

a ppor t

d ' c t i v i t é

2 0 0 5

THEME COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Project-Team VASY

Validation of Systems

Rhône-Alpes

Project-Team VASY 1

Contents

1 Team 3

2 Overall Objectives 3

2.1 Introduction . 3

2.2 Models and Verification Techniques . 4

2.3 Languages and Compilation Techniques . 5

2.4 Implementation and Experimentation . 6

3 Application Domains 6

4 Software 7

4.1 The CADP Toolbox . 7

4.2 The TRAIAN Compiler . 9

5 New Results 10

5.1 Models and Verification Techniques . 10

5.1.1 The CÆSAR SOLVE Library . 10

5.1.2 The BISIMULATOR Tool . 10

5.1.3 The EVALUATOR Tool . 12

5.1.4 The REDUCTOR Tool . 13

5.1.5 Compositional Verification Tools . 14

5.1.6 Parallel and Distributed Verification Tools 15

5.1.7 Other Tool Developments . 17

5.2 Languages and Compilation Techniques . 18

5.2.1 Compilation of LOTOS . 18

5.2.2 Compilation of E-LOTOS . 19

5.2.3 Source-Level Translations between Process Algebras 19

5.3 Case Studies and Practical Applications . 20

6 Contracts and Grants with Industry 23

6.1 The IST ArchWare European Contract . 23

6.2 The FormalFame Plus Contract . 24

6.3 The Topcased project . 25

6.4 Forthcoming Projects . 25

7 Other Grants and Activities 26

7.1 National Collaborations . 26

7.2 International Collaborations . 27

7.3 Visits and Invitations . 28

8 Dissemination 28

8.1 Software Dissemination and Internet Visibility 28

8.2 Program Committees . 29

8.3 Lectures and Invited Conferences . 30

8.4 Teaching Activities . 31

8.5 Miscellaneous Activities . 32

2 Activity report INRIA 2005

9 Bibliography 33

Project-Team VASY 3

1 Team

Head of Team

Hubert Garavel [DR2 Inria]

Administrative Assistant

Elodie Toihein

Inria Staff

Radu Mateescu [CR1 Inria]

Frédéric Lang [CR1 Inria]

Wendelin Serwe [CR2 Inria]

Software Engineers

Damien Bergamini [until January 30, 2005]

David Champelovier

Post-Doctoral Fellow

Gwen Salaün

Ph. D. Student

Christophe Joubert

Student Interns

Jerôme Fereyre [Cnam Grenoble, since November 30, 2005]

Nathalie Lépy [Cnam Grenoble, since November 1st, 2005]

Abdul Malik Khan [Université Joseph Fourier (Grenoble), since November 1st, 2005]

2 Overall Objectives

2.1 Introduction

Created on January 1st, 2000, the Vasy project focuses on formal methods for the design of
reliable systems.

We are interested in any system (hardware, software, telecommunication) that comprises
asynchronous concurrency, i.e., any system whose behavior can be modeled as a set of parallel
processes governed by interleaving semantics.

4 Activity report INRIA 2005

For the design of reliable systems, we advocate the use of formal description techniques to-
gether with software tools for simulation, rapid prototyping, verification, and test generation.

Among all existing verification approaches, we focus on enumerative verification (also known
as explicit state verification) techniques. Although less general than theorem proving, these
techniques enable an automatic, cost-efficient detection of design errors in complex systems.

Our research combines two main directions in formal methods, the model-based and the
language-based approaches:

• Models provide mathematical representations for parallel programs and related verifica-
tion problems. Examples of models are automata, networks of communicating automata,
Petri nets, binary decision diagrams, boolean equation systems, etc. From a theoreti-
cal point of view, research on models seeks for general results, independently from any
particular description language.

• In practice, models are often too elementary to describe complex systems directly (this
would be tedious and error-prone). Higher level formalisms are needed for this task, as
well as compilers that translate high level descriptions into models suitable for verifica-
tion algorithms.

To verify complex systems, we believe that model issues and language issues should be mas-
tered equally.

2.2 Models and Verification Techniques

By verification, we mean comparison — at some abstraction level — of a complex system
against a set of properties characterizing the intended functioning of the system (for instance,
deadlock freedom, mutual exclusion, fairness, etc.).

Most of the verification algorithms we develop are based on the labeled transition systems (or,
simply, automata or graphs) model, which consists of a set of states, an initial state, and a
transition relation between states. This model is often generated automatically from high level
descriptions of the system under study, then compared against the system properties using
various decision procedures. Depending on the formalism used to express the properties, two
approaches are possible:

• Behavioral properties express the intended functioning of the system in the form of au-
tomata (or higher level descriptions, which are then translated into automata). In such
a case, the natural approach to verification is equivalence checking, which consists in
comparing the system model and its properties (both represented as automata) modulo
some equivalence or preorder relation. We develop equivalence checking tools that com-
pare and minimize automata modulo various equivalence and preorder relations; some
of these tools also apply to stochastic and probabilistic models (such as Markov chains).

• Logical properties express the intended functioning of the system in the form of temporal
logic formulas. In such a case, the natural approach to verification is model checking,
which consists in deciding whether the system model satisfies or not the logical proper-
ties. We develop model checking tools for a powerful form of temporal logic, the modal

Project-Team VASY 5

µ-calculus, which we extend with typed variables and expressions so as to express pred-
icates over the data contained in the model. This extension (the practical usefulness
of which was highlighted in many examples) provides for properties that could not be
expressed in the standard µ-calculus (for instance, the fact that the value of a given
variable is always increasing along any execution path).

Although these techniques are efficient and automated, their main limitation is the state
explosion problem, which occurs when models are too large to fit in computer memory. We
provide software technologies (see § 4.1) for handling models in two complementary ways:

• Small models can be represented explicitly, by storing in memory all their states and
transitions (exhaustive verification);

• Larger models are represented implicitly, by exploring only the model states and transi-
tions needed for the verification (on the fly verification).

2.3 Languages and Compilation Techniques

Our research focuses on high level languages with an executable and formal semantics. The
former requirement stems from enumerative verification, which relies on the efficient execution
of high level descriptions. The latter requirement states that languages lacking a formal
semantics are not suitable for safety critical systems (as language ambiguities usually lead
to interpretation divergences between designers and implementors). Moreover, enumerative
techniques are not always sufficient to establish the correctness of an infinite system (they
only deal with finite abstractions); one might need theorem proving techniques, which only
apply to languages with a formal semantics.

We are working on several languages with the above properties:

• Lotos is an international standard for protocol description (Iso/Iec standard
8807:1989), which combines the concepts of process algebras (in particular Ccs and
Csp) and algebraic abstract data types. Thus, Lotos can describe both asynchronous
concurrent processes and complex data structures. We use Lotos for various indus-
trial case studies and we develop Lotos compilers, which are part of the Cadp toolbox
(see § 4.1).

• Between 1992 and 2001, we contributed to the revision of Lotos undertaken within
Iso. This led to the definition of E-Lotos (Enhanced -Lotos, Iso/Iec standard
15437:2001), which tries to provide a greater expressiveness (for instance, by introduc-
ing quantitative time to describe systems with real-time constraints) together with a
better user friendliness. Our contributions to E-Lotos are available on the Web (see
http://www.inrialpes.fr/vasy/elotos).

• We are also working on an E-Lotos variant, named Lotos NT (Lotos New Technol-
ogy) [8, 13], in which we can experiment new ideas more freely than in the constrained
framework of an international standard. Like E-Lotos, Lotos NT consists of three
parts: A data part, which allows the description of data types and functions, a process
part, which extends the Lotos process algebra with new constructs such as exceptions

6 Activity report INRIA 2005

and quantitative time, and modules, which provide for structure and genericity. Both
languages differ in that Lotos NT combines imperative and functional features, and
is also simpler than E-Lotos in some respects (static typing, operator overloading, ar-
rays), which should make it easier to implement. We are developing for Lotos NT a
prototype compiler named Traian (see § 4.2).

2.4 Implementation and Experimentation

As much as possible, we try to validate our results by developing tools that we apply to
complex (often industrial) case studies. Such a systematic confrontation to implementation
and experimentation issues is central to our research.

3 Application Domains

The theoretical framework we use (automata, process algebras, bisimulations, temporal logics,
etc.) and the software tools we develop are general enough to fit the needs of many application
domains. They are virtually applicable to any system or protocol made of distributed agents
communicating by asynchronous messages. The list of recent case studies performed with the
Cadp toolbox (see in particular § 5.3) illustrates the diversity of applications:

• Hardware architectures: asynchronous circuits, bus arbitration protocols, cache co-
herency protocols, hardware/software codesign;

• Databases: transaction protocols, distributed knowledge bases, stock management;

• Consumer electronics: audiovisual remote control, video on-demand, FireWire bus,
home networking;

• Security protocols: authentication, electronic transactions, cryptographic key distribu-
tion;

• Embedded systems: smart-card applications, air traffic control;

• Distributed systems: virtual shared memory, distributed file systems, election algorithms,
dynamic reconfiguration algorithms, fault tolerance algorithms;

• Telecommunications: high speed networks, network management, mobile telephony, fea-
ture interaction detection;

• Human-machine interaction: graphical interfaces, biomedical data visualization, etc.

Project-Team VASY 7

4 Software

4.1 The CADP Toolbox

Participants: Damien Bergamini, David Champelovier, Hubert Garavel [contact person],
Christophe Joubert, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

We maintain and enhance Cadp (Construction and Analysis of Distributed Processes – for-
merly known as Cæsar/Aldébaran Development Package), a toolbox for protocols and
distributed systems engineering (see http://www.inrialpes.fr/vasy/cadp). In this tool-
box, we develop the following tools:

• Cæsar.adt [11] is a compiler that translates Lotos abstract data types into C types
and C functions. The translation involves pattern-matching compiling techniques and
automatic recognition of usual types (integers, enumerations, tuples, etc.), which are
implemented optimally.

• Cæsar [7] is a compiler that translates Lotos processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purpose). The trans-
lation is done using several intermediate steps, among which the construction of a Petri
net extended with typed variables, data handling features, and atomic transitions.

• Open/Cæsar [12] is a generic software environment for developing tools that explore
graphs on the fly (for instance, simulation, verification, and test generation tools). Such
tools can be developed independently from any particular high level language. In this
respect, Open/Cæsar plays a central role in Cadp by connecting language-oriented
tools with model-oriented tools. Open/Cæsar consists in a set of 16 code libraries with
their programming interfaces, such as:

– Caesar Graph, which provides the programming interface for graph exploration,

– Caesar Hash, which contains several hash functions,

– Caesar Solve, which resolves boolean equation systems on the fly,

– Caesar Stack, which implements stacks for depth-first search exploration,

– Caesar Table, which handles tables of states, transitions, labels, etc.

