed TA Reachability

State Space

Distributed Reachability

State Space

h:SN

Distributed Reachability

State Space

h:SN

Distributed Reachability

State Space

h:SN

Distributed Reachability

State Space

h:SN

Distributed Reachability

State Space

h:SN

Distributed Reachability

State Space

h:LN

Distributed TA Reachability

State Space

h:LN

Distributed TA Reachability

State Space

h:LN

Distributed TA Reachability

State Space

h:LN

Distributed TA Reachability

Why the search order matters

Why the search order matters

Why the search order matters

Why the search order matters

Why the search order matters

Why the search order matters

Why the search order matters

 Breadth first order is pretty good for
TA.

+ Search order is non-deterministic for
distributed reachability.

= The more nodes we add, the more work
we get.

Why the search order matters

Solutions
– Locally order states after depth.
– Locally search states (l, Z), where Z is the
set of all clock valuations satisfying the
invariants of l, first.

– E.g. 3,290,022 -> 5,741,661 with FIFO
3,290,022 -> 3,021,411 when ordered.

Speedup

Heterogeneous clusters

+

7 x Dual 733MHz Pentium 3
2GB RAM

36 x 2.8 GHz Xeon Pentium 4
1GB RAM

First approach

Adjust hash function such that the new
machines get more states!

First approach

Adjust hash function such that the new
machines get more states!

Thus we adjust h such that new machines
get 3.4 times as many states.

4768bogomips
1389bogomips

=3.4

First approach

Hence,

3.4 times the ”load”, good!

3.4 times as much memory, bad!

1GB pr. new CPU
3.4

=295MB pr. old CPU

First approach

Hence,

3.4 times the ”load”, good!

3.4 times as much memory, bad!

CPU load and memory usage
are inherently linked!

1GB pr. new CPU
3.4

=295MB pr. old CPU

Second approach

computes s
send to h(s) got s

if new state then
 store it

Second approach

computes s
send to h(s)

got reply for s
if reply = new then
 explore s

got s
if new state then
 store it

send back reply

Second approach

computes s
send to h(s)

got reply for s
if reply = new then
 explore s

got s
if new state then
 store it
 should I lie?
send back reply
if new and I lied then
 explore s

Second approach

computes s
send to h(s)

got reply for s
if reply = new then
 explore s

got s
if new state then
 store it
 should I lie?
send back reply
if new and I lied then
 explore s

... s4, s3, s2, s1

0110...

When to lie

Depends on several factors

The current load

The current exploration rate

of myself, my peer, and all other nodes.

∀ i , j :
∣Wi∣

∣Ri∣
=
∣Wj∣

∣Rj∣

Other factors

Is the system stable or does it oscillate?

Other factors

Is the system stable or does it oscillate?

CONTROL THEORY

Other factors

With symbolic states, we would rather
steal.

S T

S⊂T

Other factors

With symbolic states, we would rather
steal.

S T

S⊂T

CONTROL THEORY

The controller

● Produces an nxn matrix where
– pij is the probability for node i stealing a
state from node j.

Henrik
Schiøler

Cluster
configuration

Matlab

+ + =
Controller

The controller

● Produces an nxn matrix where
– pij is the probability for node i stealing a
state from node j.

Henrik
Schiøler

Cluster
configuration

Matlab

+ + =
Controller

Controller

+
UPPAAL

=
Happy users

&

Homogeneous clusters

The traditional algorithm is an instance
of the new algorithm, where all states
are stolen.

Load balancing homogeneous clusters

PDMC 2002,
STTT 2003

Load balancing homogeneous clusters

● Was thought to be TA specific, but

● Similar effects have been observed by
– Kumar and Mercer, PDMC 2004
– Jiri Barnat

● Why and why now?

Load balancing homogeneous clusters

˙explored 1=f CPU1 ,
1
2 ˙gen2 ,∣Wait1∣

˙gen1=f ' ˙explored 1

˙∣Wait 1∣=
1
2  ˙gen1 ˙gen2− ˙exp1

˙explored2=f CPU2 ,
1
2 ˙gen1 ,∣Wait2∣

˙gen2=f ' ˙explored2

˙∣Wait2∣=
1
2  ˙gen1 ˙gen2− ˙exp2

Positive feedback loop

exp1 exp2

gen1

gen2

∣wait1∣ ∣wait2∣

+

+

-

-

+
-

-

Positive feedback loop

exp1 exp2

gen1

gen2

∣wait1∣ ∣wait2∣

+

+

-

-

+

+

+ +

+

-

-

Positive feedback loop

exp1 exp2

gen1

gen2

∣wait1∣ ∣wait2∣

+

+

-

-

+

+

+ +

+

rec2

rec1
+

+
-

-

Positive feedback loop

exp1 exp2

gen1

gen2

∣wait1∣ ∣wait2∣

+

+

-

-

+
-

-
+

+ +

+

rec2

rec1
+

+

+

+

+
+

What changed since the early days?

● Cluster of workstations rather than
parallel machines.

● CPU speed
● Network bandwidth
● Network latency

Lesson learned?

● Problems related to control theory and
systems dynamics.

● We must analyse the stability of our
systems.

● The load balancing scheme for the
heterogenous setup seems to work very
well for the homogeneous setup.

