Distributed LTL Model Checking of Probabilistic Systems

Jiří Barnat, Luboš Brim, Ivana Černá

Faculty of Informatics Masaryk University Brno

SENVA 2006

- probabilistic systems
- LTL model checking of probabilistic systems
- accepting end components
- sequential algorithms
- distributed algorithm for qualitative model checking

Markov chain

(finite state) sequential probabilistic program

Markov decision process

concurrent probabilistic program

- probability and nondeterminism
- each state is associated a set of possible actions
- choice of the action is nondeterministic
- the choosen action determines the transition probability disribution for the successor states

Markov decision process

Policy

- resolves the nondeterminism in states
- reduces the system to ordinary stochastic system (to reason about probability of events of interest)
- history dependent, deterministic polices

Markov chain

program is correct if the specification is satisfied with probability one

Markov decision process

program is correct if meets the specification with probability one for all polices

Markov chain

the exact probability that the program satisfies the specification

Markov decision process

maximal (resp. minimal) probability represents the probability that the program meets the specification provided that the nondeterministic choices are as favorable (resp. unfavorable) as possible

Given MDP *M* and LTL formula *f*

Markov chain

 $O(|\pmb{M}|\cdot \pmb{2}^{|O(f)|})$

Courcobetis, Yannakakis, 1995; Bustan, Rubin, Vardi, 2004

Markov decision process

$$O(|\boldsymbol{M}|^2 \cdot 2^{2^{|\mathcal{O}(f)|}})$$

Courcobetis, Yannakakis, 1995

Qualitative verification - algorithms

- transform $\neg f$ into a deterministic ω -automaton A
- product MDP $M \times A$
- **c**alculate accepting end components (AEC) in $M \times A$
- existence of a reachable AEC implies the existence of a policy under which *f* holds with positive probability

- end component is a set of states that can be repeated infinitely often along a path with nonzero probability
- end component is accepting if the accepting condition of ω-automaton A holds

Product MDP viewed as a graph

end component is a strongly connected component closed under probabilistic transitions

accepting condition for deterministic Rabin automaton is a collection of pairs of sets of states

 $[(L_1, U_1), \ldots, (L_k, U_k)]$

End component C is accepting iff for some i we have

 $C \cap L_i \neq \emptyset$ and $C \cap U_i = \emptyset$

For every pair (L, U)

- decompose G into maximal SCC
- iterate
 - If a component Q is not closed under probabilistic transitions then delete the bad states from G and recompute the decomposition.
 - If a component Q does not contain any L-state then delete all states in Q from G.
 - If a component Q contains both states from L and U then delete the U-states from G and recompute the decomposition.

The final decomposition consists of all AEC.

Complexity $O(n \cdot (n+m))$

Reachability of AEC - sequential vs distributed algorithm

Sequential setting

decomposition into strongly connected components

Distributed setting

reachability ??

Fix a pair (L, U)

```
Elimination criterion
if

no L-state is "safely" reachable from state or
out-degree of state is zero
```

then the state does not belong to AEC

Reachability of AEC - distributed algorithm

For every pair (L, U)

iterate

mark all states from which an L-state is reachable along a path without any U-states

eliminate all unmarked states

recursively eliminate

states with zero out-degree

incomplete probabilistic transitions

until stabilization

If the resulting graph is nonempty there is a reachable AEC

Reachability of AEC - time complexity

A - property automaton, *M* - MDP, $M \otimes A$ - product automaton For every pair (L, U) |A|

iterate $|M \otimes A|$

■ mark all states from which an *L*-state is reachable along a path without any *U*-states $|M \otimes A|$

eliminate all unmarked states $|M \otimes A|$

recursively eliminate $|M \otimes A|$

states with zero out-degree

incomplete probabilistic transitions

until stabilization

 $O(|\mathbf{A}| \cdot (|\mathbf{M} \otimes \mathbf{A}| \cdot |\mathbf{M} \otimes \mathbf{A}|) = O(|\mathbf{M}|^2 \cdot 2^{2^{O(|f|)}})$

Time complexity for Markov chains

 $O(|\boldsymbol{M}| \cdot 2^{2^{O(|f|)}})$

Space complexity

 $\mathcal{O}(|\boldsymbol{M}\otimes \boldsymbol{A}|)$

reversed edges

- identification of all AEC based on reachability
- quantitative questions
- is nondeterminism unavoidable?
- implementation, DiVinE