A number of tools have been developed within the Open/Cæsar environment, among
which:

– Bisimulator, which checks bisimulation equivalences and preorders on the fly,

– Determinator, which eliminates nondeterminism in normal, probabilistic, or
stochastic systems,

– Distributor, which generates the graph of reachable states using several ma-
chines,

– Evaluator, which evaluates regular alternation-free µ-calculus formulas,

– Executor, which performs random execution,

8 Activity report INRIA 2005

– Exhibitor, which searches for execution sequences matching a given regular ex-
pression,

– Generator, which constructs the graph of reachable states,

– Projector, which computes abstractions of communicating systems,

– Reductor, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– Simulator, Xsimulator, and Ocis, which allow interactive simulation, and

– Terminator, which searches for deadlock states.

• Bcg (Binary Coded Graphs) is both a file format for storing very large graphs on disk
(using efficient compression techniques) and a software environment for handling this
format. Bcg also plays a key role in Cadp as many tools rely on this format for
their inputs/outputs. The Bcg environment consists of various libraries with their
programming interfaces, and of several tools, such as:

– Bcg Draw, which builds a two-dimensional view of a graph,

– Bcg Edit, which allows to modify interactively the graph layout produced by
Bcg Draw,

– Bcg Graph, which generates various forms of practically useful graphs,

– Bcg Info, which displays various statistical information about a graph,

– Bcg Io, which performs conversions between Bcg and many other graph formats,

– Bcg Labels, which hides and/or renames (using regular expressions) the transi-
tion labels of a graph,

– Bcg Merge, which gathers graph fragments obtained from distributed graph con-
struction,

– Bcg Min, which minimizes a graph modulo strong or branching equivalences (and
can also deal with probabilistic and stochastic systems),

– Bcg Steady, which performs steady-state numerical analysis of (extended)
continuous-time Markov chains,

– Bcg Transient, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

– Xtl (eXecutable Temporal Language), which is a high level, functional language
for programming exploration algorithms on Bcg graphs. Xtl provides primitives
to handle states, transitions, labels, successor and predecessor functions, etc. For
instance, one can define recursive functions on sets of states, which allow to spec-
ify in Xtl evaluation and diagnostic generation fixed point algorithms for usual
temporal logics (such as Hml [HM85], Ctl [CES86], Actl [NV90], etc.).

[HM85] M. Hennessy, R. Milner, “Algebraic Laws for Nondeterminism and Concurrency”, Journal of
the ACM 32, 1985, p. 137–161.

[CES86] E. M. Clarke, E. A. Emerson, A. P. Sistla, “Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications”, ACM Transactions on Programming Languages
and Systems 8, 2, April 1986, p. 244–263.

[NV90] R. D. Nicola, F. W. Vaandrager, Action versus State Based Logics for Transition Systems,
Lecture Notes in Computer Science, 469, Springer Verlag, 1990, p. 407–419.

Project-Team VASY 9

• The connection between explicit models (such as Bcg graphs) and implicit models (ex-
plored on the fly) is ensured by Open/Cæsar-compliant compilers, e.g.:

– Cæsar.Open, for models expressed as Lotos descriptions,

– Bcg Open, for models represented as Bcg graphs,

– Exp.Open, for models expressed as communicating automata, and

– Seq.Open, for models represented as sets of execution traces.

The Cadp toolbox also includes additional tools, such as Aldébaran and Tgv (Test Gen-
eration based on Verification) developed by the Verimag laboratory (Grenoble) and the
Vertecs team of Inria Rennes.

The Cadp tools are well-integrated and can be accessed easily using either the Eucalyptus
graphical interface or the Svl [3] scripting language. Both Eucalyptus and Svl provide
users with an easy, uniform access to the Cadp tools by performing file format conversions
automatically whenever needed and by supplying appropriate command-line options as the
tools are invoked.

4.2 The TRAIAN Compiler

Participants: David Champelovier, Hubert Garavel [contact person], Frédéric Lang.

We develop a compiler named Traian for translating descriptions written in the Lotos NT
language (see § 2.3) into C programs, which will be used for simulation, rapid prototyping,
verification, and testing.

The current version of Traian performs lexical analysis, syntactic analysis, abstract syntax
tree construction, static semantics analysis, and C code generation for Lotos NT types and
functions.

Although this version of Traian is still incomplete (it does not handle Lotos NT processes),
it already has useful applications in compiler construction [2]. The recent compilers developed
by the Vasy team — namely Aal (see § 6.1), Chp2Lotos (see § 5.2.3), Evaluator 4.0,
Exp.Open 2.0 (see § 5.1.5), Ntif (see § 5.2.2), and Svl (see § 5.1.5) — all contain a large
amount of Lotos NT code, which is then translated into C code by Traian.

Our approach consists in using the Syntax tool (developed at Inria Rocquencourt) for lexical
and syntactic analysis together with Lotos NT for semantical aspects, in particular the
definition, construction, and traversals of abstract trees. Some involved parts of the compiler
can also be written directly in C if necessary. The combined use of Syntax, Lotos NT, and
Traian proves to be satisfactory, as regards both the rapidity of development and the quality
of resulting compilers.

The Traian compiler can be freely downloaded from the Vasy Web site (see http://www.

inrialpes.fr/vasy/traian).

10 Activity report INRIA 2005

5 New Results

5.1 Models and Verification Techniques

5.1.1 The CÆSAR SOLVE Library

Participant: Radu Mateescu.

Cæsar Solve is a generic software library for solving boolean equation systems of alternation
depth 1 (i.e., without mutual recursion between minimal and maximal fixed point equations)
on the fly. This library is at the core of several Cadp verification tools, namely the equivalence
checker Bisimulator (see § 5.1.2), the model checker Evaluator 3.5 (see § 5.1.3), and the
minimization tool Reductor 4.0 (see § 5.1.4). The resolution method is based on boolean
graphs, which provide an intuitive representation of dependencies between boolean variables,
and which are handled implicitly, in a way similar to the Open/Cæsar interface [12].

The Cæsar Solve library provides four different resolution algorithms: A1 and A2 are general
algorithms based upon depth-first, respectively breadth-first, traversals of boolean graphs; A3
and A4 are optimized for the case of acyclic, respectively disjunctive/conjunctive, boolean
graphs; they are based upon memory-efficient depth-first traversals of boolean graphs. All
these algorithms can generate diagnostics explaining why a result is true or false (examples
and counterexamples).

In 2005, the Cæsar Solve library (11, 600 lines of C code) was extended and improved as
follows:

• The library interface was enhanced with new types and functions to facilitate the defini-
tion of boolean equation systems. Also, a bug was corrected in the diagnostic generation
mechanism of algorithm A2.

• A new resolution algorithm A5 was added to the library. This algorithm, based upon
a depth-first search of the boolean graph, improves over algorithms A1–A4 by perform-
ing an early detection of examples (resp. counterexamples) in greatest (resp. least)
fixed point equation blocks. This detection is based upon a generalization of Tarjan’s
algorithm for computing strongly connected components. Algorithm A5 proves to be
much faster (between one and two orders of magnitude) than all the other algorithms of
Cæsar Solve when it is invoked many times on the same equation block, e.g., for de-
tecting τ -confluent or redundant transitions during the on the fly reductions performed
by the Reductor tool (see § 5.1.4).

A journal paper about the Cæsar Solve library was accepted for publication [21].

5.1.2 The BISIMULATOR Tool

Participants: David Champelovier, Radu Mateescu.

Bisimulator is an equivalence checker, which takes as input two graphs to be compared (one
represented implicitly using the Open/Cæsar environment, the other represented explicitly

Project-Team VASY 11

as a Bcg file) and determines whether they are equivalent (modulo a given equivalence re-
lation) or whether one of them is included in the other (modulo a given preorder relation).
Bisimulator works on the fly, meaning that only those parts of the implicit graph pertinent
to verification are explored. Due to the use of Open/Cæsar, Bisimulator can be applied
directly to descriptions written in high level languages (for instance, Lotos). This is a sig-
nificant improvement compared to older tools (such as Aldébaran and Fc2Implicit) which
only accepted lower level models (networks of communicating automata).

Bisimulator works by reformulating the graph comparison problem in terms of a boolean
equation system, which is solved on the fly using the Cæsar Solve library (see § 5.1.1).
A useful functionality of Bisimulator is the generation of a “negative” diagnostic (i.e., a
counterexample), which explains why two graphs are not equivalent (or not included one in
the other). The diagnostics generated by Bisimulator are directed acyclic graphs and are
usually much smaller than those generated by other tools (such as Aldébaran) that can only
generate counterexamples restricted to sets of traces.

In 2005, we continued the development of the Bisimulator tool (15, 300 lines of C code):

• The tool was enhanced with comparisons modulo the trace equivalence relation, the weak
trace equivalence relation (which considers only visible transitions), and their associated
preorder relations. The generation of counterexamples for these equivalences and their
preorders was also implemented.

• The encoding of branching equivalence in terms of boolean equation systems was en-
hanced in order to reduce the number of τ -closures (transitive reflexive closures over
τ -transitions) computed when one of the states being compared does not have outgoing
τ -transitions. The new encoding allows to identify on the fly the cases when branch-
ing equivalence becomes identical to τ ∗.a equivalence, and to simplify the equations
accordingly. This can reduce the number of boolean variables by up to 40%.

• Bisimulator was coupled with the Ocis interactive simulator in order to allow a sce-
nario contained in a Bcg graph to be replayed interactively during the current Ocis
simulation session. Typically, the Bcg graph can be either a simulation scenario previ-
ously explored and saved using Ocis, or an execution trace produced by Exhibitor or
Executor, or a diagnostic generated by Evaluator (see § 5.1.3) for a temporal logic
property. Bisimulator allows Ocis to determine whether this Bcg graph is a subset
or not of the graph being explored during the current Ocis session, which amounts to
checking graph inclusion modulo the preorder associated to strong equivalence. If so, a
“positive” diagnostic (i.e., an example) is generated, which can be subsequently read and
replayed by Ocis as an ordinary simulation scenario. This feature required the genera-
tion of “positive” diagnostics by Bisimulator, which so far only generated “negative”
ones.

The Bisimulator tool led to a publication [23].

12 Activity report INRIA 2005

5.1.3 The EVALUATOR Tool

Participant: Radu Mateescu.

Evaluator is a model checker that evaluates a temporal logic property on a graph repre-
sented implicitly using the Open/Cæsar environment. Properties are described in regular
alternation-free µ-calculus, a logic built from boolean operators, possibility and necessity
modalities containing regular expressions denoting transition sequences, and fixed point oper-
ators without mutual recursion between least and greatest fixed points. The input language
of the tool also allows to define parameterized temporal operators and to group them into
separate libraries.

Evaluator works on the fly, meaning that only those parts of the implicit graph pertinent
to verification are explored. The model checking problem is reformulated in terms of solving
a boolean equation system. A useful feature of Evaluator is the generation of diagnostics
(examples and counterexamples) explaining why a formula is true or false.

In 2005, we continued the development of the Evaluator tool. This led to a new version
Evaluator 3.5 (5, 600 lines of Syntax/Fnc2 code and 5, 100 lines of C code) that supersedes
the previous version 3.0, with the following enhancements:

• Evaluator 3.5 uses the resolution algorithms provided by the Cæsar Solve library
(see § 5.1.1) whereas Evaluator 3.0 contained an ad hoc resolution engine. This
improves modularity by clearly separating the translation of the verification problem
into a boolean equation system (this is done in Evaluator) from the resolution itself
(this is done in Cæsar Solve).

