
State Space Reduction for
Process Algebra Specifications

Hubert Garavel & Wendelin Serwe

INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint-Martin
http://www.inrialpes.fr/vasy

VASY 2

Context
• CADP: a European verification toolbox

– 350 licenses, 80 case studies, 17 tools using CADP
– http://www.inrialpes.fr/vasy/cadp

• LOTOS: international standard (ISO 8807)
– Based on algebraic methodology
– Abstract data types and process algebra

• LOTOS-Compilers of CADP
– CAESAR.ADT (data types), CAESAR (processes)
– Generation of labeled transition systems (graphs)
– Used in 40 demos and 60 case-studies

VASY 3

Enumerative Verification
• Classical problem: state explosion
• Several techniques – here resetting variables
• [Graf-Richier-Rodríguez-Voiron 1989]:

Manual insertion of resets in an imperative language

• Example: “READ ?X:bit; SEND !X; stop”

X = ⊥

X = 0

X = 0

X = 1

X = 1

READ !0

SEND !0 SEND !1

READ !1
X = ⊥

X = 0 X = 1

READ !0

SEND !0
reset X

SEND !1
reset X

READ !1

X = ⊥

without reset with reset

VASY 4

Resetting Variables (1/3)
• Manual insertion of resets

Error-prone and impossible in “assign-once” languages

•[Garavel 1992]
– Translate LOTOS to structured Petri nets with variables

– “Syntactic criterion”:
reset variables if places of a process loose their token

– Significant state space reduction (CAESAR 4.2)

process
algebra

network model
graph

process
algebra

network model
with resets

smaller
graph

VASY 5

Resetting Variables (2/3)
•[Galvez-Garavel 1993] (MSc thesis, Grenoble)

– Attempt of a more precise analysis
– Local and global data-flow analysis
– Automatic insertion of resets
– Successful state space reduction

But: errors in a small number of examples
Strong bisimulation is not preserved!
Reason not understood ⇒ not embedded in CAESAR

•Our goals
– Understanding of the errors
– Solution

VASY 6

Resetting Variables (3/3)
Related work
•[Dong-Ramakrishnan 1999]

– Same syntactic criterion as CAESAR
– Removing variables instead of resetting variables

•[Holzmann 1999]
– Imperative language
– Simpler model: flat collection of processes

•[Bozga-Fernandez-Ghirvu 1999]
– Simpler model: flat collection of processes
–Provides correctness proofs

VASY 7

Network Model of CAESAR

VASY 8

Network Model of CAESAR (1/2)
Structured Petri Nets
• Places
• Transitions
• Units

– Partition of the places
– Subunit relation: ⊆

Properties of units
– Tree shaped hierarchy
– At most 1 marked place
– U1 and U2 ⊆ U1 are not

marked simultaneously

VASY 9

Network Model of CAESAR (2/2)
Typed variables
• Attached to units
• Modified by transitions:

Action A, offer O, guard W, reaction R

Properties of variables
•Variables are defined before used
•Shared variables are read-only

In the LOTOS behavior: “G ?X:S; (P1 ||| P2)”
– “X” can be read by “P1” and “P2”
– “X” cannot be modified by “P1” or “P2”

T
A

W
G Oi

R

VASY 10

Local Data-Flow Analysis

VASY 11

Local Data-Flow Analysis
• Intra-transition
• Predicates on transition T and variable X

defined by structural induction on T (i.e., A, O, W, R)
– use(T, X): value of X accessed by T
– def(T, X): value of X defined at the end of T
– use_before_def(T, X): value of X accessed at the

beginning of T, i.e., before a possible redefinition

• Example

T READ ?VALUE

when VALUE > COUNT

COUNT := COUNT+1 def(T, COUNT), def(T, VALUE)
use(T, COUNT), use(T, VALUE)
use_before_def(T, COUNT)

VASY 12

Global Data-Flow Analysis

VASY 13

Global Data-Flow Analysis
• Inter-transition: combine local results
• Classically (sequential programs)

compute fixed point on (control-flow) graph

• Principal difference: Concurrency
Petri nets instead of graphs

• Idea: abstract Petri nets to graphs
– Nodes: transitions
– Arcs: successor relation “T1 → T2”

VASY 14

Abstracting Networks to Graphs
Several possibilities:
• Good precision: based on reachable markings

