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Overview

probabilistic systems

LTL model checking of probabilistic systems

accepting end components

sequential algorithms

distributed algorithm for qualitative model checking



Probabilistic systems

Markov chain

(finite state) sequential probabilistic program

Markov decision process

concurrent probabilistic program
probability and nondeterminism
each state is associated a set of possible actions
choice of the action is nondeterministic
the choosen action determines the transition probability
disribution for the successor states



Markov decision process



Markov decision process - polices

Policy

resolves the nondeterminism in states
reduces the system to ordinary stochastic system
(to reason about probability of events of interest)
history dependent, deterministic polices



Qualitative model checking of LTL properties

Markov chain

program is correct if the specification is satisfied with probability
one

Markov decision process

program is correct if meets the specification with probability one
for all polices



Quantitative model checking of LTL properties

Markov chain

the exact probability that the program satisfies the specification

Markov decision process

maximal (resp. minimal) probability represents the probability
that the program meets the specification provided that the
nondeterministic choices are as favorable (resp. unfavorable)
as possible



Qualitative verification - complexity

Given MDP M and LTL formula f

Markov chain

O(|M| ·2|O(f )|)

Courcobetis, Yannakakis, 1995; Bustan, Rubin, Vardi, 2004

Markov decision process

O(|M|2 ·22|O(f )|
)

Courcobetis, Yannakakis, 1995



Qualitative verification - algorithms

transform ¬f into a deterministic ω-automaton A
product MDP M ×A
calculate accepting end components (AEC) in M ×A
existence of a reachable AEC implies the existence of a
policy under which f holds with positive probability

end component is a set of states that can be repeated
infinitely often along a path with nonzero probability
end component is accepting if the accepting condition of
ω-automaton A holds



Accepting end component

Product MDP viewed as a graph

end component is a strongly connected component closed
under probabilistic transitions

accepting condition for deterministic Rabin automaton is a
collection of pairs of sets of states

[(L1,U1), . . . ,(Lk ,Uk )]

End component C is accepting iff for some i we have

C∩Li 6= /0 and C∩Ui = /0



Example



Reachability of AEC - sequential algorithm

For every pair (L,U)
decompose G into maximal SCC
iterate

If a component Q is not closed under probabilistic
transitions then delete the bad states from G and
recompute the decomposition.

If a component Q does not contain any L-state then delete
all states in Q from G.

If a component Q contains both states from L and U then
delete the U-states from G and recompute the
decomposition.

The final decomposition consists of all AEC.

Complexity O(n · (n +m))



Reachability of AEC - sequential vs distributed
algorithm

Sequential setting

decomposition into strongly connected components

Distributed setting

reachability ??



Reachability of AEC

Fix a pair (L,U)

Elimination criterion

if
no L-state is “safely” reachable from state

or
out-degree of state is zero

then the state does not belong to AEC



Reachability of AEC - distributed algorithm

For every pair (L,U)

iterate

� mark all states from which an L-state is reachable
along a path without any U-states

� eliminate all unmarked states

� recursively eliminate

� states with zero out-degree

� incomplete probabilistic transitions

until stabilization

If the resulting graph is nonempty there is a reachable AEC



Example



Example - cont.



Example - cont.



Example - cont.



Example - cont.



Reachability of AEC - time complexity

A - property automaton, M - MDP, M ⊗A - product automaton

For every pair (L,U) |A|
iterate |M ⊗A|

� mark all states from which an L-state is reachable
along a path without any U-states |M ⊗A|

� eliminate all unmarked states |M ⊗A|
� recursively eliminate |M ⊗A|

� states with zero out-degree

� incomplete probabilistic transitions

until stabilization

O(|A| · (|M ⊗A| · |M ⊗A|) = O(|M|2 ·22O(|f |)
)



Reachability of AEC - time complexity

Time complexity for Markov chains

O(|M| ·22O(|f |)
)



Reachability of AEC - space complexity

Space complexity

O(|M ⊗A|)

reversed edges



Future work

identification of all AEC based on reachability
quantitative questions
is nondeterminism unavoidable?
implementation, DiVinE