• The analysis of regular alternation-free µ-calculus formulas was enhanced with the detec-
tion of formulas that lead to disjunctive or conjunctive boolean equation systems. These
systems can be solved more efficiently using algorithm A4 of Cæsar Solve, which does
not keep in memory the dependencies between boolean variables. Since most of the
formulas encountered in practice are of this type, this enhancement resulted in impor-
tant memory reductions (proportional to the number of transitions in the graph being
checked) with respect to Evaluator 3.0.

• Another optimization, performed on the system of modal equations used as intermediate
representation by the tool, consisted in expanding on-line the propositional variables
which occurred only once in the right-hand side of an equation. On most practical
examples, this reduced by a factor of 3 the number of variables and induced the same
reduction on the time and memory necessary for resolution.

• The generation of diagnostics (examples and counterexamples) was improved in order
to reflect more accurately the structure of the temporal formulas. In the diagnostics
produced by Evaluator 3.0, each state was associated to a state of the graph being
checked, which caused the duplication of transitions in the diagnostic. For instance,
when evaluating the formula “〈a.a.a〉 true” on the graph consisting of a single a-loop
“s

a

→ s”, the diagnostic produced by Evaluator 3.0 was the graph with a single
state s and three a-loop transitions attached to s. Instead, the diagnostic produced by
Evaluator 3.5 is the sequence s1

a

→ s2
a

→ s3
a

→ s4, which is a better explanation that
the formula requires to traverse three successive a-transitions.

Project-Team VASY 13

• Several new command-line options were added to Evaluator 3.5 to benefit from all
features of Cæsar Solve, namely: use of the breadth-first search based algorithm A2
to produce small-depth diagnostics, use of the memory-efficient algorithm A3 to check
properties on acyclic graphs, and possibility to display the underlying boolean equation
system in a textual form.

A detailed manual page for Evaluator 3.5 was written [36] and the tool became part of
Cadp in February 2005.

5.1.4 The REDUCTOR Tool

Participants: Frédéric Lang, Radu Mateescu.

The Cadp toolbox contains a tool named Reductor 3.0 that performs exhaustive reachabil-
ity analysis combined with elimination of internal transitions on the fly (this preserves τ ∗.a

equivalence).

Also, the Vasy team developed in 2003 a prototype tool [16] implementing τ -confluence re-
duction [Gv00], a form of partial order reduction that preserves branching equivalence. This
reduction is a mean to fight state explosion by trying to avoid the exploration of redundant
interleavings resulting from independent τ -transitions. Indeed, experiments on various com-
munication protocols and distributed systems have shown that τ -confluence may reduce the
number of states and transitions by up to 3 orders of magnitude.

In 2005, both tools were merged into a single one, leading to version 4.0 of Reductor.
This new tool (2, 000 lines of C code) operates on graphs represented implicitly using the
Open/Cæsar environment and provides six reduction algorithms:

• It can eliminate both τ -transitions and the so-called redundant transitions [Mou92], still
preserving safety equivalence.

• It can eliminate all τ -transitions, still preserving τ ∗.a equivalence.

• It can eliminate all circuits of τ transitions, still preserving branching equivalence (this
reduction is called τ -compression).

• It can perform τ -confluence reduction, still preserving branching equivalence.

• It can eliminate duplicate transitions, still preserving strong equivalence.

• It can fully minimize a graph modulo strong equivalence.

[Gv00] J. Groote, J. van de Pol, “State space reduction using partial τ -confluence”, in : Proceedings of
the 25th International Symposium on Mathematical Foundations of Computer Science MFCS’2000
(Bratislava, Slovakia), M. Nielsen, B. Rovan (editors), Lecture Notes in Computer Science, 1893,
Springer Verlag, p. 383–393, Berlin, August 2000. Available as Cwi Technical Report SEN-R0008,
Amsterdam, March 2000.

[Mou92] L. Mounier, Méthodes de vérification de spécifications comportementales : étude et mise en
œuvre, Thèse de doctorat, Université Joseph Fourier (Grenoble), January 1992.

14 Activity report INRIA 2005

The 1st, 4th, and 6th reductions above are obtained by encoding the reduction problem into a
boolean equation system that is resolved on the fly using algorithm A5 of the Cæsar Solve
library (see § 5.1.1). The 6th reduction is “orthogonal” in the sense that it can be combined
with any of the five other reductions.

A detailed manual page for Reductor 4.0 was written [37] and the tool became part of Cadp
in October 2005. The τ -compression and τ -confluence reductions led to a publication [29].

5.1.5 Compositional Verification Tools

Participants: Frédéric Lang, Wendelin Serwe.

The Cadp toolbox contains various tools dedicated to compositional verification, among which
Projector 2.0, Exp.Open 2.0, and Svl play a central role.

Projector 2.0 is a tool (totally rewritten in 2002) that implements behaviour abstrac-
tion [GSL96,KM97] by taking into account interface constraints. In 2005, we improved its effi-
ciency by introducing a hash function specifically adapted to state products. On real examples
provided by the Technical University of Eindhoven, the execution time of Projector was
divided by a factor of up to four.

Exp.Open 2.0 is a tool that explores on the fly the graph corresponding to a network of
communicating automata (represented as a set of Bcg files). These automata are composed
together in parallel using either algebraic operators (as in Ccs, Csp, Lotos, and µCrl),
“graphical” operators (as in E-Lotos [ISO01] and Lotos NT), or synchronization vectors (as
in the Mec and Fc2 tools). Additional operators are available to hide and/or rename labels
(using regular expressions) and to cut certain transitions. In 2005, we enhanced Exp.Open
along the following lines:

• Following joint work with Jaco van de Pol (Cwi, Amsterdam) in the framework of the
Senva collaboration (see § 7.2), we corrected two problems related to the support of
µCrl in Exp.Open.

• We added options to obtain static information about the network of communicating
automata, such as a list of the labels that potentially belong to the product and the size
of each Bcg graph in the network.

• We improved the algorithm for enumerating the successors of a given state, which re-
duced the generation time by 20 % on average, with a constant negligible memory
overhead.

[GSL96] S. Graf, B. Steffen, G. Lüttgen, “Compositional Minimization of Finite State Systems using
Interface Specifications”, Formal Aspects of Computation 8, 5, September 1996, p. 607–616.

[KM97] J.-P. Krimm, L. Mounier, “Compositional State Space Generation from LOTOS Programs”,
in : Proceedings of TACAS’97 Tools and Algorithms for the Construction and Analysis of Systems
(University of Twente, Enschede, The Netherlands), E. Brinksma (editor), Lecture Notes in Com-
puter Science, 1217, Springer Verlag, Berlin, April 1997. Extended version with proofs available
as Research Report VERIMAG RR97-01.

[ISO01] ISO/IEC, “Enhancements to LOTOS (E-LOTOS)”, International Standard number 15437:2001,
International Organization for Standardization — Information Technology, Genève, September
2001.

Project-Team VASY 15

• We implemented two partial order reduction techniques, one preserving the deadlocks
and the other one preserving the weak traces of the network of automata, thus extending
the family of partial order reductions already available in Exp.Open.

Exp.Open was used in the framework of the Fiacre national action (see § 7.1) and we devel-
oped three new demo examples to illustrate the recent functionalities of Exp.Open (see § 5.3).
An article about Exp.Open was published in an international conference [28].

Svl (Script Verification Language) is both a high level language for expressing complex veri-
fication scenarios and a compiler dedicated to this language. In 2005, we enhanced Svl along
the following lines:

• We added support for two new equivalence relations, namely trace and weak trace equiv-
alences, which can be used for graph comparison and reduction.

• We added a new operator called “refined abstraction”, which allows to generate the
graph of a process under constraints generated automatically using Exp.Open.

• We adapted Svl so that, depending on the equivalence to be preserved, it invokes
Exp.Open with the most appropriate partial order reduction, which is inferred from
the semantic context automatically.

5.1.6 Parallel and Distributed Verification Tools

Participants: David Champelovier, Hubert Garavel, Christophe Joubert, Radu Mateescu.

Enumerative verification algorithms need to explore and store very large graphs and, thus, are
often limited by the capabilities of current sequential machines. To push forward the limits, we
are studying parallel and distributed algorithms adapted to the clusters of Pcs and networks
of workstations available in most research laboratories.

As a first goal, we focused on parallelizing the graph construction algorithm, which is a
bottleneck for verification, as it requires a considerable amount of memory to store all reachable
states. For this purpose, we developed two tools [5]: Distributor splits the construction
of a graph over N machines communicating using Tcp/Ip sockets; each machine builds a
graph fragment, the distribution of states between the machines being determined by a static
hash function; Bcg Merge merges the N graph fragments constructed by Distributor to
produce the entire graph.

In 2005, this first phase was completed. Distributor 3.0 and Bcg Merge 3.0 became parts
of Cadp in January 2005 and a manual page for Distributor was written [35]. These tools
were demonstrated at several occasions, including the Pdmc’2005 international workshop
(see § 8.2). A tool paper was accepted for publication [25].

As a second goal, we aim at parallelizing on the fly verification itself. Because the
Cæsar Solve library (see § 5.1.1) is our central verification engine for both model checking,
e.g., in the Evaluator tool (see § 5.1.3), and equivalence checking, e.g., in the Bisimulator
(see § 5.1.2) and Reductor tools (see § 5.1.4), we target at the development of a distributed
version of the Cæsar Solve library that could solve boolean equation systems on the fly
using several machines.

16 Activity report INRIA 2005

In 2005, this work progressed as follows:

• We continued the development of a distributed version of Cæsar Solve (currently
17, 000 lines of C code) [17]. The former distributed resolution algorithm [26], which
could only handle boolean equation systems containing one single equation block, was
enhanced to deal with multiple blocks. The enhanced algorithm combines a depth-
first search traversal of the dependency graph between blocks (which is supposed to be
acyclic) and a breadth-first search traversal of the boolean graphs associated to blocks,
both performed in a distributed manner. For single block boolean equation systems, the
enhanced algorithm exhibits almost the same performance as the former algorithm.

• The distributed algorithm for generating diagnostics on the fly was also enhanced to
handle boolean equations systems with multiple blocks.

• The distributed algorithm for termination detection was improved to detect partial res-
olutions of the blocks, i.e., the fact that all boolean variables present in a region of a
block have their final value computed. This allows to propagate the values of these
variables along backward dependencies and, thus, to achieve a good distribution of the
simultaneous resolution of all equation blocks.

• We implemented a prototype connection of the Evaluator 3.5 model checker to the
distributed version of Cæsar Solve. Experiments were performed on the Idpot clus-
ter of Pcs using various graphs taken from the Vlts benchmark suite and Cadp demo
examples. We checked properties ranging from basic deadlock and livelock detection
(on the Vlts graphs) to more complex response properties that must be encoded into
boolean equation systems with several blocks. Compared to the sequential version of
Evaluator 3.5, the distributed version shows quasi-linear speedups, a good load bal-
ancing, and a low memory overhead. As regards deadlock and livelock detection, it com-
pared favourably with UppDmc [HLL04], another distributed model checker for modal
µ-calculus developed at Rwth (Aachen, Germany). A paper on this work was accepted
for publication [27].