– “T1 →M T2” iff exists firable sequence “…, T1, T2”
– State explosion possible

• Poor precision: connection by places
– “T1 → T2” iff (∃ Q) Q output of T1 and Q input of T2

– Simple, but imprecise

• Improvement: analyze variables one by one
– “T1 →X T2” iff (∃ Q) as above and Q in unit of X
– Chosen approach

VASY 15

Global Data-Flow Predicates
live(T0, X) iff
(∃ T0 →X … →X Tn)

use_before_def(Tn, X)
and
(∀ i ∈ {1, …, n-1})

¬def(Ti, X)

Backward fixed point

available(Tn, X) iff
(∃ T0 →X … →X Tn)

def(T0, X)
and
(∀ i ∈ {0, …, n-1})

live(Ti, X)

Forward fixed point

reset(T, X) iff available(T, X) and ¬live(T, X)

VASY 16

Treatment of
Inherited Shared Variables

VASY 17

Resetting Shared Variables (1/3)
READ ?X: bit;

(SEND1 !X; stop ||| SEND2 !X; stop)

correct graph
(without resets)

X = ⊥

X = 0 X = 1

X = 0

X = 0 X = 0

X = 1

X = 1X = 1

READ !1

SEND2 !0

SEND1 !0
SEND1 !1

SEND2 !1

READ !0

SEND2 !0

SEND1 !0
SEND1 !1

SEND2 !1

incorrect graph
(with resets; ⊥ = 0)

X = ⊥

X = 0 X = 1

X = 0

X = 0 X = 0

READ !1

SEND2 !0

SEND1 !0

SEND2 !1

READ !0

SEND2 !0

SEND1 !0

SEND1 !1

VASY 18

Resetting Shared Variables (2/3)
READ ?X:bit;

(SEND1 !X; stop ||| SEND2 !X; stop)

T2 T3SEND1 !X

G ?X:bitT1

reset X

SEND2 !X

reset X

• Without resets, shared variables are read-only
• Inserting resets creates read/write(reset) conflicts

VASY 19

Resetting Shared Variables (3/3)
Solution: Duplication of “X” in unit “U”

– Create a new variable X’ attached to U
– Replace X by X’ in all transitions of U
– Insert “X’:= X” in all T entering U s.t. Live(T, X)

T2 T3SEND1 !X

G ?X:bitT1

reset X
SEND2 !X’
reset X’

X’:= X

VASY 20

Which Variables to Duplicate? (1/2)
• Variable duplication increases the

representation of a state!
• Goal: minimal number of duplicated variables

• Concurrent Units: “U1 ||| U2”
U1, U2 separate and simultaneously marked

• Conflict use(T1, X) versus reset(T2, X) iff
T1 transition of U1, T2 transition of U2, and U1 ||| U2

Too rough!

VASY 21

Which Variables to Duplicate? (2/2)
• use(T2, X), use(T3, X),

use(T4, X)
• reset(T4, X)
• T2 transition of U1

• T3 transition of U2

• T4 transition of U1 and U2

• U1 ||| U2

Conflict T2 (T3) with T4?
NO:
• T4 synchronizes U1, U2

• “reset X” in T4 correct

T2 T3
H !X K !X

G ?X:bitT1

G !X
reset X

T4

U1 U2

T5 exit

VASY 22

Algorithm
compute concurrent units and synchronizing transitions
VARS := { X1 … Xn }
while VARS not empty do

choose X in VARS
repeat

compute local and global data-flow
compute conflicts
U := choose conflicting unit
if U <> NULL then

duplicate X in U (yields X’)
VARS := VARS ∪ { X’}

until U = NULL (i.e., no more conflicts)
insert “reset X” in all T such that “reset(T, X)”

VASY 23

Experimental Results

VASY 24

Experimental Results
• Tests: 544 LOTOS value-passing specifications
• State space reduction for 120 examples (22%)
• Average reduction factors

States: 9 (max 220), Transitions: 12 (max 360)

• 3 examples: generation impossible before
reduction factor > 104

• Generating all graphs: 4 times faster
• Only 24 examples (4%) requiring duplication
• Increase of state representation outweighed

by state space reduction

VASY 25

Conclusion
• Resetting variables in process algebra

– Translation to structured Petri nets with variables
– Local and global data-flow analysis

• Rich model: Hierarchy of nested processes
• Tests on 544 examples: reductions up to 104

Open issues
• Unrestricted creation/destruction of processes
• Handling of shared read-write variables