• We implemented a prototype connection of Reductor’s τ -confluence reduction algo-
rithm to the distributed version of Cæsar Solve. Experiments were performed on the
Idpot cluster using various graphs taken from Cadp demo examples. Each experiment
consisted in generating a reduced graph using both the sequential version (based on al-
gorithm A2 of Cæsar Solve) and the distributed version. We observed that the latter
was faster by up to three orders of magnitude, with a low memory overhead. For some
examples, the distributed version succeeded where the sequential one would fail due to
memory exhaustion [17].

• Along the lines of the test generation theory [JJ05] implemented in the Tgv tool of
Cadp, we developed a prototype tool named Extractor that takes as inputs both a

[HLL04] F. Holmén, M. Leucker, M. Lindström, “UppDMC – A Distributed Model Checker for Frag-
ments of the µ-calculus”, in : Proceedings of the 3rd International Workshop on Parallel and
Distributed Methods in Verification PDMC’2004 (London, UK), L. Brim, M. Leucker (editors),
Electronic Notes in Theoretical Computer Science, 128, Elsevier Science Publishers, p. 91–105,
2004.

[JJ05] C. Jard, T. Jéron, “TGV: Theory, Principles and Algorithms”, Springer International Journal
on Software Tools for Technology Transfer (STTT) 7, 4, 2005, p. 297–315.

Project-Team VASY 17

“specification” graph (represented implicitly using the Open/Cæsar environment) and
a “test purpose” (represented explicitly as a Bcg graph), and computes the “complete
test graph” (Ctg) containing all sequences of observable actions and quiescence present
in the specification and allowed by the test purpose. The Ctg produced by Extractor
is subsequently processed using the Determinator tool of Cadp to eliminate nonde-
terminism and τ -transitions. Compared to Tgv, Extractor uses a radically different
approach, as it reformulates the Ctg generation problem in terms of a boolean equation
system, for which a diagnostic is computed using the Cæsar Solve library.

We developed two versions of Extractor, a sequential one (1, 200 lines of C code) based
on the sequential resolution algorithms of Cæsar Solve, and a distributed one (1, 300
lines of C code) based on the distributed version of Cæsar Solve. Experiments were
performed on various graphs (taken from the Vlts benchmark suite and the Cadp demo
examples) by using generic test purposes expressing the reachability of certain visible
actions. All Ctgs obtained by applying Extractor and Determinator were strongly
equivalent to those produced by Tgv, although slightly larger. On some examples,
however, the generation of the Ctg succeeded using Extractor and Determinator,
whereas Tgv would fail because of memory shortage. These results have been accepted
for publication [27].

5.1.7 Other Tool Developments

Participants: David Champelovier, Damien Bergamini, Hubert Garavel, Frédéric Lang,
Radu Mateescu, Wendelin Serwe.

Late 2004 and early 2005, a significant number of new tools and libraries were integrated
to the Cadp toolbox, among which Bcg Merge, Bcg Steady, Bcg Transient,
Bisimulator, Caesar Area, Caesar Mask, Cæsar Solve, Determinator,
Distributor, Evaluator 3.5, and Projector 2.0. This also implied an important
effort in writing the corresponding manual pages and correcting the bugs reported by users
worldwide.

Additionally, we improved the following Cadp tools and libraries:

• The Caesar Hash library was improved by adding new hash functions and rewriting
several existing ones.

• The Caesar Table library was enhanced by extending the table maximal capacity
from (224) − 1 to 229 elements, which increases the memory cost of a table, but in a
reasonable manner. We also reduced (up to a factor of 2) the memory cost for “small”
tables, the size of which can be known statically.

• The Aldébaran tool, no longer maintained by its authors, was replaced by a shell wrap-
per (680 lines of shell-script) that invokes the new Cadp tools Bcg Min, Bisimulator,
Reductor 4.0, and Exp.Open 2.0 transparently, while keeping exactly the same
command-line interface as the old Aldébaran tool. Except in a few cases (graph
comparison and minimization modulo delay equivalence, and minimization modulo ob-
servational equivalence), the old Aldébaran tool is no longer used, which is a way to
avoid 24 known bugs in this tool.

18 Activity report INRIA 2005

• We updated most of the Cadp demo examples in order to take advantage of recent
features and tools of Cadp.

We have continued adapting Cadp to the latest computing platforms:

• We ported Cadp to the most recent Linux distributions Fedora Core 3 and 4.

• We upgraded the Windows version of Cadp to support recent versions of Microsoft’s
Msvcrt and Mingwin’s W32api libraries.

• We finished porting the Cadp tools with a graphical user-interface to the Mac OS X
operating system and we took provisions to support its most recent version 10.4 “Tiger”.

• Besides Cadp, F. Lang updated the source code of the Rtl timed verification tool
developped by Christophe Lohr (formerly at Laas/Cnrs) to make it accepted by recent
C++ compilers.

5.2 Languages and Compilation Techniques

5.2.1 Compilation of LOTOS

Participants: David Champelovier, Hubert Garavel, Wendelin Serwe.

The Cadp toolbox contains several tools dedicated to the Lotos language, namely: the
Cæsar.adt compiler [11] for the data type part of Lotos, the Cæsar compiler [7] for the
process part of Lotos, and the Cæsar.Indent pretty-printer.

In 2005, we performed maintenance activities for these tools (1 bug fixed in Cæsar.adt, 1 bug
fixed in Cæsar, and 3 bugs fixed in Cæsar.Indent) and we improved the C code generated
by Cæsar and Cæsar.adt to avoid warnings emitted by the most recent C compilers. We
also enhanced the Cæsar compiler in two ways:

• In the framework of the FormalFame Plus contract (see § 6.2), we simplified the use
of the Exec/Cæsar environment [10]. Exec/Cæsar allows to interconnect, on the
one hand, the C code generated by Cæsar from the Lotos description of a system and,
on the other hand, the “real” environment with which this system interacts. This inter-
connection is implemented as a collection of C functions, one per visible gate declared
in the Lotos specification, which have to be written by hand.

The new version of Cæsar greatly automates this task by generating automatically, for
each function, a C code skeleton that implements appropriate pattern-matching actions
for checking gate parameters — since, in Lotos, the same gate can be overloaded with
several parameter lists that differ in number, types and direction (input or output) —
as well as logging actions to trace the execution of these functions.

• We pursued our study of state space reduction techniques, our goal being to decrease
the size of the graphs generated by Cæsar, still preserving strong bisimulation between
the original and reduced graphs.

Project-Team VASY 19

Our previous work on state space reduction based on live variable analysis [6] led to an
improved version of Cæsar (named Cæsar.New), which became part of Cadp in April
2005. A journal paper was also accepted for publication [19].

Additionally, W. Serwe experimented further uses of data-flow analysis so as to reduce
memory requirements for enumerative verification.

5.2.2 Compilation of E-LOTOS

Participants: David Champelovier, Hubert Garavel, Frédéric Lang.

As regards the E-Lotos language — and, more specifically, its Lotos NT variant elaborated
by the Vasy team — we worked in two directions:

• We continued to improve the Traian compiler (see § 4.2), which generates C code from
Lotos NT data type and function definitions. Traian is distributed on the Internet
(see § 8.1) and used intensively within the Vasy team as a development tool for compiler
construction [2].

In 2005, we released a new version 2.5 of Traian. It corrects four bugs and makes the
C code generated by Traian compatible with the latest versions of Gcc and Intel’s Icc
compilers. In addition, the Traian libraries and shell-scripts have been ported to the
Itanium 64-bit platform running the Linux operating system.

• In the framework of the FormalFame Plus contract (see § 6.2), we undertook the
development of a translator from Lotos NT to Lotos, so as to ease the development
of large specifications by Bull and to reuse the existing Lotos tools for analyzing
concurrent systems described in Lotos NT.

In 2005, a first version of this translator was delivered to Bull. It consists of a Lotos
preprocessing tool named Lpp (1, 280 lines of C code) and a translation tool named
Lnt2Lotos developed using the aforementioned Syntax/Traian technology (760 lines
of Syntax code, 1, 920 lines of Lotos NT code, and 980 lines of C code). A reference
manual was written [33].

5.2.3 Source-Level Translations between Process Algebras

Participants: Hubert Garavel, Gwen Salaün, Wendelin Serwe.

Although process algebras are, from a technical point of view, the best formalism to describe
concurrent systems, they are not used as widely as they could be. Besides the steep learning
curve of process algebras, which is traditionally mentioned as the main reason for this sit-
uation, it seems also that the process algebra community scattered its efforts by developing
too many languages, similar in concept but incompatible in practice. Even the advent of two
international standards, such as Lotos (in 1989) and E-Lotos (in 2001), did not remedy
this fragmentation.

To address this problem, we started investigating source-level translators from various process
algebras into Lotos, so as to widen the applicability of the Cadp tools. One first example is

20 Activity report INRIA 2005

the aforementioned translator from Lotos NT to Lotos (see § 5.2.2). In 2005, we have also
been studying translators for two other process algebras:

• We considered the process algebra Fsp (Finite State Processes) defined in a popular
textbook on concurrency [MK99]. For the “basic Fsp” fragment (i.e., Fsp without its
data part), a prototype translator to Lotos (700 lines of Syntax code, 2, 300 lines
of Lotos NT code, and 300 lines of C code) was developed. While extending this
translator to “full Fsp”, ambiguities were found in the reference Fsp grammar. A
collaboration with Jeff Kramer and Jeff Magee (Imperial College, London) was initiated
to handle these issues.

• In the framework of the Inria/Leti collaboration (see § 7.1), we focused on the process
algebra Chp (Communicating Hardware Processes) for which the Tima laboratory has
developed a circuit synthesis tool named Tast [Ren05] and which is used by the Leti
laboratory to describe complex, asynchronous circuits at a high abstraction level. The
goal is to integrate formal verification into the design flow of complex microelectronic
circuits.

First, we defined a structural operational semantics for Chp, which so far lacked a formal
semantics. In particular, our semantics gives an unambiguous meaning to the hardware-
specific “probe” operator of Chp, the semantics of which has been debated for long
beforehand.

We then proposed a translation scheme from Chp to Lotos for a fragment of Chp
restricted to simple data types (booleans and natural numbers) and to one single probe
operator in boolean guards. For this fragment we developed a prototype translator
named Chp2Lotos, which we used successfully to verify an asynchronous circuit im-
plementing the Des encryption standard (see § 5.3). The operational semantics and the
translation scheme for this Chp fragment led to an international publication [30].

We then revised our translation scheme to handle all the data types of Chp (including
vectors, arrays, and enumerated types of arbitrary size) and to allow boolean guards
containing several probe operators. The Chp2Lotos translator was extended accord-
ingly (currently, 2, 100 lines of Syntax code, 11, 500 lines of Lotos NT code, and 4, 000
lines of C code) and started to be applied to an asynchronous NoC (Network on Chip)
circuit under design at the Leti laboratory (see § 5.3).

5.3 Case Studies and Practical Applications

Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Radu Mateescu, Gwen
Salaün, Wendelin Serwe.

In 2005, the Vasy team also worked on the following case studies:

• We continued our collaboration with Antonella Chirichiello (University “La Sapienza”,
Rome) on the use of process algebras as a convenient design formalism for Web services.

[MK99] J. Magee, J. Kramer, Concurrency: State Models and Java Programs, Wiley, 1999.

[Ren05] M. Renaudin, TAST Compiler and TAST-CHP Language – Version 0.6, TIMA Laboratory, CIS
Group, 2005.

Project-Team VASY 21

This led to a new publication [24] on the use of Cadp for the verification of an e-business
application specified in the standard orchestration language Bpel and translated to
Lotos.

• In the context of the Inria/Leti collaboration (see § 7.1), we pursued the study (under-
taken in 2004) of an asynchronous circuit, designed by the Leti and Tima laboratories,
which implements the Des (Data Encryption Standard). We applied our Chp2Lotos
translator (see § 5.2.3) to a description of this circuit given in the Chp process algebra
(1, 700 lines) and the translator produced a Lotos description of 3, 800 lines.

Because of the high degree of concurrency in this circuit (25 concurrent processes),
direct generation of the state space was not appropriate (more than 17 million states
and 139 million transitions). However, the compositional verification techniques of Cadp
(see § 5.1.5) allowed to generate a smaller, yet equivalent state space (16, 910 states and
85, 840 transitions) in 8 minutes, on which we verified several properties (absence of
deadlocks, correct number of iterations, correct synchronisation between iterations).

• Also in the context of the Inria/Leti collaboration, we started working on another
circuit developed by the Leti laboratory, namely the asynchronous communication in-
terconnect of a NoC (Network on Chip) described in Chp [BCV+05]. Our first results
are encouraging: using our Chp2Lotos translator, we were able to find several small
mistakes in the Chp description.

• We continued the work undertaken in collaboration with Grégory Batt, Hidde de Jong,
and Delphine Ropers (Helix team of Inria Rhône-Alpes) for connecting the Gna (Ge-
netic Network Analyzer) tool developed by Helix with Cadp in order to verify temporal
properties of genetic regulatory networks.

Gna provides a simulator of qualitative models of genetic regulatory networks in the
form of piecewise-linear differential equations. The output of the simulator is a Kripke
structure, i.e., a state-transition graph in which the relevant information is associated
to states. We defined a translation from Kripke structures to labeled transition systems
(the graphs used by Cadp) that preserves strong bisimulation and is succinct, i.e., the
produced labeled transition system has the same number of states and transitions as the
Kripke structure. This translation was implemented as a back-end of the Gna simulator,
which became in this way directly connected to Cadp.

We also defined a translation from propositional µ-calculus to modal µ-calculus (the
temporal logics used to express properties on Kripke structures and labeled transition
systems, respectively) that preserves the truth of formulas. In conjunction with the
translation between Kripke structures and labeled transition systems, this enabled to
use the model checkers Xtl and Evaluator 3.5 of Cadp for verifying various temporal
properties of genetic regulatory networks. It is worth noticing that certain properties
(e.g., the presence of oscillations of protein concentrations), expressible in the µ-calculus
fragment of alternation depth 2 but not in Ctl, could not be verified using the nuSMV

[BCV+05] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, “An Asynchronous NoC
Architecture Providing Low Latency Service and its Multi-Level Design Framework”, in : Proceed-
ings of the 11th IEEE International Symposium on Asynchronous Circuits and Systems ASYNC’05
(New York, USA), IEEE Computer Society Press, p. 54–63, March 2005.

22 Activity report INRIA 2005

model checker, but were handled successfully using Xtl. These activities led to two
publications [22, 18].

A number of case-studies tackled by Vasy during the past years have been finalized and
properly integrated in Cadp, which makes them available widely:

• a randomized binary distributed consensus protocol,

• a computer integrated manufacturing architecture,

• a distributed summation algorithm,

• a distributed Erathostene’s sieve,

• a trader process for open distributed processing,

• a turntable system for drilling products, and

• an asynchronous circuit implementing the Des encryption standard.

Other teams also used the Cadp toolbox for various case studies. To cite only recent work,
we can mention:

• the verification of a reliable large scale multipoint transmission protocol combining ter-
restrial transmission with transmission via satellites [dB04],

• the analysis of an industrial manufacturing system [BTW+05],

• the behavioural verification of service composition [AAA05],

• the modeling and verification of hierarchical components [BHM05a,BHM05b],

• the generation of conformance tests for radiotherapy accelerators [Tur05], and

[dB04] F. de Belleville, Transport multipoint fiable à très grande echelle : Intégration de critères de coût
en environnement Internet hybride satellite/terrestre, PdD Thesis, Institut National Polytechnique
de Toulouse, December 2004.

[BTW+05] E. Bortnik, N. Trcka, A. J. Wijs, S. P. Luttik, J. M. van de Mortel-Fronczak, W. J. F.
J. C. M. Baeten, J. E. Rooda, “Analyzing a χ Model of a Turntable System using Spin, CADP
and UPPAAL”, Journal of Logic and Algebraic Programming 65, 2, November–December 2005,
p. 51–104.

[AAA05] P. André, G. Ardourel, C. Attiogbé, “Behavioural Verification of Service Composition”, in :
Proceedings of the First International Workshop on Engineering Service Compositions WESC’2005
(Amsterdam, The Netherlands), C. Zirpins, G. Ortiz, W. Lamerdorf, W. Emmerich (editors), IBM
Research Report RC23821, p. 77–84, December 2005.

[BHM05a] T. Barros, L. Henrio, E. Madelaine, “Behavioural Models for Hierarchical Components”,
in : Model Checking Software, Proceedings of the 12th International SPIN Workshop on Model
Checking of Software SPIN’2005 (San Francisco, USA), P. Godefroid (editor), Lecture Notes in
Computer Science, 3639, Springer Verlag, p. 154–168, August 2005.

[BHM05b] T. Barros, L. Henrio, E. Madelaine, “Verification of Distributed Hierarchical Components”,
in : Proceedings of the International Workshop on Formal Aspects of Component Software FACS’05
(Macao,), Electronic Notes in Theoretical Computer Science, October 2005.

[Tur05] K. J. Turner, “Test Generation for Radiotherapy Accelerators”, Springer International Journal
on Software Tools for Technology Transfer (STTT) 7, 4, August 2005, p. 361–375.

Project-Team VASY 23

• the use of Lotos for constraint solving [MS05].

Other research teams took advantage of the software components provided by Cadp (e.g., the
Bcg and Open/Cæsar environments) to build their own research software. We can mention
the following developments:

• the Chp2If tool, developed by Menouer Boubekeur (Tima laboratory, Grenoble), which
allows the verification of asynchronous hardware via a translation of Chp descriptions
to networks of communicating automata.

• the Ttool tool, developed by Ludovic Apvrille (Enst, LabSoC laboratory, Sophia-
Antipolis), which allows the verification of reachability graphs of Uml diagrams using
the Turtle Uml real-time profile.

6 Contracts and Grants with Industry

6.1 The IST ArchWare European Contract

Participants: David Champelovier, Hubert Garavel, Frédéric Lang, Radu Mateescu,
Wendelin Serwe.

ArchWare (Architecting Evolvable Software) is a project of the European “Information So-
ciety Technologies” program (Ist-2001-32360). Started on January 1st, 2002, ArchWare
gathers the Research Consortium of Pisa (Cpr), the Engineering company (Italy), the Uni-
versity of Savoie (Listic laboratory and “Association Interaction Université-Economie” —
InterUnec), the Thésame company (France), the Universities of Manchester and St An-
drews (United Kingdom), and the Vasy team of Inria.

The aim of ArchWare is to build an integrated environment for architecting evolvable soft-
ware systems with functional and performance requirements [OWM+04].

In this context, Vasy contributed to the definition of Aal (Architecture Analysis Language), a
language dedicated to the description of behavioral properties of software architectures. Aal
contains operators borrowed from first-order logic and modal µ-calculus, extended with pred-
icates specific to architectural descriptions. It allows to specify both style-related structural
properties (e.g., connectivity between components, cardinality, etc.) and architecture-related
behavioral properties (e.g., safety, liveness, fairness).

Vasy identified a fragment of Aal expressive enough for a large number of property patterns
relevant to software architectures and developed a model checker for this fragment. This model

[MS05] M. Mouhoub, S. Sadaoui, “Improving LOTOS Simulation Using Constraint Propagation”,
in : Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence
ICTAI’05 (Hong-Kong), November 2005.

[OWM+04] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Garavel, C. Occhip-
inti, “ArchWare: Architecting Evolvable Software”, in : Proceedings of the 1st European Work-
shop on Software Architecture EWSA’2004 (St Andrews, Scotland, UK), F. Oquendo, B. Warboys,
R. Morrison (editors), Lecture Notes in Computer Science, 3047, Springer Verlag, p. 257–271, May
2004. Invited paper.

24 Activity report INRIA 2005

checker translates the temporal formulas into boolean equation systems, which are solved on
the models produced by the execution of the ArchWare virtual machine; the model checker
is also equiped with diagnostics generation facilities.

Initially planned to terminate at the end of 2004, ArchWare was extended until June 30,
2005, this additional period being mainly devoted to integration and maintenance activi-
ties, dissemination, and preparation of the project final review. From our participation to
ArchWare, we draw two main conclusions:

• The compiler construction technology promoted by Vasy [2] proved to be effective for
the development of the Aal model checker (16, 400 lines of code).

• The verification technology produced by Vasy [Mat04] was successfully applied to Aal
and allowed to check complex correctness properties on large event traces produced by
the ArchWare virtual machine.

6.2 The FormalFame Plus Contract

Participants: Damien Bergamini, David Champelovier, Hubert Garavel, Radu Mateescu,
Wendelin Serwe.

There is a long-standing collaboration between Vasy and Bull, which aims at demonstrating
that the formal methods and tools developed at Inria can be successfully applied to Bull’s
multiprocessor architectures. The objective is to develop a complete and integrated solution
supporting formal specification, simulation, rapid prototyping, verification, and testing.

Between 1995 and 1998, two case studies were successfully tackled using Cadp: the Power-
Scale bus arbitration protocol [CGM+96] and the PolyKid multiprocessor architecture [10]).

Between 1998 and 2004, the collaboration focused on Fame, the Cc-Numa multiprocessor
architecture used in Bull’s NovaScale series of high-performance servers based on Intel
Itanium processors. The Cadp tools have been used to validate a crucial circuit of Fame
– the Fss (Fame Scalability Switch) – that implements the cache coherency protocol. The
technology transfer is complete, in the sense that the Cadp tools are now part of Bull’s
validation methodology and that Bull maintains itself the Lotos specifications developed
for Fame.

In 2004, the collaboration was renewed by a followup contract named FormalFame Plus,
which, in 2005, was extended for two more years. The general goal of FormalFame Plus is

[Mat04] R. Mateescu, “Model Checking for Software Architectures”, in : Proceedings of the 1st Euro-
pean Workshop on Software Architecture EWSA’2004 (St Andrews, Scotland, UK), F. Oquendo,
B. Warboys, R. Morrison (editors), Lecture Notes in Computer Science, 3047, Springer Verlag,
p. 219–224, May 2004.

[CGM+96] G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, F. Zulian, “Specification and Veri-
fication of the PowerScale Bus Arbitration Protocol: An Industrial Experiment with LOTOS”,
in : Proceedings of the Joint International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols, and Protocol Specification, Testing, and Verifi-
cation FORTE/PSTV’96 (Kaiserslautern, Germany), R. Gotzhein, J. Bredereke (editors), IFIP,
Chapman & Hall, p. 435–450, October 1996. Full version available as Inria Research Report RR-
2958, http://www.inria.fr/rrrt/rr-2958.html.

Project-Team VASY 25

to enhance the performance and usability of the Cadp tools in prevision of the next multi-
processor architectures under design at Bull.

In 2005, the contributions of Vasy were the following:

• A new functionality was added to the Cæsar compiler, which allows to generate code
skeletons automatically for the C functions that, in the Exec/Cæsar software [10],
connect the C code generated by Cæsar from the Lotos description of a system to
“real” environment with which the system interacts (see § 5.2.1). This will ease the task
of writing such interface functions.

• We undertook the definition of an automatic translator from Lotos NT to Lotos
(see § 5.2.3). This will allow Bull to develop formal models in a faster way, as
Lotos NT is more concise than Lotos and closer to mainstream programming lan-
guages.

6.3 The Topcased project

Participants: Hubert Garavel, Frédéric Lang, Nathalie Lépy.

TopCased (Toolkit in OPen-source for Critical Application and SystEms Development) is
a project of Aese, the French pôle de compétitivité dedicated to aeronautics, space, and
embedded systems. This project gathers 23 partners, including companies developing safety-
critical systems such as Airbus (leader), Astrium, Atos Origin, Cs, Siemens VDO, and
Thales Aerospace.

TopCased develops a modular, open-source, generic Case environment providing methods
and tools for embedded system development, ranging from system and architecture specifica-
tions to software and hardware implementation through equipment definition.

In 2005, the Vasy team contributed to TopCased as regards the combination of model-
driven engineering and formal methods for asynchronous systems. H. Garavel is the Inria
representative at the TopCased executive committee, as well as the secretary of this commit-
tee. H. Garavel and F. Lang gave several tutorials and demonstrations of the Cadp tools to
the TopCased participants. Finally, N. Lépy attended a 5-day training session on Eclipse
organized at Airbus (Toulouse, France).

6.4 Forthcoming Projects

Participants: Hubert Garavel, Frédéric Lang, Radu Mateescu, Wendelin Serwe.

In 2005, the Vasy team contributed to the preparation of two future projects:

• OpenEmbeDD is a French national project of Rntl (Réseau National des Technologies
Logicielles). The goal of OpenEmbeDD is to develop an open-source, generic, standard
software engineering platform for real-time embedded systems, such as those developed
by Airbus, Cs, France Telecom, and Thales. Within an Eclipse framework, this
platform will combine the principles of model-driven engineering with those of formal

26 Activity report INRIA 2005

methods. Officially approved in 2005, OpenEmbeDD will start in January 2006 for
three years.

• Multival (Validation of Multiprocessor Multithreaded Architectures) is a project pro-
posed in the framework of Minalogic, the French pôle de compétitivité dedicated to
micro-nano technologies and embedded software for systems on chip. Multival ad-
dresses verification and performance evaluation issues for three innovative asynchronous
architectures developed by Bull, Cea/Leti, and ST Microelectronics. In Decem-
ber 2005, Multival was officially approved by Minalogic as part of its Emsoc/Atelier
du Futur program.

7 Other Grants and Activities

7.1 National Collaborations

The Vasy team plays an active role in the joint research center launched in 2004 between
Inria Rhône-Alpes and the Leti laboratory of Cea-Grenoble. In co-operation with Leti
scientists (Edith Beigné, François Bertrand, Fabien Clermidy, Yvain Thonnart, and Pascal
Vivet), Vasy develops software tools for the design of asynchronous circuits and architectures
such as Gals (Globally Asynchronous Locally Synchronous), NoCs (Networks on Chip), and
SoCs (Systems on Chip). The Tima laboratory (Dominique Borrione and Marc Renaudin)
also contributes to this research action. In 2005, our work focused on a translator that connects
the verification tools developed by Vasy to the hardware synthesis tools developed by Tima
(see § 5.2.3).

Together with the Oasis team of Inria Sophia-Antipolis (Tomas Barros and Eric Madelaine),
the Ltci team of Enst-Paris (Hamid Irfan, Elie Najm, and Sylvie Vignes), the Svf team
of the Laas/Cnrs laboratory (Bernard Berthomieu and François Vernadat), and the Mvr
team of Irit (Mamoun Filali), Vasy is part of the national action Fiacre – Aci Sécurité
Informatique started in 2004 (see http://www-sop.inria.fr/oasis/fiacre). In 2005, we
investigated semantic interconnections between the Cadp toolbox and the tools developed by
the other Fiacre partners.

Additionally, we collaborated in 2005 with several Inria teams:

• Helix (Rhône-Alpes): applications of model checking to biological systems (Grégory
Batt, Delphine Ropers, and Hidde de Jong);

• Oasis (Sophia-Antipolis): collaboration in the framework of Fiacre national action
(Tomas Barros and Eric Madelaine);

• Pop Art (Rhône-Alpes): combination of the Cadp and Prometheus compositional
verification tools (Gregor Goessler);

• Wam (Rhône-Alpes): application of satisfiability of the modal µ-calculus to optimize
XPath search queries on Xml documents (Pierre Genevès and Nabil Layäıda).

Beyond Inria, we had sustained scientific relations with the following teams:

Project-Team VASY 27

• Id-Imag laboratory (Montbonnot): use of the Idpot cluster to experiment parallel and
distributed verification algorithms (see § 5.1.6);

• Laas-Cnrs laboratory (Toulouse): collaboration in the framework of Fiacre na-
tional action, TopCased project, and forthcoming OpenEmbeDD project (Bernard
Berthomieu and François Vernadat);

• Lami laboratory (Evry) and Ecole des Mines de Nantes: coordination, adaptation, and
analysis of component systems (Pascal Poizat and Jean-Claude Royer);

• Leti laboratory of Cea-Grenoble: collaboration in the framework of the Inria/Leti
joint research center and of the forthcoming Multival project (Edith Beigné, François
Bertrand, Fabien Clermidy, Yvain Thonnart, and Pascal Vivet);

• Lip laboratory (Lyon) and Inria Rhône-Alpes: between April and October 2005, R. Ma-
teescu was hosted by the Arenaire team and, since October 2005, he has a part-time
(20%) collaboration with the Plume team.

7.2 International Collaborations

The Vasy team of Inria and the Sen2 team of Cwi collaborate in Senva, a joint research
team on safety-critical systems (see http://www.inrialpes.fr/vasy/senva). Launched in
2004, the Senva team is supported by Inria’s European and International Affairs Department
and by Cwi.

The Vasy team is member of the Fmics (Formal Methods for Industrial Critical Systems)
working group of Ercim (see http://www.inrialpes.fr/vasy/fmics). From July 1999 to
July 2001, H. Garavel chaired this working group. Since July 2002, he is member of the
Fmics Board, in charge of dissemination actions. Within Fmics, R. Mateescu contributes to
the preparation of a “Formal Methods Handbook”.

H. Garavel is a member of Ifip (International Federation for Information Processing) Tech-
nical Committee 1 (Foundations of Computer Science) Working Group 1.8 on Concurrency
Theory, launched in 2005 and chaired by Luca Aceto.

H. Garavel is a member of the technical committee (ETItorial Board) of the Eti (Electronic
Tool Integration) software development platform (see http://eti.cs.uni-dortmund.de).

In addition to our partners in aforementioned contractual collaborations, we had scientific
relations in 2005 with several international universities and research centers, including:

• Eindhoven University of Technology (Judi Romijn and Xing Huo),

• Imperial College (Jeff Kramer and Jeff Magee),

• University of Konstanz (Husain Aljazzar and Paiam Salavati),

• University of Málaga (Carlos Canal and Pedro Merino) [31], and

• University “La Sapienza” of Rome (Antonella Chirichiello and Benjamin Habegger) [24].

28 Activity report INRIA 2005

7.3 Visits and Invitations

In 2005, we had the following scientific exchanges:

• Jean-Luc Nougaret and Franck Di Maio (Cern, Geneva, Switzerland) visited us on
January 20, 2005.

• Benjamin Habegger (Inria Futurs, Mostrare team) visited us on May 10–13, 2005.

• Pascal Poizat (University of Evry – Val d’Essonne) visited us on May 23, 2005.

• The annual Senva seminar was held in St. Pierre de Chartreuse on May 30–June 1st,
2005. In addition to the Vasy team, Wan Fokking (Free University of Amsterdam),
Jeff Kramer and Jeff Magee (Imperial College, London), Aad Mathijssen (University of
Eindhoven), Jaco van de Pol and Anton Wijs (Cwi, Amsterdam), Mihaela Sighireanu
(University of Paris 7), and Michael Weber (Rwth Aachen) attended this seminar. The
list of talks is available from http://www.inrialpes.fr/vasy/senva/workshop2005.

• In the framework of the Fiacre national action, we organized a meeting at Inria Rhône-
Alpes on September 26–27, 2005 attended by the following visitors: Tomas Barros and
Eric Madelaine (Inria Sophia Antipolis), Irfan Hamid, Elie Najm, and Sylvie Vignes
(Enst Paris), Mamoun Filali and François Vernadat (Feria/Cnrs, Toulouse), and
Jean-Bernard Stefani (Inria Rhône-Alpes).

• In the framework of the Senva collaboration, we organized an international meeting
on “Clusters and Grids for Verification and Performance Evaluation” held at Inria
Rhône-Alpes on November 16–17, 2005. In addition to the Vasy team, this meeting
was attended by Jiri Barnat, Lubos Brim, and Ivana Cerna (Masaryk University Brno),
Gerd Behrmann and Josva Kleist (Aalborg University), Anne Benoit (Inria, Graal
team, Lyon), Stefan Blom (Innsbruck University), François Brown de Colstoun (Inria),
Boudewijn Haverkort (University of Twente), William Knottenbelt and Tamas Suto
(Imperial College, London), Marta Kwiatkowska (University of Birmingham), Matthias
Kuntz (Universität der Bundeswehr, Munich), Martin Leucker (Technical University of
Munich), Simona Orzan (Technical University of Eindhoven), Jaco van de Pol (Cwi,
Amsterdam), and Michael Weber (Rwth Aachen). The list of talks is available from
http://www.inrialpes.fr/vasy/senva/meeting2005.

8 Dissemination

8.1 Software Dissemination and Internet Visibility

The Vasy team distributes two main software tools: the Cadp toolbox (see § 4.1) and the
Traian compiler (see § 4.2). In 2005, the main facts are the following:

• We prepared and distributed 15 successive beta-versions (2003-s, ..., 2003-z, 2004-a, ...,
2004-g) of Cadp.

• The number of license contracts signed for Cadp increased from 330 to 345.

Project-Team VASY 29

• We were requested to grant Cadp licenses for 663 different computers in the world.

• The distribution of the Traian compiler continued and a new version 2.5 of Traian
(see § 5.2.2) was released on October 6, 2005.

• The Traian compiler was downloaded by 51 different sites.

The Vasy Web site (see http://www.inrialpes.fr/vasy/cadp) was regularly updated with
scientific contents, announcements, publications, etc.

8.2 Program Committees

In 2005, the members of Vasy assumed the following responsibilities:

• H. Garavel was, together with John Hatcliff (Kansas State University), responsible for
a special issue of the Tcs (Theoretical Computer Science) journal, to appear in 2006,
which gathers the best theory-oriented papers of Tacas’2003.

• H. Garavel was, together with John Hatcliff (Kansas State University), responsible for
a special issue of the Sttt (Software Tools for Technology Transfer) journal, to appear
in 2006, which gathers the best software-oriented papers of Tacas’2003.

• H. Garavel was a steering committee member of Pdmc (Parallel and Distributed Methods
in Verification) series of international workshops.

• H. Garavel was a program committee member of Pdmc’2005 (4th International Work-
shop on Parallel and Distributed Methods in VerifiCation, Lisbon, Portugal, July 10,
2005).

• H. Garavel was a program committee member of SoftMC’2005 (3rd International
Workshop on Software Model Checking, Edinburgh, Scotland, United Kingdom, July
11, 2005).

• R. Mateescu was a program committee member of Tacas’2005 (11th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, Edin-
burgh, Scotland, United Kingdom, April 4-8, 2005).

• R. Mateescu was a program committee member of Vveis’2005 (3rd International Work-
shop on Verification and Validation of Enterprise Information Systems, Miami, Florida,
USA, May 13, 2005).

• R. Mateescu was a program committee member of Ewsa’2005 (2nd European Workshop
on Software Architecture, Pisa, Italy, June 13-14, 2005).

• R. Mateescu was a program committee member of Fmics’2005 (10th International Work-
shop on Formal Methods for Industrial Critical Systems, Lisbon, Portugal, September
5-6, 2005).

• R. Mateescu was a program committee member of Etr’2005 (Ecole d’été temps réel
2005, Nancy, France, September 13-16, 2005).

30 Activity report INRIA 2005

8.3 Lectures and Invited Conferences

In 2005, we gave talks in several international conferences and workshops (see bibliography
below). Additionally:

• R. Mateescu gave a talk entitled “Vérification à la volée de systèmes parallèles asyn-
chrones” at the Lip laboratory – Inria Rhône-Alpes (Lyon, France) on February 1st,
2005.

• G. Salaün gave a talk entitled “Describing and Reasoning on Web Services using Process
Algebra” at Inria Lorraine (Nancy, France) on February 7, 2005.

• W. Serwe participated to the “First German Verification Day” (Oldenburg, Germany)
on March 4, 2005.

• G. Salaün gave a talk entitled “Describing and Reasoning on Web Services using Process
Algebra” at Inria Rennes (France) on March 17, 2005.

• G. Salaün gave a talk entitled “Describing and Reasoning on Web Services using Process
Algebra” at Ecole des Mines de Nantes (France) on April 4, 2005.

• F. Lang gave a talk entitled “Verification of the ODP Trader using Exp.Open 2.0 and
Cadp” at the Laas/Cnrs laboratory (Toulouse, France) on April 18–19, 2005.

• G. Salaün gave two talks entitled “Describing and Reasoning on Web Services using
Process Algebra” and “Formal Coordination of Distributed Entities Described with Be-
havioural Interfaces” at the Laas/Cnrs laboratory (Toulouse, France) on April 18–19,
2005.

• C. Joubert gave a talk entitled “Distributed On-the-Fly Verification of Finite-State Sys-
tems” at the Technical University of Valencia (Spain) on May 9, 2005.

• R. Mateescu gave a talk entitled “Résolution à la volée des systèmes d’équations
booléennes et applications” at the Lsv laboratory (Cachan, France) on May 24, 2005.

• R. Mateescu gave a talk entitled “Cæsar Solve: A Generic Library for On-the-Fly
Resolution of Boolean Equation Systems and its Applications to Verification” at the
University of Málaga (Spain) on June 27, 2005.

• H. Garavel gave a tool demonstration entitled “DISTRIBUTOR and BCG MERGE:
Tools for Distributed Explicit State Space Generation” at Pdmc’2005 (4th International
Workshop on Parallel and Distributed Methods in VerifiCation, Lisbon, Portugal) on
July 10, 2005.

• H. Garavel gave an invited talk entitled “How to Interface Algebraic Process Calculi with
the Real World?” at the international seminar “Algebraic Process Calculi: The First
Twenty Five Years and Beyond” held in Bertinoro (Forĺı, Italy) on August 1–5, 2005.

• R. Mateescu gave a public demonstration of Cadp at the summer school “Ecole d’été
temps réel” (Nancy, France) on September 14, 2005.

Project-Team VASY 31

• F. Lang gave a public demonstration of Cadp at a meeting of the TopCased project
(Laas/Cnrs, Toulouse, France) on September 1, 2005.

• F. Lang and W. Serwe visited Cwi (Amsterdam, The Netherlands) on September 12–16,
2005:

– F. Lang gave a talk entitled “Exp.Open 2.0: A Flexible Tool Integrating Partial
Order, Compositional and On-the-fly Verification Methods” at the Pam (Process
Algebra Meeting) held at Cwi on September 14, 2005.

– W. Serwe gave a talk entitled “State Space Reduction for Process Algebra Speci-
fications” at the Pam (Process Algebra Meeting) held at Cwi on September 14,
2005.

• G. Salaün gave a talk entitled “How Formal Methods Can Contribute to the Formal
Development of Web Services” at the LaMI laboratory (Evry, France) on September
19, 2005.

• F. Lang participated to the TopCased Industrial Workshop on System Verification held
at Airbus (Toulouse, France) on October 11, 2005, where he gave a talk entitled “De-
scription des comportements synchrones et asynchrones” and demonstrated the Cadp
toolbox.

• W. Serwe represented Inria during a visit, organized by the French Embassy in Tokyo,
of Japanese public and industrial research institutes working in the field of systems on
chip (Tokyo, Japon, November 7–11, 2005).

• H. Garavel gave an invited talk entitled “An Overview of Cadp 2005” at the Ger-
man Transregional Collaborative Research Center Avacs (Automatic Verification and
Analysis of Complex Systems) in Freiburg (Germany) — simultaneously transmitted to
Oldenburg and Saarbrücken — on November 25, 2005.

• H. Garavel gave a talk entitled “Systèmes asynchrones, algèbres de processus et espaces
d’états” at the Lip laboratory – Inria Rhône-Alpes (Lyon, France) on December 13,
2005.

• C. Joubert gave a talk entitled “Distributed On-the-Fly Verification of Large State
Spaces” at the University of Málaga (Spain) on December 22, 2005.

8.4 Teaching Activities

The Vasy team is a host team for:

• The computer science master entitled “Informatique : Systèmes et Logiciels”, common
to Institut National Polytechnique de Grenoble and Université Joseph Fourier,

• The computer science master entitled “Informatique : communication et coopération
dans les systèmes à agents” of Université de Savoie.

In 2005:

32 Activity report INRIA 2005

• F. Lang and W. Serwe gave the course on “Temps Réel” to the 3rd year students of
Ensimag (18 hours).

• C. Joubert gave a course on “Tools for Software Engineering” to the 4th year students
of Université Joseph Fourier (9 hours).

• C. Joubert gave lectures and programming assignments for the “Formal Specification”,
“Computer Networks”, “Software Architecture”, and “Operating Systems” courses at
Université Joseph Fourier (87 hours).

• H. Garavel supervised the internship (mémoire de probatoire Cnam) of Vincent Doucet
entitled “Vérification distribuée de programmes parallèles”, defended in Grenoble on
March 31, 2005.

• R. Mateescu was a jury member of Löıc Strus’ MSc thesis (DEA) entitled “Test de
propriétés”, defended at the University Joseph Fourier (Grenoble) on June 22, 2005.

• R. Mateescu was a jury member of Jesús Mart́ınez Cruz’s PhD thesis entitled “Un
enfoque basado en estándares para la integración de técnicas y herramientas de Ingenieŕıa
de Protocolos”, defended at the University of Málaga (Spain) on June 28, 2005.

• F. Lang supervised the internship (mémoire de probatoire Cnam) of N. Lépy enti-
tled “Etude de l’environnement ouvert de développement intégré Eclipse dans l’optique
d’une extension”, defended in Grenoble on July 1st, 2005.

• F. Lang was a jury member of Arnaud Lanoix’s PhD thesis entitled “Systèmes à com-
posants synchronisés : contributions à la vérification compositionnelle du raffinement
et des propriétés”, defended at Université de Franche Comté (Besançon) on August 31,
2005.

• F. Lang was a jury member of Tomas Barros’s PhD thesis entitled “Formal specifica-
tion and verification of distributed components”, defended at Université de Nice Sophia-
Antipolis on November 25, 2005.

• H. Garavel and R. Mateescu supervised the PhD thesis of C. Joubert entitled
“Vérification distribuée à la volée de grands espaces d’états”, defended on December
12, 2005 [17].

8.5 Miscellaneous Activities

D. Champelovier participates to the design group for the new Inria Rhône-Alpes Web site.

H. Garavel is a member of the budget and computing facilities committees of Inria Rhône-
Alpes.

Within the Emsoc/Atelier du Futur program of the Minalogic pôle de compétitivité, H. Gar-
avel is a member of the working group (6 persons) in charge of making proposals for governance
and project selection.

F. Lang participates to the consultative organizational committee of Inria Rhône-Alpes.

W. Serwe is a member of the continuous training committee of Inria Rhône-Alpes.

Project-Team VASY 33

9 Bibliography

Reference Publications by the Team

[1] H. Garavel, H. Hermanns, “On Combining Functional Verification and Performance Eval-
uation using CADP”, in : Proceedings of the 11th International Symposium of Formal Methods
Europe FME’2002 (Copenhagen, Denmark), L.-H. Eriksson, P. A. Lindsay (editors), Lecture Notes
in Computer Science, 2391, Springer Verlag, p. 410–429, July 2002. Full version available as Inria
Research Report 4492, http://www.inria.fr/rrrt/rr-4492.html.

[2] H. Garavel, F. Lang, R. Mateescu, “Compiler Construction using LOTOS NT”, in : Proceed-
ings of the 11th International Conference on Compiler Construction CC 2002 (Grenoble, France),
N. Horspool (editor), Lecture Notes in Computer Science, 2304, Springer Verlag, p. 9–13, April
2002.

[3] H. Garavel, F. Lang, “SVL: a Scripting Language for Compositional Verification”, in : Pro-
ceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems FORTE’2001 (Cheju Island, Korea), M. Kim, B. Chin, S. Kang, D. Lee
(editors), IFIP, Kluwer Academic Publishers, p. 377–392, August 2001. Full version available as
Inria Research Report RR-4223, http://www.inria.fr/rrrt/rr-4223.html.

[4] H. Garavel, F. Lang, “NTIF: A General Symbolic Model for Communicating Sequential
Processes with Data”, in : Proceedings of the 22nd IFIP WG 6.1 International Conference on
Formal Techniques for Networked and Distributed Systems FORTE’2002 (Houston, Texas, USA),
D. Peled, M. Vardi (editors), Lecture Notes in Computer Science, 2529, Springer Verlag, p. 276–
291, November 2002. Full version available as Inria Research Report RR-4666, http://www.

inria.fr/rrrt/rr-4666.html.

[5] H. Garavel, R. Mateescu, I. Smarandache, “Parallel State Space Construction for Model-
Checking”, in : Proceedings of the 8th International SPIN Workshop on Model Checking of Soft-
ware SPIN’2001 (Toronto, Canada), M. B. Dwyer (editor), Lecture Notes in Computer Science,
2057, Springer Verlag, p. 217–234, Berlin, May 2001. Full version available as Inria Research
Report RR-4341, http://www.inria.fr/rrrt/rr-4341.html.

[6] H. Garavel, W. Serwe, “State Space Reduction for Process Algebra Specifications”, in : Pro-
ceedings of the 10th International Conference on Algebraic Methodology and Software Technology
AMAST’2004 (Stirling, Scotland, UK), C. Rattray, S. Maharaj, C. Shankland (editors), Lecture
Notes in Computer Science, 3116, Springer Verlag, p. 164–180, July 2004.

[7] H. Garavel, J. Sifakis, “Compilation and Verification of LOTOS Specifications”, in : Pro-
ceedings of the 10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), L. Logrippo, R. L. Probert, H. Ural (editors), IFIP, North-Holland, p. 379–394,
June 1990.

[8] H. Garavel, M. Sighireanu, “Towards a Second Generation of Formal Description Techniques
– Rationale for the Design of E-LOTOS”, in : Proceedings of the 3rd International Workshop on
Formal Methods for Industrial Critical Systems FMICS’98 (Amsterdam, The Netherlands), J.-F.
Groote, B. Luttik, J. Wamel (editors), CWI, p. 187–230, Amsterdam, May 1998. Invited talk.

[9] H. Garavel, M. Sighireanu, “A Graphical Parallel Composition Operator for Process Alge-
bras”, in : Proceedings of the Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols, and Protocol Specification, Testing, and
Verification FORTE/PSTV’99 (Beijing, China), J. Wu, Q. Gao, S. T. Chanson (editors), IFIP,
Kluwer Academic Publishers, p. 185–202, October 1999.

34 Activity report INRIA 2005

[10] H. Garavel, C. Viho, M. Zendri, “System Design of a CC-NUMA Multiprocessor Architec-
ture using Formal Specification, Model-Checking, Co-Simulation, and Test Generation”, Springer
International Journal on Software Tools for Technology Transfer (STTT) 3, 3, July 2001, p. 314–
331, Full version available as Inria Research Report RR-4041, http://www.inria.fr/rrrt/

rr-4041.html.

[11] H. Garavel, “Compilation of LOTOS Abstract Data Types”, in : Proceedings of the 2nd Inter-
national Conference on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada),
S. T. Vuong (editor), North-Holland, p. 147–162, December 1989.

[12] H. Garavel, “OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and
Testing”, in : Proceedings of the First International Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS’98 (Lisbon, Portugal), B. Steffen (editor), Lecture
Notes in Computer Science, 1384, Springer Verlag, p. 68–84, Berlin, March 1998. Full version
available as Inria Research Report RR-3352, http://www.inria.fr/rrrt/rr-3352.html.

[13] H. Garavel, “Défense et illustration des algèbres de processus”, in : Actes de l’Ecole d’été Temps
Réel ETR 2003 (Toulouse, France), Z. Mammeri (editor), Institut de Recherche en Informatique
de Toulouse, September 2003.

[14] R. Mateescu, M. Sighireanu, “Efficient On-the-Fly Model-Checking for Regular Alternation-
Free Mu-Calculus”, Science of Computer Programming 46, 3, March 2003, p. 255–281.

[15] R. Mateescu, “A Generic On-the-Fly Solver for Alternation-Free Boolean Equation Systems”,
in : Proceedings of the 9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS’2003 (Warsaw, Poland), H. Garavel, J. Hatcliff (editors), Lecture
Notes in Computer Science, 2619, Springer Verlag, p. 81–96, April 2003. Full version available as
Inria Research Report RR-4711, http://www.inria.fr/rrrt/rr-4711.html.

[16] G. Pace, F. Lang, R. Mateescu, “Calculating τ -Confluence Compositionally”, in : Proceed-
ings of the 15th International Conference on Computer Aided Verification CAV’2003 (Boulder,
Colorado, USA), J. Warren A. Hunt, F. Somenzi (editors), Lecture Notes in Computer Science,
2725, Springer Verlag, p. 446–459, July 2003. Full version available as INRIA Research Re-
port RR-4918.

Doctoral Dissertations and “Habilitation” Theses

[17] C. Joubert, Vérification distribuée à la volée de grands espaces d’états, Thèse de doctorat,
Institut National Polytechnique de Grenoble, December 2005.

Journal Articles and Book Chapters

[18] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, D. Schneider,
“Validation of Qualitative Models of Genetic Regulatory Networks by Model Checking: Analysis
of the Nutritional Stress Response in Escherichia Coli”, Bioinformatics 21, Suppl 1, 2005, p. i19–
i28.

[19] H. Garavel, W. Serwe, “State Space Reduction for Process Algebra Specifications”, Theo-
retical Computer Science, 2006, to appear.

[20] F. Lang, “Explaining the Lazy Krivine Machine Using Explicit Substitution and Addresses”,
Journal of Higher-Order and Symbolic Computation, special issue on Krivine’s machine, 2006, to
appear.

Project-Team VASY 35

[21] R. Mateescu, “CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-
Free Boolean Equation Systems”, Springer International Journal on Software Tools for Technology
Transfer (STTT), 2006, to appear.

Publications in Conferences and Workshops

[22] G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, D. Schneider,
“Analysis and Verification of Qualitative Models of Genetic Regulatory Networks: A Model-
Checking Approach”, in : Proceedings of the 19th International Joint Conference on Artificial
Intelligence IJCAI’05 (Edinburgh, Scotland), L. P. Kaelbling, A. Saffiotti (editors), p. 370–375,
July–August 2005.

[23] D. Bergamini, N. Descoubes, C. Joubert, R. Mateescu, “BISIMULATOR: A Modular
Tool for On-the-Fly Equivalence Checking”, in : Proceedings of the 11th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems TACAS’2005 (Edin-
burgh, Scotland, UK), N. Halbwachs, L. Zuck (editors), Lecture Notes in Computer Science, 3440,
Springer Verlag, p. 581–585, April 2005.

[24] A. Chirichiello, G. Salaün, “Encoding Abstract Descriptions into Executable Web Services:
Towards a Formal Development”, in : Proceedings of the IEEE/WIC/ACM International Confer-
ence on Web Intelligence WI’05 (Compiègne, France), IEEE Press, p. 457–463, September 2005.
Extended version available as Technical Report 08-05 of Università di Roma “La Sapienza” (DIS
department).

[25] H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert,
I. Smarandache-Sturm, G. Stragier, “DISTRIBUTOR and BCG MERGE: Tools for Dis-
tributed Explicit State Space Generation”, in : Proceedings of the 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems TACAS’2006 (Vienna,
Austria), H. Hermanns, J. Palberg (editors), Lecture Notes in Computer Science, Springer Ver-
lag, March–April 2006. to appear.

[26] C. Joubert, R. Mateescu, “Distributed Local Resolution of Boolean Equation Systems”,
in : Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based
Processing PDP’2005 (Lugano, Switzerland), F. Tirado, M. Prieto (editors), IEEE Computer
Society, p. 264–271, February 2005.

[27] C. Joubert, R. Mateescu, “Distributed On-the-Fly Model Checking and Test Case Genera-
tion”, in : Proceedings of the 13th International SPIN Workshop on Model Checking of Software
SPIN’2006 (Vienna, Austria), A. Valmari (editor), Lecture Notes in Computer Science, Springer
Verlag, March–April 2006. to appear.

[28] F. Lang, “EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-
the-fly Verification Methods”, in : Proceedings of the 5th International Conference on Integrated
Formal Methods IFM’2005 (Eindhoven, The Netherlands), J. van de Pol, J. Romijn, G. Smith
(editors), Lecture Notes in Computer Science, Springer Verlag, November 2005. Full version
available as INRIA Research Report RR-5673.

[29] R. Mateescu, “On-the-fly State Space Reductions for Weak Equivalences”, in : Proceedings of
the 10th International Workshop on Formal Methods for Industrial Critical Systems FMICS’05
(Lisbon, Portugal), T. Margaria, M. Massink (editors), ERCIM, ACM Computer Society Press,
p. 80–89, September 2005.

[30] G. Salaün, W. Serwe, “Translating Hardware Process Algebras into Standard Process Algebras
— Illustration with CHP and LOTOS”, in : Proceedings of the 5th International Conference on

36 Activity report INRIA 2005

Integrated Formal Methods IFM’2005 (Eindhoven, The Netherlands), J. van de Pol, J. Romijn,
G. Smith (editors), Lecture Notes in Computer Science, Springer Verlag, November 2005. Full
version available as INRIA Research Report RR-5666.

Research Reports and Internal Publications

[31] C. Canal, P. Poizat, G. Salaün, “Adaptation of Component Protocols using Synchronous
Vectors”, ITI-05-10, University of Málaga, December 2005.

[32] P. Poizat, G. Salaün, “Formal Coordination of Communicating Entities described with Be-
havioural Interfaces”, Research Report number 120-2005, LaMI, Evry, September 2005.

Miscellaneous

[33] D. Champelovier, H. Garavel, “Reference Manual of the LOTOS NT to LOTOS Translator
– Version 1D”, INRIA/VASY, 29 pages, November 2005.

[34] N. Lépy, Etude de l’environnement de developpement intégré ouvert Eclipse dans l’optique d’une
extension, Mémoire de probatoire en informatique, Conservatoire National des Arts et Métiers,
Grenoble, July 2005.

[35] Vasy, “Distributor Manual Page”, January 2005, http://www.inrialpes.fr/vasy/cadp/man/
distributor.html.

[36] Vasy, “Evaluator Version 3.5 Manual Page”, February 2005, http://www.inrialpes.fr/vasy/
cadp/man/evaluator.html.

[37] Vasy, “Reductor Version 4 Manual Page”, November 2005, http://www.inrialpes.fr/vasy/
cadp/man/reductor.html.

